
Vol.:(0123456789)1 3

Molecular Biology Reports (2020) 47:737–752 
https://doi.org/10.1007/s11033-019-05123-9

REVIEW

Expression and function of FRA1 protein in tumors

Xiaoyan Jiang1   · Hui Xie1 · Yingyu Dou1 · Jing Yuan1 · Da Zeng1 · Songshu Xiao1 

Received: 2 May 2019 / Accepted: 9 October 2019 / Published online: 14 October 2019 
© Springer Nature B.V. 2019

Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) 
which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of 
the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, 
and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein 
kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such 
as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed 
in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed 
in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. 
However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral 
squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and 
functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
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Introduction

In 1988, Cohen DR and Curran T isolated a new cDNA by 
screening rat c-DNA libraries with FOS DNA probe. This 
gene is very similar to FOS and is named FOSL1. FOSL1 
encodes a protein (FOS-related antigen 1, FRA1) of 275 
amino acids. With the ability to induced rapidly by serum in 
the presence of protein synthesis inhibitors, FOSL1 is con-
sidered as cellular immediate-early gene [1]. Subsequently, 
they went further and found that the FRA1 protein is local-
ized in the nucleus and cytoplasm, and is mainly modified 
by post-translational phosphorylation. Like c-FOS, FRA1 
can bind to JUN to recognize the AP-1 site [2]. By the same 
method, Matsui et al. confirmed the existence of FOSL1 in 
human cells in 1990, which is 90% similar with rat FOSL1 
gene [3]. Since then, a large number of researches on FRA1 
have been published.

In this review, we summarize the regulatory factors and 
functions of FRA1, especially its expression and corre-
sponding functions in tumors.

AP‑1 and FRA1

The FOSL1 gene is located at the 11q13 locus, which 
encodes the FRA1 protein consisting of 271 amino acids. 
FRA1 belongs to the FOS protein family, and other members 
of the family include c-FOS, FOSB, and FRA2. FOS is an 
important member of the transcription factor AP-1. AP-1 
is a dimeric complex that is composed of the JUN (c-JUN, 
JUNB, JUND), FOS, ATF (ATF1–4, ATF-6, b-ATF, ATFx) 
and MAF (c-MAF, MAFA, MAFB, MAFG/F/K, and NRL) 
protein families [4, 5]. In mammals, AP-1 is mainly com-
posed of JUN and FOS. Among them, FOS can only form 
JUN-FOS heterodimer with JUN, but JUN itself can also 
form JUN–JUN homodimer. The formation of AP-1 dimer 
is dependent on the basic leucine zipper (bZIP) domain on 
JUN and FOS, which also binds to DNA, while AP-1 can 
regulate target genes through this bZIP domain by binding 
to the TRE (TGAC/GTCA), a specific DNA sequence on 
the promoter or enhancer of target genes, thereby affecting 
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the proliferation, differentiation, invasion and apoptosis of 
tumor cells [6, 7]. In addition, the bZIP domain of FRA1 is 
located at 115–168 region.

The FOS family has the highly homologous bZIP domain, 
but compared to c-FOS and FOSB, FRA1 and FRA2 lack 
a C-terminal transactivation domain and are therefore con-
sidered to be poor activators of transcription [8]. Even, 
since FRA1 can inhibit the expression of c-FOS from the 
promoter level and inhibit c-FOS-mediated transcriptional 
activation, it is considered to be a repressor of AP-1 tran-
scriptional activity [9, 10]. In turn, other members of AP-1 
can upregulate FOSL1 transcriptional activity by binding to 
its promoter [11].

Regulation of FRA1

Regulation of FRA1 by post‑translational 
modification

The regulation of FRA1 expression is multifaceted. In addi-
tion to the transcriptional regulation of other members of 
AP-1 and some upstream genes (i.e. PI3K, WNT3a, STAT3, 
SIRT1) [12–15], FRA1 is also regulated by itself. Early stud-
ies have used 12-O-tetradecanoylphorbol-13-acetate (TPA) 
to stimulate bronchial epithelial cells and found that the tran-
scriptional activation of FOSL1 is associated with multiple 
cis-elements of itself (EBS, a GC box, and TRE) [11], While 
the transcript elongation of FOSL1 is the result of a series of 
reactions triggered by the phosphorylation of the serine 10 
at histone H3 on FOSL1 enhancer [16].

In all regulation of FRA1, post-translational phosphoryla-
tion is crucial.

The common phosphorylation sites of FRA1 are at ser-
ine and threonine residues, of which S265 and S252 are the 
most important. Phosphorylation of FRA1 in the C-terminal 
tail at S265 and S252 can neutralize its degradation while 
favouring its stabilization [12, 17]. And also, PKCθ-induced 
phosphorylation of FRA1 at T217 and T227 can enhance its 
transcriptional activity [18]. In addition, T223, T230 and 
T240 are also phosphorylation sites of FRA1, but their influ-
ence on FRA1 is not as critical as S265 and S252 [17].

FRA1 can be phosphorylated by some kinases, such as 
mitogen-activated protein kinase (MAPK), protein kinase C 
(PKC), cAMP-dependent kinase (PKA), and cyclin-depend-
ent kinase 1-cdc2 (CDC2) [19]. FRA1 is directly phospho-
rylated by MAPKs, and occasionally MAPKs also indirectly 
regulate FRA1 phosphorylation by RSK1/2 [17]. ERK1/2 
and Ste20-related proline-alanine-rich kinase (SPAK) are 
two mechanisms of PKCθ-induced phosphorylation of 
FRA1 [20]. PKCα can significantly up-regulate the phos-
phorylation level of FRA1 without affecting the total FRA1 
level [21].

In addition to phosphorylation, FRA1 has other post-
translational modifications. With the help of the HDAC6 
deacetylase, IL6/STAT3 axis can deacetylate the lys-116 res-
idue of FRA1, and ending with the acquisition of stemness 
in colon cancer cell [22].

Degradation of FRA1

As a transcription factor protein, FRA1 itself is an unstable 
protein with a short half-life, and its instability is caused by a 
single destabilizer located within 30–40 amino acid residues 
at the C-terminus [17, 23]. The degradation of FRA1 mainly 
relies on ubiquitin-independent proteasome action. First, the 
ubiquitin-independent proteasome recognition is initiated by 
the 19S proteasome subunit-TBP1, and the subsequent pro-
teolytic process is performed by the C-terminal degron [24].

In addition to reducing the degradation of FRA1 by 
down-regulating the expression level of TBP1, its stability 
is enhanced mainly by its phosphorylation, as we mentioned 
above.

Regulation of FRA1 by MARKs pathway

Among the upstream regulatory pathways of FRA1, MAPKs 
pathway topped the list. As mentioned above, phosphoryla-
tion and transcriptional activity of FRA1 are mainly depend-
ent on MAPKs. In mammals, there are at least four differ-
ent MAPK signaling pathways: extracellular signal-related 
kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), 
p38 MAPK and ERK5 [25].

The MAPK pathway is a tertiary cascade reaction con-
sisting of MAPKKK–MAPKK–MAPK. When the external 
stimulus such as growth factors stimulate cells, it can trigger 
the activation of the proto-oncogene RAS, thereby affect-
ing the downstream RAF gene and activating the MEK1/2-
ERK1/2 pathway. Low level of ERK-MAPK activity mainly 
regulates the transcription of the FOSL1 gene, while a higher 
level of ERK activity increase FRA1 accumulation by phos-
phorylating it and preventing its proteasome-dependent deg-
radation [26]. Moreover, recent studies have further revealed 
that the production rate of FRA1 protein has a linear relation-
ship with the total activity of ERK, and there is also a linear 
relationship between the total expression levels of FRA1 
with the duration of ERK activity [27]. To remove the effects 
of exogenous stimuli, mutations in the proto-oncogenes RAS 
and RAF are themselves very common in the development 
of tumors. However, this is not the only way, RAS can also 
activate FRA1 by triggering the PI3K/AKT pathway [12]. 
The regulation of FRA1 by PKC is divided into RAS/ERK-
dependent pathway and non-RAS/ERK-dependent pathway 
[20]. However, when external stimuli are stress signals, 
inflammatory factors, etc., the activated MAPK pathway is 
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not RAS/ERK, but MLKs, MEKKs, TAK1 and ASK1, some 
of them activate p38 through MKK3/6, and the other acti-
vates JNK1/2/3 through MKK4/7, the expression of FRA1 
is then regulated [28] (Fig. 1).

Regulation of FRA1 by microRNAs

MicroRNAs (miRNAs) are a class of endogenous small 
RNAs with approximately 22 nucleotides that have a vari-
ety of important regulatory roles in cells. Recently, many 
miRNAs have been shown to inhibit tumorigenesis by down-
regulating FRA1 expression. These include but not limited 
to the miR-19a/b in breast cancer and cervical cancer [29, 
30], miR-138 in squamous cell carcinoma [31], miR-497 
in colorectal cancer [32], miR-130a in breast cancer [33], 
miR-195 in prostate cancer [34], miR-34 in breast cancer 
and colon cancer [35, 36] (Fig. 2). Based on the role of 
miR-34 in breast cancer, researchers have found a nanohy-
brids targeted miR-34a could inhibit tumor growth in vivo 
[37]. These miRNAs modulate FRA1 expression through 
directly bind the seed sequence of itself to its partially 
complementary seed match sequence in the 3′ untranslated 
region (UTR) of FOSL1. However, miR-138 was found to 
bind not only to the 3′UTR of FOSL1 but also to its 5′UTR 
and coding sequences (CDS). Canonical and non-canonical 
targeting sites work together to inhibit FRA1 expression 
[38]. In contrast, certain miRNAs are also FRA1-targeting 
genes. FRA1 can indirectly affect the expression of ZEB by 
regulating the transcription of miR-221/222 [39]. In ovarian 
cancer, up-regulation of FRA1 can increase the expression 

Fig. 1   Regulation of FRA1 by MARKs pathway. FRA1 is mainly 
regulated by MAPKKK/MAPKK/MAPKs signal pathways, and dif-
ferent exogenous stimuli activates different MAPK pathways. Growth 
factors activate ERK1/2 pathway, whereas stress signals and inflam-
matory factors activate JNK/p38 MAPK signaling pathway

Fig. 2   Regulation and func-
tions of FRA1 in tumor. Fra-1 
is primarily regulated by 
transcriptional levels and post-
translational phosphorylation 
and plays a crucial role in tumor 
progression. The RAS/RAF 
pathway, PKC, PI3K, WNT/
APC, IL-6/STAT3, SIRT1 
and miRNAs can all regulate 
the transcription and post-
translational phosphorylation 
of FRA1. p-FRA1 and p-JUN 
form heterodimers, which then 
affect tumor proliferation by 
regulating cycle-associated 
proteins, affect tumor invasion 
and metastasis through MMPs 
and EMT-TFs, and affect tumor 
apoptosis through p53 pathway
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level of miR-134 and enhance the chemotherapy resistance 
of ovarian cancer [40].

The expression of FRA1 in tumors

At first, the researchers thought that FRA1 is involved in 
embryonic development and bone formation. Later, more 
and more studies have confirmed that FRA1 is abnormally 
expressed in many tumors, which plays an important role in 
tumorigenesis and progression. So far, studies on FRA1 have 
covered tumors of almost all parts of the body, such as breast 
cancer, colorectal cancer, lung cancer, cervical cancer, ovar-
ian cancer, skin cancer, melanoma, and esophageal cancer. 
Interestingly, the abnormal expression of FRA1 in various 

tumors and its effect on tumors vary depending on the type 
of tumor [14, 34, 40–71] (Table 1).

Breast cancer

Breast cancer is the most common malignant tumor among 
Chinese women and the leading cause of death among 
women under 45 years of age in all tumors [72]. Among the 
cancer in female worldwide, the diagnosis rate and mortality 
rate of breast cancer have exceeded lung cancer and ranked 
No. 1 [73], which seriously threatens women’s health and 
life. Among all the tumors that have been studied for FRA1, 
breast cancer was the most studied.

Table 1   The expression of FRA1 in different types of tumor

Tumor types The expression level Biological functions Pathways References

Cancerous tissues and 
Paracancerous tissues

Cancerous tissues and 
benign/normal tissues

Breast cancer – Up Diagnose – [41, 42]
Breast cancer Up – – – [43]
Lung cancer – Down – – [44]
Lung cancer Up – Apoptosis MDM2/p53 [45]
Colorectal cancer – Up – β-catenin [46]
Colorectal cancer Up – Aggressiveness IL-6/STAT3 [14]
Cervical cancer Down – – – [47]
Cervical cancer Down – Apoptosis p53 [48]
Ovarian cancer – No difference – – [49]
Ovarian cancer – up Proliferation, migration, invasion miR-134 [40]
Prostate cancer – Up Invasion miR-195-5p [34]
Prostate cancer Up – Proliferation, metastasis – [50]
Head and neck squamous cell 

carcinomas
Up – – – [51]

Oral squamous cell carcinoma – Down – – [52]
Tongue cancer – Down Proliferation – [53]
Thyroid carcinoma – Up – – [54–56]
Skin cancer – Up – – [57]
Bladder cancer – Up Motility AXL [58]
Endometrial cancer – Up Proliferation p21 [59]
Pancreatic ductal adenocarcinoma – Up Migration, invasion, metastasis MUC1 [60]
Pancreatic ductal adenocarcinoma – Up Proliferation AURKA [61]
Hepatocellular carcinoma Up – Vascular invasion – [62]
Hepatocellular carcinoma Up – Proliferation – [63]
Gastric cancer Up – Proliferation, invasion PI3K, p53 [64]
Gastric cancer Up – – – [65]
Melanoma – Up Proliferation, invasion HMGA1 [66]
Esophageal squamous cell carci-

noma
Up – – – [67, 68]

Malignant mesothelioma – Up Invasion CD44 [69]
Glioblastoma multiforme – Up – – [70]
Osteosarcoma Up – Proliferation, migration, invasion ERK/p38 [71]
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Very early studies have found that FRA1 is highly 
expressed in breast cancer and plays an important role in 
the malignant progression of breast cancer. However, due 
to the differences in hormone receptor levels, there are still 
some differences in the expression levels and functions of 
FRA1 in different subtypes of breast cancer. In vitro, com-
pared to less aggressive, estrogen receptor-positive (ER+) 
breast cancer cell line MCF7, highly invasive breast can-
cer cell lines MDA-MB231, BT549 and HS578T that are 
estrogen receptor-negative (ER−) have a higher expression 
level of FRA1 [74]. In vivo, the researchers confirmed that 
the expression of FRA1 was enhanced with the severity of 
the lesions through a large number of clinical specimens 
[42], and was negatively correlated with the patient’s dis-
tant metastasis survival and overall survival [75]. At the 
meantime, compared with the normal tissues adjacent to 
the cancer, the expression of FRA1 in cancer tissues was 
found to be higher than that in the adjacent tissues.

According to the further analysis of the subtypes, it was 
found that FRA1 expression is only slightly increased in 
the HER-2 type, while the expression in the basal like type 
is increased significantly compared with the luminal type 
[43, 76]. Similar results were also obtained in Oliveira-
Ferrer. L’s study: ER- patients had higher FRA1 expres-
sion level than ER+ patients, and their survival was gener-
ally shorter than ER+ patients. Moreover, it was reported 
that the prognosis was significantly correlated with the 
level of FRA1 expression between ER+ patients, but there 
is no correlation between ER− patients [77]. However, 
unlike above studies, a recent study found that FRA1 can 
be used as a clinical outcome indicator for ER− breast 
cancer patients: the ER− patients with a higher expres-
sion level of FRA1 showed a shorter overall survival, but 
which was not found in ER+ breast cancer. In addition, 
the study also found that triple-negative breast cancer 
(NTBC) cells have a higher expression level of FRA1 
than ER+ cells due to the presence of more enhancers on 
FOSL1 sequence [78]. By copy number analysis of the 
DNA extracted from tissues, it was found that the copy 
number alterations of FOSL1 in NTBC was significantly 
higher than that in luminal and HER2+ [79]. Moreover, 
as an oncogenic coactivator of FRA1, DDT5 can enhance 
the transcriptional activity of FOSL1 and the proliferative 
effect of it. Like FRA1, DD5 is expressed more highly in 
TNBC than other subtypes [80]. Similarly, the architec-
tural chromatin protein HMGA1 is also highly expressed 
in TNBC, and FRA1 can recruit RNA Polymerase II to its 
promoter by binding to its enhancer, promoting its tran-
scription and malignant effects on TNBC [81]. To some 
extent, this explains why FRA1 has different effects in 
different breast cancer cells, but how this variation which 
depends on hormone receptor level produced has not been 
further studied.

Lung cancer

As the cancer with highest morbidity and mortality in 
the world, lung cancer accounts for 11.6% of all cancer 
patients, and accounts for 18.4% of total cancer deaths. It 
is the leading cause of cancer death in men and ranks third 
among women [73].

KRAS is one of the most common mutations in non-
small cell lung cancer (NSCLC). KRAS can regulate FRA1 
through ERK1/2, ERK5 and JNK [61]. KRAS can also acti-
vate the PI3K-mTOR pathway. In general, the combination 
of inhibitors for two pathways is used as a treatment for 
this mutation [82]. In vivo, FRA1 participates in KRAS-
induced lung cancer, by regulating the anti-oxidation and 
anti-apoptosis-related genes. The FRA1 deficiency mice 
reduce the mutant KRAS-induced lung tumorigenesis and 
show a longer survival time [83].

It is well realized that many environmental factors such 
as smoking, silica, asbestos, and DEP are high risk factors 
for causing lung cancer. The effect of these risk factors 
on lung cancer is closely related to FRA1 [84, 85]. For 
example, smoking can promote the expression of FRA1 by 
stimulating the MMPs-EGFR-ERK/JNK/p38 pathway of 
lung epithelial cells, thereby promoting the development 
of lung cancer [86]. EGFR-associated FRA1 expression 
which stimulated by smoking can also be regulated by the 
PI3K-PAK1-MEK1/2-ERK1 pathway, without the involve-
ment of AKT [87]. Smoking can induce c-JUN/FRA1 to 
bind to the promoter of SPRR3 and promote its upregula-
tion, while SPRR3 is an indicator of pathogenic kerati-
nization [88]. Besides, smoking can also synergize with 
Nanoceria on FRA1 to enhance the growth and migration 
of lung cancer cells [89]. Asbestos can change the redox 
state of cells by regulating the glutathione, promoting the 
phosphorylation of ERGF, and then induce the expression 
of FRA1 [90].

Colorectal cancer

So far, the mortality of colorectal cancer ranks second in 
the world. It has been estimated that more than 860,000 
patients worldwide will die from colorectal cancer in 2018 
[73].

Although the expression level of FRA1 in tumor tissues 
is higher than that in normal tissues, it is not essential for 
growth and proliferation of proto-oncological lesions. The 
regulation of FRA1 on colorectal cancer is mainly mani-
fested in the invasion and metastasis ability of cancer [91].

The effect of FRA1 on the invasiveness of colorectal 
cancer can be reflected by the results of IHC: FRA1 is 
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not stained in normal epithelial cells and strongly stained 
in the nucleus of cancer cells, and its staining in mar-
ginal cancer cells with invasiveness and inflammation is 
stronger than the center of lesion. Moreover, it has been 
found that FRA1 staining in liver metastases is stronger 
than the primary lesion [14, 92].

Cervical cancer

Cervical cancer has the highest incidence and death in 
female genital malignant tumors [73]. Unlike the tumors 
mentioned above, FRA1 has been shown to be lowly 
expressed in cervical cancer, inhibiting the malignant phe-
notype of cervical cancer cells.

Cervical cancer is one of the few cancers with a clear 
cause to date, and human papillomavirus (HPV) (espe-
cially HPV16/18) infection is the leading cause of cervi-
cal cancer. The oncoproteins E6 and E7 play a key role in 
the malignant progression of HPV-induced cervical cancer. 
In the process of HPV-induced cervical cancer formation, 
reorganization of AP-1 dimer (FRA1 down-regulation and 
c-FOS up-regulation) plays an important role [93]. Simi-
larly, in HPV infection-associated tongue cancer, by FRA2 
knockdown, the researchers found that FRA1 and p53 were 
up-regulated, while MMP9, cyclinD and HPV E6/E7 were 
down-regulated, suggesting that FRA1 has anti-tumor effects 
[53]. In HPV-positive (higher AP-1 activity) esophageal can-
cer, FRA1 expression is also very low, while FRA1 is highly 
expressed in HPV-negative esophageal cancer. Unlike in cer-
vical cancer, FRA1 promotes the progression of esophageal 
cancer [68], which maybe the interaction of HPV and FRA1 
in esophageal cancer is not dominant. Therefore, the effect 
of FRA1 on HPV-associated tumors is associated with host 
cell types. How HPV infection affects the biological behav-
ior of related tumor cells through FRA1 still needs further 
exploration.

Ovarian cancer

Although the incidence of ovarian cancer is not high com-
pared to other gynecological malignancies, the degree of 
malignancy is the first in gynecological malignancies. Late 
diagnosis and treatment resistance are the two major causes 
of high mortality in ovarian cancer. The common chemo-
therapy regimen for ovarian cancer is the addition of pacli-
taxel to platinum, but patients eventually die due to chemo-
therapy resistance and cancer recurrence [94].

At present, there are few studies on FRA1 and ovarian 
cancer, and there is no unified recognition of the expression 
and specific effects of AP-1 and FRA1 in ovarian cancer. 
Oleg I Tchernitsa et al. found that the expression level of 

FRA1 in ovarian epithelial cells of rat with KRAS mutation 
was significantly increased. It has been demonstrated that 
silencing of FRA1 reverses some of the growth-promoting 
effects caused by KRAS mutations [95]. However, S Mahner 
et al. found that c-FOS is an independent factor for ovarian 
cancer, but not FRA1. Decrease of c-FOS expression can 
promote ovarian cancer progression and reduce progression-
free survival and overall survival in patients [96], which was 
consistent with subsequent findings that c-FOS is beneficial 
for the prognosis of ovarian cancer, and overexpression of 
c-FOS can promote tumor cell apoptosis [97]. However, a 
recent study indicated that TGF-β induced the development 
of ovarian cancer by stimulating the c-FOS/c-JUN via the 
MAPKs pathway [98]. S Mahner et al. compared the expres-
sion levels of AP-1 in benign ovarian tumors, borderline 
ovarian cancer and malignant ovarian cancer. It was found 
that the JUN family was generally more highly expressed in 
malignant tumors than benign tumors. Whereas there was 
no significant difference in the expression level of FRA1 in 
ovarian specimens with different malignant degrees (includ-
ing benign tumors). Although the number of specimens 
used in the study was small, the results of in vitro experi-
ments also showed that there was no significant relationship 
between the expression level of FRA1 and the proliferation, 
invasion and metastasis of ovarian cancer cells [49].

Other tumors

In liver cancer, the expression of FRA1 is positively corre-
lated with the level of alpha fetoprotein (AFP) and the degree 
of vascular invasion [62]. The high expression of FRA1 cor-
responds to the poor prognosis of liver cancer, suggesting 
that FRA1 can be used as a prognostic biomarker for liver 
cancer [63]. As the fifth most common cancer worldwide, 
the incidence of gastric cancer has a clear regional differ-
ence. China is a region with high incidence of gastric cancer. 
Studies have shown that this is related to a functional single 
nucleotide polymorphisms (SNPs) rs1892901 in FOSL1, 
which can enhance the expression of FRA1 and promote 
the development of gastric cancer [99]. Recent study has 
found that the expression of FRA1 is regulated by Helico-
bacter pylori and plays an important role in the develop-
ment of Helicobacter pylori-mediated gastric cancer [100]. 
The oncoprotein TAX encoded by HTLV-1 is critical for the 
development of adult T cell leukemia (ATL), and previous 
studies have found that TAX can affect the transcription of 
FOSL1 [101]. Recent studies have revealed that this is asso-
ciated with TAX-induced activation of the PI3K/AKT-AP-1 
pathway [5]. Cigarette smoke can activate the expression of 
FRA1 via CHRNA7 signaling, allowing it to bind to the pro-
moter of the RNA polymerase II-associated factor, thereby 
inducing stem cell features in pancreatic cancer cells [102].
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Similar to ovarian cancer, the expression of FRA1 in oral 
squamous cell carcinoma is also controversial. The posi-
tive rate of FRA1 in oral squamous cell carcinoma speci-
mens was initially found to be lower than that in normal 
tissues [52], which was consistent with the results obtained 
by Gupta et al. in tongue cancer specimens [53]. However, 
through in vitro experiments, it was found that Yes-associ-
ated protein can promote the proliferation and invasion of 
oral squamous cell carcinoma cells by activating FRA1. And 
the results of IHC also showed that the expression of FRA1 
in the edge of the invasive tumor was higher than that within 
the tumor [103]. Similarly, recent studies have also indicated 
that the expression of c-FOS is higher in normal tissues than 
in cancer, and the overexpression rate of FRA1 is elevated 
with the increased degree of malignancy and variation of 
clinical classification, along with the loss of c-FOS. The 
high expression of FRA1 is negatively correlated with the 
5-year survival of patients [104, 105].

Role of FRA1 in tumor

Proliferation

FRA1 can directly regulate the expression of cell cycle-
related protein, including cyclin-dependent kinases (CDKs) 
and cyclins to promote mitotic progression, thereby promot-
ing cell proliferation (Fig. 2). Early studies analyzed the rela-
tionship between the seven members of the AP-1 family and 
cell cycle-associated proteins, and found that the predomi-
nance expression of FRA1, similar to FRA2, c-FOS and 
JUND, can lead to G1-S transition. Moreover, FRA1 expres-
sion level is closely related to the expression of cyclinE and 
p16 [106]. i.e. Silica can increase the expression of FRA1 
and the accumulation of lung epithelial cells in S phase 
[107]. Similarly, in gastric cancer, FRA1 overexpression 
can increase DNA synthesis and promote cell proliferation 
by accumulate cancer cells in S phase [64]. In osteosarcoma, 
the knockdown of FRA1 can significantly down-regulate the 
expression of cyclinD1 and cyclinD3, and decrease the G1-S 
phase conversion rate [71]. In thyroid cancer, FRA1 can bind 
to the promoter of ACCNA2 (encodes cyclinA) and convert 
cell from G2 to M phase. When the expression of FRA1 is 
decreased, most of the cells are retained in G2 phase, while 
parts of them continuation of mitosis, but ended in failure 
[108]. In oral squamous cell carcinoma and esophageal squa-
mous cell carcinoma, proliferation is associated with over-
expression of FRA1 and its downstream cyclinD [103, 109]. 
In malignant mesothelioma, HGF-induced cell proliferation 
is mainly due to increased expression of proliferating cell 
nuclear antigen (PCNA) caused by FRA1 [110]. The growth-
promoting effect of UBE2N, a K63-specific ubiquitin conju-
gase, on melanoma is also closely related to the activation of 
MEK/FRA1 pathway [111]. As for breast cancer, in addition 

to directly affecting the expression of CDKs, cyclinD, and 
cyclinE, by using ChIP-qPCR, the researchers also found 
that FRA1/c-JUN can bind to the third intron of CLCA2, a 
gene negatively-associated with proliferation, and decrease 
its expression, promote cell proliferation [112]. The anti-
proliferation effect of psoralen on breast cancer cells is due 
to the up-regulation of Axin2 and the down-regulation of 
FRA1 expression, resulting in G0/G1 phase and G2/M phase 
arrest in MCF-7 cells and MDA-MB-231 cells, respectively 
[113]. In neuroblastoma and nasopharyngeal carcinoma, cell 
proliferation is also performed by the c-JUN/FRA1 com-
plex [114, 115]. However, in gliomas and cervical cancers, 
overexpressed FRA1 inhibits the proliferation of related 
cells [48, 116]. In prostate cancer, dihydrotestosterone can 
increase the proliferation of androgen receptor (AR)-positive 
LNCaP cell line by up-regulating the expression of FRA1, 
but has no effect on AR-negative PC-3 cell line, thus infer-
ring the hormonal sensitivity of target organs maybe join in 
the relationship between FRA1 and cell proliferation [117].

Invasiveness and metastasis

The metastasis of cancer cells is an important feature of 
malignant tumors, and is also the main cause of inability 
to perform surgery, as well as death in cancer patients. The 
occurrence of epithelial-mesenchymal transition (EMT) is 
a key step in cancer invasiveness and metastasis [118]. The 
effect of FRA1 on tumor invasion and metastasis is mainly 
achieved by regulating the expression of EMT- inducing 
transcription factors (EMT-TFs) and matrix metalloprotein-
ases (MMPs) (Fig. 2).

For breast cancer, its strong invasiveness is closely related 
to FRA1. FRA1 can directly bind to the promoters of PLAU 
(encoding uPA) [74], MMP1 [119] and MMP9 [120], pro-
moting the aggressiveness and non-adherent growth of can-
cer cells. Through the MLK3-KO human cell lines tested 
by murine xenografts, the researchers also found that the 
MLK3-ERK/JNK-FRA1-MMP1/9 signal cascade existed 
not only in the primary tumor but also in the circulating 
tumor cells, which was of great significance for the distant 
metastasis of cancer cells [121]. Radix Glycyrrhiza is used 
for the treatment of breast cancer because its main compo-
nent Glycyrrhetinic acid (GA) can inhibit the FRA1/MMPs 
signal axis, but the main pathway of action is the p38MAPK/
FRA1 pathway [122]. Studies have confirmed that FRA1 is 
involved in the EMT process of ER- breast cancer by direct 
binding to the promoters of ZEB1 and ZEB2 [75, 112]. 
FRA1 can also affect the expression of SLUG by targeting 
TGFβ [75], and inhibit E-cadherin, promoting EMT pro-
cess. MiR-130a inhibits the EMT process of MDA-MB-231 
cells by up-regulating the expression of ZO-1 through 
inhibition of FOSL1 transcription [33]. In addition, recent 
studies have found that FRA1 is involved in the process of 
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CD137-induced monocyte/macrophages migration to the 
tumor microenvironment and differentiation into osteoclasts, 
of which favors bone metastasis [123].

The effect of FRA1 on invasiveness of lung cancer is cor-
related to the enhanced phosphorylation of EGFR mediated 
by stimulation of MMP2 and MMP9 by FRA1, and MMPs 
can also form a positive feedback loop with ERK to further 
promote the expression of FRA1 [124]. In KRAS-mutant 
lung cancer, even newly discovered molecular targets, such 
as differentiation-1, promote lung cancer progression and 
liver metastasis by regulating the level of FRA1 [125].

By using bioinformatics analysis, it has been found that 
six easily mutated genes (APC, KRAS, BRAF, PIK3CA, 
SMAD4 and p53) in colorectal cancer are associated with 
invasiveness and metastasis [126]. FRA1 is involved in the 
regulation of colorectal cancer cell invasion by these genes. 
Moreover, FRA1 can form a complex with c-JUN and galec-
tin3, and further bind to the promoter of MUC2 to regulate 
its transcription, thereby enhancing the invasiveness of colo-
rectal cancer [127]. FRA1 is involved in the effects of IL-6/
STAT3 and SIRT1 on EMT processes in colorectal cancer 
cells [14, 15]. Studies have found that FRA1 can bind to the 
promoter of vimentin, directly promoting the expression of 
vimentin with interstitial cell characteristics [128].

In prostate cancer, FRA1 enhance cell metastasis by 
upregulating N-cadherin and SNAIL and downregulat-
ing E-cadherin [50]. In pancreatic cancer, FRA1 promotes 
EMT and metastasis of tumor upon the stimulation of MUC1 
[60]. Moreover, the carcinogen benzidine can promote EMT 
of bladder cancer cells via ERK5-AP-1 (c-FOS, c-JUN, 
FRA1) [129]. It has been shown that the formation of com-
plex between αB-Crystallin and 14-3-3ζ protein can pro-
mote EMT of liver cancer cells via KRAS-RAF-MEK1/2-
ERK1/2-FRA1-SLUG pathway, as well as the resistance 
production of cancer cells to Sorafenib [130]. CTHRC1 is 
one of the most highly expressed genes in esophageal squa-
mous cell carcinoma. It can activate FRA1 through RAF-
MEK1/2-ERK1/2, and then up-regulate SNAIL, MMP14 
and HMGA1 to promote invasion of cancer cells [109, 131]. 
The EB virus-encoded latent membrane protein (LMP) is 
an important cause of nasopharyngeal carcinoma. LMP2A 
and LMP1 can promote the phosphorylation of FRA1/c-JUN 
through ERK, thereby activating MMP9 and promoting the 
invasion of nasopharyngeal carcinoma cells [132]. In addi-
tion, LMP1 can also activate the upstream pathway of FRA1, 
PI3K pathway [115].

The most common mutated gene in melanoma is BRAF. If 
the tumor suppressor gene PTEN is also silenced, HMGA1 
expression can be induced by BRAF-ERK1/2-FRA1 and 
PI3K-AKT-mTOR-FRA1 pathways, resulting in down-regu-
lation of MITF/AXL ratio, which finally lead to the melano-
cyte reprogramming and transformation [66, 133]. NRAS/
BRAF pathway can induce the conversion of melanocytes 

into malignant melanoma cells by reorganization of EMT-
TFs, that is the conversion of SNAIL2, ZEB2 to TWIST1 
and ZEB1. The dedifferentiation and malignant switch are 
FRA1-dependent [134].

Apoptosis

Although the relationship between FRA1 and tumor cell 
apoptosis varies greatly from tissue to tissue, it is closely 
related to the p53 pathway (Fig. 2). In lung cancer cells, 
elevated FRA1 can inhibit p53 and up-regulate the level of 
its negative regulator MDM2, ultimately inhibiting the apop-
tosis of lung cancer cells by enhancing apoptosis-related 
mitochondrial membrane potential (ΔΨm) and down-reg-
ulating intracellular ROS and aggregation of Ca2+ [45]. 
On the contrary, the expression of p53 in cervical cancer 
is consistent with FRA1, and overexpression of FRA1 can 
promote apoptosis of cancer cells through p53 [48]. So far, 
what caused this difference between organizations has not 
yet been elucidated.

Treatment resistance

According to different treatment methods, tumor resistance 
can be divided into radiotherapy resistance and chemother-
apy resistance.

As mentioned above, BRAF is one of the common muta-
tion genes in colorectal cancer, and patients with BRAFV600E 
mutations often resist to the MEK1 inhibitor, Selumetinib. 
The reason is that a key protein CEMIP links the WNT 
pathway to the MEK1-ERK1/2 pathway, whereas CEMIP 
expression is induced by β-catenin- and FRA1-dependent 
pathways [135]. In addition, high expression of FRA1 is also 
associated with the formation of radiotherapy resistance in 
colorectal cancer [136].

The radiotherapy resistance of prostate cancer is related 
to the activation of EGFR and PI3K. Both pathways can 
increase the expression of AP-1 and enhance prostate cancer 
cells resistance to radiation [137].

In the treatment of cervical cancer, curcumin is consid-
ered a good anticancer agent. The use of curcumin before 
radiotherapy can increase the activity of ERK1/2 and ROS 
production, and enhance the radiosensitivity of cervical 
cancer [138]. Recent studies have confirmed that the radio-
sensitizer behavior of turmeric is related to its inhibition for 
AP-1 DNA binding activity and stimulation of AP-1 reor-
ganization, i.e. down-regulation of c-FOS and up-regulation 
of FRA1 [139]. In other words, FRA1 has a radiosensitizing 
effect on cervical cancer.

In liver cancer cells, the formation of complex between 
αB-Crystallin and 14-3-3ζ protein can promote EMT of 
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cells via KRAS-RAF-MEK1/2-ERK1/2-FRA1-SLUG 
pathway, as well as the resistance production of cancer 
cells to Sorafenib [130]. In melanoma cells, PI3K/FRA1 
is involved in the regulation of FGF1 secretion associated 
with BRAF inhibitor resistance, providing a basis for the 
combined application of FGF1 inhibitor and BRAF inhibi-
tor [140].

For ovarian cancer, a study about miR-134 showed that 
the mRNA level of FOSL1 was higher in cancer than in 
normal ovaries and positively correlated with the expres-
sion of miR-134. In the case of HRAS mutation, the JNK/
ERK-FRA1-miR-134-SDS22-JNK/ERK-FRA1 positive 
feedback loop promotes the proliferation of tumor cells, 
enhances the chemotherapy resistance of ovarian cancer 
cells to doxorubicin, and reduces the median survival time 
of patients [40]. Similarly, cellular studies have shown 
that occurrence of JQ1 resistance during the treatment of 
BRD4-associated ovarian cancer cell is due to the activa-
tion of RTK-PI3K-AKT and RTK-PI3K-ERK-c-Myc/FRA1 
pathways, suggesting that c-MYC/FRA1 can promote the 
growth of ovarian cancer cells in vitro [141]. Later, the 
team further studied that the FRA1-related RTK-RAF and 
RTK-PI3K pathways were also involved in the chemore-
sistance of MEKi [142]. Furthermore, as the most com-
monly used chemotherapy drug for ovarian cancer, stud-
ies have confirmed that cisplatin resistance is associated 
with abnormal expression of FRA1. FRA1 participates in 
ROS-IL-11-JAK2-STAT5-mediated cisplatin resistance by 
directly binding to the promoter of IL-11 [143].

Similar to ovarian cancer, c-MYC/FRA1 is associ-
ated with chemotherapy resistance of mesothelioma. A 
combination of JQ1 and cisplatin can promote tumor cell 
apoptosis by affecting FRA1/c-MYC in vitro [144], while 
trametinib can down-regulate FRA1 and CD44 by inhib-
iting ERK phosphorylation and elicit anti-tumor effect 
[145].

In summary, FRA1 has an effect on tumor radioresist-
ance and chemoresistance, which may provide some ideas 
for future combination therapy. However, we also noticed 
that although FRA1 serves as a hub for many classical 
pathways and plays an important role in tumors, there are 
currently no inhibitors directly targeting FRA1. While, 
recently, Wei Yang et al. developed a multi-kinase inhibi-
tor, LY-1816, which not only inhibits the phosphorylation 
level of SRC kinase, but also directly inhibits the expres-
sion level of FRA1. The inhibitor has confirmed its tumor 
suppressing effect in a variety of vitro cells and pancre-
atic ductal adenocarcinoma xenografts. Although the anti-
tumor effect of the inhibitor was found to be stronger than 
that of gemcitabine and dasatinib, many difficulties still 
need to be overcome before its clinical trial [146]. In gen-
eral, the development of small molecule targeted drugs for 
FRA1 still has a long way to go.

Discussion and perspectives

In this review, we discussed the regulatory factors of 
FRA1. FRA1 can be regulated by transcription and post-
translational modification, mainly by post-translational 
phosphorylation. The classic regulatory pathway is RAS/
ERK signaling pathway. FRA is degraded by proteasome. 
FRA1 is also regulated by miRNAs. We also discussed 
the expression and function of FRA1 in various tumors. 
Whether FOSL1 plays as a proto-oncogene or a tumor sup-
pressor gene is closely related to the type of target organs. 
In general, FRA1 is highly expressed in most of tumors 
and promotes the malignant progression of tumors, except 
cervical cancer and some controversial tumors.

Heterogeneity is an important feature of malignant 
tumors, including clonal evolution and cell plasticity, 
and FRA1 plays a crucial role in this process. Readers 
can refer to the excellent review by AS Dhillon and E 
Tulchinsky [147]. The cell plasticity is manifested by the 
cell reprogramming. In melanoma, FRA1 can affect the 
chromatin remodeling factor HMGA and MITF, which is 
closely related to melanoma phenotype [66]. In hepatocel-
lular carcinoma, hepatocyte growth factor (HGF), which 
derived from cancer-associated fibroblasts could regulate 
tumor-initiating cell plasticity through c-Met/FRA1/HEY1 
Signaling [148]. However, in other tumors, the effect of 
FRA1 on cell reprogramming is mostly focused on altering 
cell polarity by EMT-TFs. There is no profound study on 
how FRA1 changes chromatin status, organelle structure, 
and cytoskeletal rearrangement. In addition, abnormal 
energy metabolism is one of the top ten characteristics 
of malignant tumors. As an important factor affecting 
the development of tumors, the role of FRA1 in energy 
metabolism is also worth exploring. At present, research-
ers have found that FRA1 and c-FOS can increase the rate 
of phospholipid synthesis and promote breast cancer cell 
proliferation by associating and activating the rate limit-
ing enzyme CDP-DAG synthase, which is a phospholipid 
synthesis factor. The N-terminal domain plays a key role 
in this process [149].

The occurrence of tumors is a very complicated pro-
cess, and the tumor microenvironment (TME) plays a 
very important role in the occurrence of tumors. Earlier 
studies have used co-culture techniques to find that breast 
cancer cells can promote the overexpression of FRA1 in 
tumor-associated macrophages (TAMs), activate the IL-6/
STAT3 pathway, and induce the differentiation of tumor-
associated macrophages from M1 to M2, which facilitate 
the immune evasion of tumor cells, and in turn promotes 
the aggressiveness of breast cancer cells [150, 151]. miR-
19a-3p inhibits the polarization of TAM and the aggres-
siveness of breast cancer by inhibiting the level of FRA1 
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in TAMs [29]. Similar phenomenon exists in lung cancer. 
M2 macrophages can promote the invasion and metastasis 
of lung cancer by regulating CRYAB expression and acti-
vating the ERK1/2-FRA1-SLUG signaling pathway [152]. 
Based on the correlation between FRA1 and the TME, it 
is possible that target of FRA1 will be a breakthrough in 
cancer immunotherapy. But the current progress in this 
area is still relatively limited (only initial trials in breast 
cancer) and requires further efforts.

Targeted therapy as an important treatment for malig-
nant tumors, many small molecule targeted drugs targeting 
specific targets have been developed. However, studies have 
shown that sustained targeted therapy can induce secretome, 
leading to drug resistance, and accelerate the spread of 
tumors, severely limiting the effectiveness of targeted ther-
apy. The BRAF inhibitor vemurafenib reactive secretome 
is closely related to the down regulation of FRA1 [153]. In 
addition to simple drug resistance, some tumor cells even 
have an addictive reaction to drugs, and a sudden withdrawal 
of drugs will lead to the death of a large number of addicted 
cells. Using CRISPR technology, Professor Peeper’s team 
found that the death of melanoma cells induced by drug 
withdrawal is closely related to the activation of the ERK2-
JUNB/FRA 1 pathway [154]. Professor Roger’s group also 
advocates that DNA damage and cell death caused by drug 
withdrawal are associated with robust p-ERK-induced up-
regulation of the p38-JUNB/FRA1-CDKN1A pathway 
[155]. Rational use of the drug resistance and addiction of 
tumor cells can improve the lethality of cancer drugs on 
addictive cells, which provide new ideas for the treatment 
of drug-insensitive tumors.
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