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Abstract
Several mechanisms are involved in the loss of cellular integrity and tissue destructions in various brain regions during 
ischemic insult. The affected brain employs various self-repair mechanisms during the poststroke recovery. Therefore, the 
current study involves time course changes in different brain regions following ischemia in terms of inflammation, oxidative 
stress and apoptosis for which a bilateral common carotid arteries occlusion model was chosen. The development of oxida-
tive stress was seen with a marked increase in ROS and NO levels with concomitant decrease in GSH levels and also the 
activities of anti-oxidant enzymes. These alterations were accompanied with decreased levels of neurotransmitters and motor 
and cognitive deficits at various time points. Increased expressions of various pro-inflammatory cytokines and a decline 
in BDNF levels in hippocampal regions on 7th day post ischemia, suggesting their role in its pathogenesis. The restoration 
of BDNF and neurotransmitter levels along with significant decline in inflammatory cytokine levels 14th day onwards fol-
lowing ischemia in hippocampus suggested poststroke recovery. The extent of neuronal damage was found to be increased 
significantly on 7th day post ischemia as indicated by TUNEL assay and hematoxylin and eosin staining depicting enhanced 
number of pyknotic neurons in cortical and hippocampal regions. Cortical regions of the ischemic brains were severely 
affected while hippocampal regions showed significant poststroke recovery, which might attributed to the normalization 
of BDNF and pro-inflammatory cytokine levels. In conclusion, the present study established the central role of BDNF and 
pro-inflammatory cytokines in the poststroke recovery. Also, the cortical and hippocampal regions were found to be more 
susceptible for ischemic injury. As our results indicated, full recovery after ischemic injury in different brain regions was 
not achieved, therefore further studies with long-term recovery time are required to be conducted.
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Abbreviations
TGCI  Transient global cerebral ischemia
ROS/RNS  Reactive oxygen species/reactive nitrogen 

species
DA  Dopamine
NE  Norepinephrine
5-HT  Sertonin
DTNB  5,5′-Dithiobis-(2-nitrobenzoic acid)
TTC   Triphenyltetrazolium chloride
ECD  Electrochemical detector
TL  Transfer latency
BDNF  Brain derived neurotrophic factor
LSD  Least significant difference

Introduction

Stroke is the third leading cause of death worldwide [1], 
which results either from occlusion of blood supply by a 
thrombus or by subsequent bleeding from ruptured vessel in 
a certain region of the brain. It can be classified as ischemic 
or haemorrhagic stroke. In transient global ischemia, there 
is a temporary loss of blood supply to whole brain resulting 
in the death of specific neuronal cell population [2]. Several 
factors such as impaired blood flow, free radical generation, 
energy failure, impaired calcium homeostasis, vascular leak-
ages and inflammatory responses contribute to the ischemic 
insult. These effects are non-uniform in both neurons and 
glial cells, as well as, in different regions of the brain [3].

During restoration, a sudden flow of oxygenated blood 
leads to overproduction of Reactive Oxygen Species (ROS) 
such as superoxide anions, hydrogen peroxides and hydroxyl 
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free radicals which are involved in the initiation of cell death 
[4]. The role of oxidative stress becomes more pronounced 
due to sudden increase in oxygen levels and consequent 
ROS/RNS (Reactive Nitrogen Species) production leads to 
enormous tissue damage [5]. Several studies have also linked 
ROS production during ischemia to neuronal cell death [5, 
6].

Along with ROS, common inflammatory cascade is a 
major contributing factor for the development of stroke [7]. 
Several inflammatory cytokines such as IL-1 (Interleukin-1), 
IL-6 (Interleukin-6) and TNF-α (Tumour Necrosis Factor) 
are the common biomarkers of this pathway. This inflam-
matory insult leads to the development of atherosclerosis, 
which is mostly associated with the occurrence of ischemic 
stroke [8]. Also, the amino acid neurotransmission plays a 
critical role in the pathology of ischemic stroke citing the 
importance of various neurotransmitters and neurogenesis 
during poststroke recovery [9, 10]. Various monoamines 
such as Dopamine (DA), Norepinehprine (NE) and Seroto-
nin (5 HT) are critically essential for the normal function-
ing of nervous system [11]. Similarly, neurotrophins such as 
Brain Derived Neurotrophic Factor (BDNF) plays a major 
role in the maintenance of neuronal plasticity. Alterations 
in the levels of these biogenic amines and neurotrophins 
can cause significant neuronal insults [12, 13]. Majority of 
the studies have discussed the role of these factors in con-
text with the occurrence of ischemic stroke but the studies 
establishing their role in the poststroke recovery are scarce.

Mergenthaler et al. [14] showed that the various brain 
regions have different threshold for ischemic damage. There 
are many neurons which resist the ischemic environment 
while some selective neurons are vulnerable to these hypoxic 
conditions. For example, specific populations of neurons 
such as pyramidal neurons in the CA1 (Cornu Ammonis) 
region of hippocampus are selectively more vulnerable to 
ischemia [15], whereas CA3 and dentate granule neurons 
are resistant [2]. The underlying mechanism of this differen-
tial vulnerability and resistance of various neuronal popula-
tion to ischemic injury is not well understood [16] and still 
remains a debated topic in studies which are focused on the 
variation in local vasculature [17], differential superoxide 
anion production [18] and neuronal-glial population ratio 
[16]. The other brain regions that are vulnerable to ischemia 
are cortex [19] and cerebellum [20]. Particularly, in cerebel-
lum, some reports have suggested cerebellar granule cell 
layers are more vulnerable to hypoxia [21]. Considering the 
vulnerability of these regions cortical, hippocampal and cer-
ebellar regions of the rat brain were observed in the present 
study.

Along with vulnerability in the selective neuronal cell 
population, the damage following ischemia depends upon 
the different time windows following ischemia. Ouyang [22] 
also showed delayed neuronal death in CA1 of hippocampus 

at day 2–4 following ischemia which suggests that the time 
window is a very crucial factor following ischemia. In pre-
vious studies, the sequential alterations in the hippocampus 
following ischemia were well established only for small 
time durations i.e. from few hours to few days but much 
remains to be studied in other areas of brain. Also, a long 
duration study is required to establish the roles of various 
markers of ischemic stroke during poststroke recovery [16]. 
Therefore, the current study was designed to explore the 
susceptibility and resistance of various brain regions at day 
1,7,14 and 21 following ischemic reperfusion injury using 
bilateral common carotid arteries occlusion model to induce 
transient global ischemia. This model was first established 
in dessert (gerbil) rats in 1984 by Kirino et al. [23], which 
resulted in pronounced injury in CA1 layer of hippocampal 
region in gerbil rats. This model was selected for the present 
study because a specific population of neurons was affected, 
which could be studied following ischemic insult and also, a 
therapeutic window was available to try-out various neuro-
protection strategies to ameliorate or delay cerebral injury 
by interrupting the biochemical and cellular events.

Materials and methods

Chemicals

All the chemicals were of analytical grade. Chloral hydrate, 
2′7′-dichlorofluoresceine diacetate (DCFH-DA), dopamine, 
nor-epinephrine and serotonin standards and anti-BDNF 
antibody were purchased from Sigma Chemical Co. (St. 
Louis, MO, USA). TTC (triphenyltetrazolium chloride) 
was purchased from Merck (Mumbai, India). DTNB (dith-
iobis2-nitrobenzoic acid) and NBT (nitroblue tetrazolium) 
were purchased from Sisco Research Laboratories Pvt. Ltd. 
(Mumbai, India). TUNEL kit was purchased from Calbio-
chem, USA.

Experimental animals

Male wistar rats (250–300 g) were procured from the Cen-
tral Animal House, Panjab University, Chandigarh, India 
(45/GO/ReBi/s/99/CPCSEA). The animals (n = 5–7) were 
housed in polypropylene cages under ambient conditions 
of humidity and temp and acclimatized for 1 week. They 
were provided with food and water ad libtium throughout the 
experimental period. All the protocols were done in accord-
ance with the ethical guidelines given by the Institutional 
Animal Ethics Committee (IAEC) of Panjab University, 
Chandigarh. The animals were divided into two groups, 
sham and Transient global cerebral ischemia (TGCI) and 
sacrificed at four different time intervals i.e. at day 1, 7, 14 
and 21 after ischemic/reperfusion injury.
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Induction of transient global ischemia in rats

Transient global cerebral ischemia was induced by the modi-
fied method of Jingtao [24]. For the surgical procedure, the 
rats were anesthetized by 10% chloral hydrate (300 mg/kg 
body weight, i.p.) and were fixed in supine position and mid-
dle incision was made in the neck. Both common carotid 
arteries were exposed and separated carefully from the vagus 
nerve. Ischemic insult was induced by occlusion of both the 
arteries by an occlusion clamp for a period of 15 min fol-
lowed by recirculation by removing the clamps. The animals 
which were subjected to the same surgery without occlusion 
of both arteries served as sham. Animals were kept at approx. 
at 37 °C (by using heating pad) to recover from anaesthesia.

Infarct area measurement

Infarct area was estimated by the method of Himori [25]. 
The rat brains were extracted and were kept at – 20 °C 
for 5–10 min. The coronal slices (2 mm thickness) were 
obtained and incubated in 0.5% (w/v) TTC (triphenyltetra-
zolium chloride) at 37 °C for 30 min in dark. TTC reacts 
with metabolically active area and gives deep red or orange 
colour while inactive areas were depicted as non-stained. 
Images were captured by a digital camera and analysed by 
image J software (NIH).

Behavioural alterations

Behavioural tests were performed at day 0 (before surgery) 
and on 7th, 14th and 21st day post-surgery.

Morris water maze (MWM)

This test was performed for the spatial learning and memory 
[26]. MWM consists of a circular pool (140 cm in diam-
eter and 50 cm in height) filled with water and is divided 
into four quadrants. Each animal was given four trials per 
day to reach a visible platform (with different start points) 
for consecutive 8–10 days until all the animals reached 
in ≤ 10 s (escape latency). After trial, escape latency (that 
is the time to reach the platform) was calculated at various 
time intervals.

Elevated plus maze (EPM)

This test was performed for the spatial short term memory 
[27]. EPM consists of two open and two closed arms which 
are elevated from the floor (50 cm). It is a two day procedure. 
On day one, animals were placed in one of the open arms 
and the time to enter in one of the closed arm was recorded. 
After 120 s, if the animal did not enter any of the arm, it was 
guided to the closed arm and called transfer latency (TL) 

assigned as 120 s. After 24 h, same procedure was followed 
and the TL was recorded. The percentage transfer latency 
was calculated by the following formula.

Actophotometer

The total locomotor activity was measured with the help 
of digital actophotometer (IMCORP, India) [28, 29]. Each 
animal was first habituated in the actophotometer chamber 
for 3–5 min on the given training day. Then counts were 
recorded for 180 s according to standard protocols [29]. 
These counts were called the rearing and ambulation move-
ments of each animal.

Neurotransmitter level

The different brain regions (cortex, hippocampus and cer-
ebellum) were separated and homogenised in buffer con-
taining 0.1 M perchloric acid followed by centrifugation at 
12,000×g for 5 min. The supernatant was taken and filtered 
through 0.25 µm pore size filter. The levels of dopamine, 
nor-epinephrine and serotonin were analysed by a high per-
formance liquid chromatography (HPLC), attached with 
electrochemical detector (ECD) following the method of 
Church [30] at various time intervals. The area under the 
peaks was analysed with the help of Empower software.

Biochemical estimations

Preparation of sample

The brain was dissected and the different brain regions 
namely cortex, hippocampus and cerebellum were sepa-
rated. A 10% (W/V) tissue homogenate was made in PBS 
(phosphate buffer saline; pH 7.4). The homogenate was then 
centrifuged at 10,000×g for 30 min and the supernatant was 
collected, i.e. post mitochondrial fraction (PMF).

Protein estimation

The protein contents in various sections of brain samples 
were estimated by the method of Lowry [31].

Reactive oxygen species (ROS)

Intracellular ROS levels were estimated by method of Best 
[32]. It was based on deacetylation of 2′7′-dichlorofluores-
ceine diacetate (DCFH-DA) following ROS mediated oxi-
dation which further gives a fluorescent product, i.e. DCF. 
The fluorescence measured with the help of a Perkin Elmer 
spectrofluorimeter at an excitation/emission wavelength of 

{[

TL(Day 1) − TL (Day 2)
]

∕TL day 2
}

× 100
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488/525 nm, respectively. The units were expressed as AFU/
mg of protein where AFU: Arbitrary fluorescence units.

Levels of nitric oxide (NO)

NO was measured by the method of Raddassi [33], where 
the stable product, nitrite reacted with Griess reagent. This 
resulted in purple color azo dye which has absorbance at 
540 nm on ELISA reader. The NO content was expressed as 
nmoles of nitrite/mg of protein.

Reduced glutathione (GSH)

GSH levels were estimated with the method of Ellman 
[34]. It was based upon the reduction of DTNB (dithiobis2-
nitrobenzoic acid) with free –SH groups to form thio-2-ni-
trobenzoic acid which was yellow in color and absorbance 
was read at 412 nm. The levels of GSH were calculated by 
a standard plot formed by using GSH as standard and the 
results were expressed as μmoles of GSH/mg of protein.

Superoxide dismutase activity (SOD)

SOD activity was measured following the method of Kono 
[35]. It was based upon the inhibitory effect of SOD on the 
reduction of NBT (nitroblue tetrazolium) dye by superox-
ide anion generated from hydroxylamine hydrochloride. The 
change in kinetics was observed at wavelength of 560 nm for 
3 min. Units were calculated as 50% inhibitory concentra-
tion of SOD and the results were expressed as the units/mg 
of protein.

Catalase activity (CAT)

Catalase activity was estimated following the method of 
Luck [36]. The change in absorbance of  H2O2 buffer after 
adding the enzyme was observed and the activity was cal-
culated using extinction coefficient of 39.4 mM−1  cm−1. The 

catalase units were expressed as µmoles  H2O2 decomposed/
min/mg of protein.

Histopathology

Histopathology was done according to the procedure as 
described by Pearse [37]. Animals were anesthetised and 
were perfused intracardially with normal saline (0.9% NaCl). 
Then brain was dissected and fixed in 10% formaldehyde 
(V/V) for 4–5 days till it get hardened. The tissue was then 
embedded in the paraffin blocks and sections (5 μm thick-
ness) were cut with a hand microtome. Qualitative analysis 
was done by Hematoxylin and eosin staining [37].

Reverse transcriptase polymerase chain reaction 
(RT‑PCR)

Total RNA was isolated from different brain regions with 
TRI-reagent. For the RT-PCR analysis primers for the fol-
lowing genes: IL-1α, IL-1β, TNF-α, BDNF and β-actin were 
designed either on NCBI or their sequences were obtained 
from literature, and custom synthesized by Sigma Aldrich 
(USA). The primers designed for various genes are mentioned 
in Table 1. The mRNA expression was evaluated by RT-PCR 
using the standard protocol described in one step RT-PCR kit 
(Invitrogen). PCR products were separated on 1.2% agarose 
gels. Densitometric analysis of bands was done by using the 
Image J software (NIH). The densitometric values were first 
normalized with β-actin of the same sample, and then the 
relative differences between the sham and treatment groups 
were calculated and expressed as relative change.

TUNEL assay

The procedure was carried out according to the standard 
procedure provided in the TUNEL kit (cat#QIA33; Calbio-
chem, USA). This assay is based on the labelling of DNA 
nicks by terminal deoxynucleotidyl transferase, an enzyme 

Table 1  Sequences and gene 
IDs of oligonucleotide primers 
for RT-PCR

Gene (ID) Primers sequences Ampli-
con size 
(bp)

IL-1α (NM_017019.1) (F)5′-ACT TCA CAT CCG CAG CTT TCC-3′
(R)5′-CAC ATG CCA TGC GAG TGA CTT-3′

292

IL-1β (NM_031512.2) (F)5′-AGC TGC ACT GCA GGC TTC GAG ATG -3′
(R) 5′-GAA CTG TGC AGA CTC AAA CTC CAC -3′

338

TNF-α (NM_012675.3) (F) 5′-ACT GAA CTT CGG GGT GAT TG-3′
(R) 5′-GTG GGT GAG GAG CAG GTA GT-3′

319

BDNF (UniProtKB- P23363) (F) 5′-CAG GGG CAT AGA CAA AAG -3′
(R) 5′-CTT CCC CTT TTA ATG GTC -3′

167

β-actin (NM_031144.2) (F) 5′-CCT CAT GAA GAT CCT GAC CG-3′
(R) 5′-ACC GCT CAT TGC CGA TAG TG-3′

165
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that catalyses the addition of dUTPs labelled with a marker. 
Slides from each time period groups were used to estimate 
the number of TUNEL positive nuclei. Cell counting was 
done using Image J software by counting the cells in differ-
ent coronal sections.

Immunohistochemistry for BDNF

Paraffin sectioning of the tissue preparation was done with 
the same procedure as that for H&E staining. These were 
dewaxed in xylene and then hydrated through a graded series 
of alcohol. For antigen retrieval, slides were incubated in 
sodium citrate buffer (pH 6.0). Blocking was done using 
2% BSA in tris-buffered saline (TBS) for 30 min in a moist 
chamber. Sections were incubated with primary antibody 
against BDNF (1:1000) (Sigma-Aldrich, St. Louis, USA) 
in 1% BSA for 2 h at 37 °C. Briefly, the slides were wash-
ing twice with TBST (TBS containing 0.05% Tween-20), 
and incubated with the secondary antibody conjugated with 
alkaline phosphatase in 1% BSA for 2 h at 37 °C. Color 
development was done using NBT/BCIP solution (Genei, 
Bangalore, India). Eosin was used to counter stain the NBT/
BCIP treated slides.

Statistical analysis

Data was expressed as mean ± standard deviation (SD) 
(n = 5–7) and the results were subjected to one way analy-
sis of variance (ANOVA) followed by the LSD (post hoc 
comparison of means) test using SPSS (14.0 for window 
evaluation version). Values corresponding to p ≤ 0.05 were 
considered statistically significant.

Results

Infarct area measurement

The infarct is the marker of injury in ischemic stroke and 
the non-stained area depicts the damage. The infarct area 
was estimated at various time intervals following ischemia. 
The percentage infarct area was found to be higher at day 
1(p ≤ 0.001) and 7 (p ≤ 0.001) as compared to other time 
points following ischemia (Fig. 1).

Behavioural analysis

Different behavioural tests were done to analyse the cogni-
tive and motor impairments.

Effects on escape latency in Morris water maze (MWM)

This test was performed to analyse the spatial learning and 
memory, i.e. lesser the time animals took to reach the plat-
form, better the cognition. Following ischemia, there was 
a significant increase in escape latency (time to reach the 
platform) at day 7 (2.43-fold), 14 (2.28-fold) and 21 (1.74-
fold) as compared to sham (Fig. 2a).

Effects on percentage escape latency in elevated plus maze 
(EPM)

This test was performed to analyse the short term memory 
on the basis of transfer latency. The term transfer latency 
indicated the percentage of memory retention in 24 h. A sig-
nificant decrease was observed in percentage transfer latency 
at day 7 (94.2% decrease) and day 14 (38.55% decrease) as 
compared to the sham following ischemic insult (Fig. 2b).

Effect on total locomotor activity by actophotometer

It was performed to evaluate the rearing and ambulation 
movements of the animal in 180 s. There was a significant 
reduction in counts/180 s at day 7 (70.8% decrease), 14 
(58.8% decrease) and 21(47.41% decrease) day post-surgery 
as compared to sham but the counts were minimum at day 
7 (Fig. 2c).

Alterations in the level of neurotransmitters

The dopamine (DA) levels were declined significantly in 
cortex and hippocampus at all the time intervals following 
ischemia but the maximum decline was observed at day 7 
(68.98% and 80.21% decrease, respectively) as compared 
to sham (Fig. 3a, b). The norepinephrine (NE) levels were 
reduced at day 7, 14 and 21. The lowest levels of serotonin 
were observed at day 7 (56.4% decrease in cortex and 96.7% 
decrease in hippocampus) as compared to sham (Fig. 3a, b). 
The levels of dopamine were altered in cerebellum at day 7 
but other neurotransmitters remained unaltered in cerebel-
lum (Fig. 3c).

Oxidative stress markers

Oxidative stress was evaluated by the levels of reactive 
oxygen species, nitric oxide, reduced glutathione and the 
enzyme activity of catalase and SOD.

Elevation of ROS levels

In cortex, hippocampus and cerebellum, intracellular ROS 
levels were measured at different time intervals following 
ischemia. It was found that in cortex and hippocampus, ROS 
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levels elevated significantly at all the time points, i.e. at day 
1, 7, 14 and 21 following ischemia as compared to sham. 
There was no significant change in ROS levels in cerebel-
lum (Table 2).

Nitric oxide levels

Nitric oxide (NO) levels were found to be increased at day 
7 following ischemia as compared to sham (Table 2). Lev-
els were significantly high in cortex and hippocampus at 
day 1, 7 and 14 following ischemia with maximum levels 
at day 7 (36% and 53.12% increase, respectively in cortex 

and hippocampus) as compared to sham (Table 2). But in 
cerebellum, the change was significant at day 7 (18.36% 
increase) as compared to sham (Table 2).

Reduced glutathione

The reduced glutathione (GSH) levels were depleted sig-
nificantly in cortex (55.17% decrease) and hippocampus 
(49.21% decrease) at day 7 following ischemia. The levels 
of GSH remain unaltered in cerebellum at all time frames 
following injury as compared to sham (Table 2).

Fig. 1  Infarct visualised by TTC staining at different time intervals 
(a–e). The histograms showed the percentage infarct area at different 
time intervals at the successive coronal sections of the brain (f). The 

data represented was the mean ± SD (n = 7). Statistical significance: 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 significant when compared with 
sham
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Superoxide dismutase (SOD) activity

In cortex and hippocampus, the SOD activity was found 
to decrease appreciably at day 7 and 14 as compared to 
sham (Table 2). In cerebellum, the enzyme activity was 
not altered significantly as compared to sham (Table 2).

Catalase activity

Catalase activity was found to be significantly decreased 
in cortex and hippocampus at day 7 (42.9% and 31.11% 
decrease, respectively) following ischemia as compared 
to sham (Table 2). In cerebellum, there was no significant 
change in activity as compared to sham (Table 2).

Histopathological alterations

Neuronal damage was observed in 3rd, 4th, 5th layer of 
cortex, pyramidal cells of CA1 region of hippocampus and 
granular cells of cerebellum (Fig. 4). The pyknotic and 
darkly stained neurons were observed at day 7 and 14 in 
various regions of brain but histopathological alterations 
were less at day 1 and day 21 following ischemia as shown 
in Figs. 4 and 5. The neuronal population of dentate gyrus 
were spared of the hypoxic damage as shown in Fig. 5. The 
damage was evident in cortical layers and CA1 region of 
hippocampus as compared to cerebellum.

Fig. 2  Behavioural parameters at different time intervals: plus maze 
(a); Morris water maze (b); total locomotor activity by actophotom-
eter (c); day 0, 1, 7, 14 and 21. The “day 0” means the day before 

surgery was performed. Statistical significance: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001 significant when compared with sham. Each value was 
mean ± SD (n = 7)

Fig. 3  Alterations in neurotransmitter levels: dopamine (DA), nor-
epinehprine (NE) and serotonin (5 HT) in cortex (a), hippocampus 
(b) and cerebellum (c) at day 1, 7, 14 and 21. Statistical significance: 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 significant when compared with 
sham. Data represented was mean ± SD (n = 5)
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Apoptotic study

TUNEL assay was used to detect DNA fragmenta-
tion. TUNEL positive cells were counted in cortex, 

hippocampus and cerebellum at day 1, 7, 14 and 21. The 
numbers of TUNEL positive cells were found to be maxi-
mum at day 7 in various brain regions as shown in Fig. 6. 

Table 2  Oxidative stress markers at day 1, 7, 14 and 21 in cortex, hippocampus and cerebellum of sham and ischemic brain (TGCI)

All values are expressed in mean ± SD of five animals
ROS reactive oxygen species expressed (AFU/mg of protein), NO nitric oxide (moles of nitrite per mg of protein), GSH reduced glutathione 
(µmoles of GSH/mg of protein), SOD superoxide dismutase (IU/mg of protein), CAT  catalase (µmoles of  H2O2 decomposed/min/mg of protein)
*p < 0.05, **p < 0.01 significant when compared with Sham group

ROS (AFU/mg of protein) NO (moles of nitrite 
per mg of protein)

GSH (µmoles of 
GSH/mg of protein)

SOD (IU/mg of protein) CAT (µmoles of H2O2 
decomposed/min/mg of 
protein)

Cortex
 Day 1
  Sham 10.22 ± 0.21 0.22 ± 0.05 1.72 ± 0.01 10.97 ± 0.2 5.6 ± 0.9
  TGCI 28.33 ± 0.98** 0.27 ± 0.01 1.65 ± 0.02 9.98 ± 0.4 4.9 ± 0.23

 Day 7
  Sham 13.61 ± 0.16 0.25 ± 0.04 2.94 ± 0.01 9.42 ± 0.53 5.29 ± 1.17
  TGCI 27.88 ± 0.29** 0.34 ± 0.02* 1.34 ± 0.01* 6.91 ± 0.95* 3.02 ± 0.59*

 Day 14
  Sham 11.15 ± 0.13 0.35 ± 0.09 2.13 ± 0.07 10.88 ± 0.67 5.33 ± 0.28
  TGCI 15.77 ± 0.11* 0.45 ± 0.08* 1.78 ± 0.09* 8.87 ± 0.82* 4.88 ± 0.39

 Day 21
  Sham 10.55 ± 0.2 0.35 ± 0.05 2.51 ± 0.05 9.46 ± 0.23 4.45 ± 0.01
  TGCI 16.66 ± 2.2* 0.41 ± 0.01 1.97 ± 0.07* 8.9 ± 0.45 3.48 ± 0.03

Hippocampus
 Day 1
  Sham 12.33 ± 2.33 0.45 ± 0.04 3.15 ± 0.08 10.98 ± 0.98 5.89 ± 0.97
  TGCI 18.33 ± 0.98** 0.23 ± 0.01 1.61 ± 0.02 9.98 ± 0.4 4.9 ± 0.23

 Day 7
  Sham 15.71 ± 4.45 0.32 ± 0.01 3.05 ± 0.02 8.07 ± 0.72 4.34 ± 0.9
  TGCI 37.97 ± 1.65** 0.49 ± 0.04* 1.51 ± 0.03* 6.64 ± 0.44 2.99 ± 0.7

 Day 14
  Sham 18.96 ± 0.23 0.34 ± 0.02 9.81 ± 0.03 8.76 ± 0.04 5.32 ± 0.29
  TGCI 29.89 ± 0.11** 0.45 ± 0.05* 7.75 ± 0.05* 6.67 ± 0.08 4.79 ± 0.45

 Day 21
  Sham 20.83 ± 0.34 0.44 ± 0.03 3.51 ± 0.02 8.87 ± 0.5 3.2 ± 0.02
  TGCI 27.89 ± 0.65* 0.48 ± 0.01 2.61 ± 0.03 7.89 ± 0.32 2.89 ± 0.03

Cerebellum
 Day 1
  Sham 17.57 ± 1.12 0.39 ± 0.02 2.41 ± 0.01 5.29 ± 0.23 10.9 ± 1.82
  TGCI 22.9 ± 2.2 0.41 ± 0.03 2.16 ± 0.02 4.98 ± 1.2 9.9 ± 0.15

 Day 7
  Sham 27.38 ± 2.07 0.49 ± 0.1 2.94 ± 0.01 8.31 ± 0.42 5.29 ± 0.1
  TGCI 31.64 ± 2.91 0.51 ± 0.05 2.85 ± 0.02 7.51 ± 1.32 5.96 ± 1.04

 Day 14
  Sham 28.45 ± 0.45 0.54 ± 0.04 3.51 ± 0.04 10.8 ± 0.78 4.78 ± 0.01
  TGCI 31.93 ± 2.3 0.58 ± 0.07 3.12 ± 0.08 9.97 ± 0.34 4.04 ± 0.02

 Day 21
  Sham 25.67 ± 0.54 0.44 ± 0.04 2.83 ± 0.03 9.94 ± 0.04 5.89 ± 0.03
  TGCI 28.78 ± 0.12 0.45 ± 0.02 2.27 ± 0.05 7.34 ± 0.05 4.67 ± 0.09
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The change in number of TUNEL positive cells was higher 
in hippocampus and cortex followed by cerebellum.

The mRNA expression of cytokines

In cortex and hippocampus, the mRNA expressions of vari-
ous cytokines (IL-1α, IL-1β and TNF-α) were found to be 
maximum at day 7 and 14 as compared to sham. In hip-
pocampus, the expressions remained elevated till day 21 
following ischemia as shown in Fig. 7. In cerebellum, the 
gene expression of IL-1β was altered significantly at day 1, 
while the expression of IL-1α and TNF-α remain unaltered 
at all-time points following ischemia.

The mRNA expressions of BDNF in hippocampus

In dentate gyrus region of hippocampus of rat brain, neurogen-
esis was initiated. Neurogenesis was confirmed by an increase 
in both gene and protein expressions of BDNF, which were 
found to be increased at day 14 and 21 significantly, as shown 
in Fig. 8.

Fig. 4  Hematoxylin and eosin staining in cortex, hippocampus and 
cerebellum. a–e Represent the cortical sections; f–j represents the 
hippocampus and k–o represent the cerebellum at day 1, 7, 14 and 
21. The pyknotic and darkly stained neurons were marked by open 
arrows which are clear indicators of inflammation and oxidative 

stress. The bar graphs (p) represents the number of pyknotic cells in 
various regions at different intervals of time. Statistical significance: 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 significant when compared with 
sham. Data represented was mean ± SD (n = 5)
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Discussion

Various regions of brain are not only functionally discrete 
but also have distinct anatomical and neurochemical fea-
tures which make them differently susceptible to various 
insults. Also, heterogeneous vascular system and differential 
neuronal/glial population ratio in various brain areas make 
it susceptible to oxidative stress [16, 38]. In previous stud-
ies, the alterations within hippocampus were well studied at 
very early time points but the sequential alterations at longer 
interval in different brain areas has not been reported and 
therefore being focused in the present study. Briefly, the cur-
rent study was undertaken to explore the susceptibility and 
resistance of various regions of brain to ischemia at different 
time intervals, i.e. at day 1, 7, 14, 21.

At day 1 and 7, a marked increase in infarct area was 
observed by TTC staining [39]. This may be due to the 
inactivation of succinic dehydrogenases (SDH) in the 
ischemic area [40]. The levels of ROS and NO were sig-
nificantly increased in both cortex and hippocampus at day 
1 and 7 post ischemia with substantial low levels at 14 and 
21 day. This is due to sudden flow of oxygenated blood into 
the ischemic tissue upon reperfusion which leads to the 

production of ROS [41, 42]. The diminution in antioxidant 
defence system was observed at day 7 following reperfu-
sion injury. The glutathione levels were markedly reduced 
in hippocampus followed by cortex and cerebellum. Similar 
changes in the ischemic brains were reported by Bragin et al. 
in a previous study [43].

Morphological alterations were most evident on 7th day 
in all the three regions (cortex, hippocampus and cerebel-
lum). Though the alterations varied in various neuronal 
populations such as pyramidal cells in CA1 region of hip-
pocampus, granular cells of cerebellum and cortical neu-
rons in 3rd, 5th and 6th layer of cortex, the hippocampal 
neurons were most vulnerable to ischemia. It was observed 
in the present study that CA1 region of hippocampus was 
specifically affected in hypoxia while the dentate gyrus 
and CA3 region remain unaffected. CA1 region of hip-
pocampus has specific function in memory and learning. 
These results are in correlation with many other studies 
[15, 16, 44] which showed the selective neuronal vulner-
ability of CA1 region of hippocampus following ischemia. 
Thus damage in hippocampus could be responsible for the 
alterations in cognitive function as evident by the water 
maze and elevated plus maze tests. The cognitive decline 

Fig. 5  Hematoxylin and eosin stating in dentate gyrus of hippocam-
pus. a–e Represents the dentate gyrus at day 1, 7, 14 and 21. The 
bar graphs (f) represents the number of pyknotic neurons at differ-

ent intervals of time. Statistical significance: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001 significant when compared with the sham. Data repre-
sented was mean ± SD (n = 5)
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was seen maximum on 7th day following ischemia and 
thereafter a recovery was seen both in cognitive functions 
as well in neuronal population following reperfusion. The 
neurons in cortex and cerebellum, both have an important 
role in sensory nerve input and output timing, sequencing 
and motor functions [45]. Also the cortical neurons play 
an important role in motor activities and can control the 
intensity of muscle contraction. Further, the decrease in 
granular cell layer of cerebellar region could be correlated 
with the decline of total locomotor activity in the present 
study. Similar findings were also reported by Hara et al. 
[46]. The decline in dopamine and serotonin levels (in 
cortex and hippocampus) was well associated with post 
stroke behavioural changes [47, 48]. It has been demon-
strated that there is a massive release of dopamine (DA) 

into extracellular space within few minutes of reperfu-
sion which is followed by a marked decline in dopamine 
[49]. Dopamine may also act as neurotoxin when released 
excessively [50]. The down regulation of nor-epinephrine 
levels at day 1, may also correlated to the motor dysfunc-
tion and biochemical alteration following the ischemic 
stroke [51].

At the onset of ischemia, the glial activation could be pro-
tective or deleterious which depends on the time of ischemic 
insult. Initially, an over activation may lead to the production 
of the cytokines resulting in inflammatory response. The 
inflammatory cytokines, such as IL-1α, IL-1β and TNF-α 
play a pivotal role in neurodegeneration and are generally 
associated with initiation of apoptosis [52]. Furthermore, 
astrocytic dysfunction may induce the over activation of 

Fig. 6  The change in TUNEL positive cells after recirculation: all the 
sections are at ×400 magnification. a–e Showing the cortical regions; 
f–j represents the CA1 region of hippocampus; k–o represents the 
cerebellum at day 1, 7, 14 and 21. The TUNEL positive cells were 
stained brown by DAB as indicated by arrows. Counterstaining is 

done with methyl green. The bar graphs (p) represents the number of 
TUNEL positive cells in various regions at different intervals of time. 
Statistical significance: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 significant 
when compared with sham. Data represented was mean ± SD (n = 5)
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glutamate receptors, which results in the aggravation of det-
rimental effects of ischemia/reperfusion injury. At day 14 
and 21 following ischemia, a significant decline in the lev-
els of ROS and an improvement in the antioxidant enzyme 
activity was observed as compared to the early time points. 
Also, fewer TUNEL positive apoptotic cells were observed 
at day 21 indicating the poststroke recovery.

Pro-inflammatory cytokines such as IL-1α and IL-1β 
activate microglia and lead to leukocyte infiltration. 
These activated microglia release various factors such as 
endothelial growth factor (EGF-1) in the sub-ventricular 
zone and sub granular zone and initiate neurogenesis [53]. 
Many studies suggest that after ischemic insult, neuro-
genesis occurs even in those areas which were not previ-
ously considered as neurogenic [54–56]. The reason of 
this neurogenesis is the activation of neurotrohic factors 
in subventricular and subgranular zone which resulted 
in stimulation of progenitor proliferation and migration 

of new born neurons to replace the damaged neurons. In 
the current study, the increased BDNF expression in hip-
pocampal region depicted the recovery following ischemia 
at later stages of ischemia. Earlier studies also showed the 
neuroprotective role of BDNF following ischemia [57, 58]. 
Also, in hippocampus the inflammatory cytokines were 
found down regulated at day 14 but again interestingly 
elevated at day 21, which may be linked to repair mecha-
nisms following ischemia [56]. While opposite changes in 
the BDNF levels were observed as BDNF expression was 
elevated on day 14 and down regulated on day 21. The 
down regulation of hippocampal levels of BDNF play a 
major role in the development of chronic stress, inflam-
mation and depression [59]. So, decreased levels of BDNF 
might have led to a surge in the levels of inflammatory 
cytokines on day 21 in the hippocampal region of the rat 
brain. The increased levels of BDNF and neurotransmitters 
in late phase as compared to early time windows following 

Fig. 7  The change of cytokine mRNA levels after reperfusion by RT-
PCR. a Showing the mRNA expressions of IL-1α, IL-1β and TNF-α 
at day 1, 7, 14 and 21. b Showing histograms represent quantita-
tive densitometry analysis (by image J) of IL-1 α, IL-1β and TNF-α 

which is normalised by β-actin. Statistical significance: *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001 significant when compared with sham. Data 
represented was mean ± SD (n = 5)
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reperfusion injury may promote recovery, further, in cor-
relation with the improved cognitive and motor activity 
[58]. Interestingly, the alterations in neurochemical lev-
els and inflammatory cytokines in the present study were 
observed maximum in hippocampus followed by cortex 
and cerebellum.

Conclusion

The cascade of ischemic injury following reperfusion was 
found varied temporally and regionally in term of oxida-
tive stress and inflammation. The maximum changes in 
biochemical, neurochemical, histopathological parameters 

as well as the functional brain damage were observed in 
hippocampus and cortex followed by cerebellum at day 7 
following ischemia. A considerable improvement in the cel-
lular and molecular damage at day 21 of ischemic injury 
established the major role of neurotransmitters and BDNF in 
the poststroke recovery. Our results suggested a significant 
poststroke recovery in the ischemic animals but full recovery 
was still not achieved. Therefore further long-term studies 
are required to understand and establish the mechanisms 
of complete mitigation of alterations induced by ischemic 
stroke.
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Fig. 8  a Showing the protein expression BDNF by immunohis-
tochemistry at day 1, 7, 14 and 21. The expression was seen with 
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***p ≤ 0.001 significant when compared with sham. Data represented 
was mean ± SD (n = 5)
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