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Abstract
Pancreatic cancer (PC) is the fourth most common cause of death among all cancers. Poor prognosis of PC may be caused 
by a prevalence of cancer stem cells (CSCs). CSCs are a population of cancer cells showing stem cell-like characteristics. 
CSCs have the ability to self-renew and may initiate tumorigenesis. PC CSCs express markers such as CD133, CD24, CD44, 
DCLK1, CXCR4, ESA, Oct4 and ABCB1. There is a wide complexity of interaction and relationships between CSC mark-
ers in PC. These markers are negative prognostic factors and are connected with tumor recurrence and clinical progression. 
Additionally, PC CSCs are resistant to treatment with gemcitabine. Thus, most current therapies for PC are ineffective. 
Numerous studies have shown, that targeting of these proteins may increase both disease-free and overall survival in PC.

Keywords  Pancreatic cancer · Cancer stem cells · Prognostic factors

Introduction

The diagnosis and treatment of pancreatic cancer (PC), 
which is the fourth most common cause of death among all 
cancers, is a current and important medical problem. The 
low survival rate for PC has been confirmed by data from 
185 countries analyzed in the GLOBOCAN study of 2018, 
which clearly showed that the number of new cases of PC 
was similar to the number of deaths (458,918 vs. 432,242) 
[1]. According to the WHO, the most common type of PC 
is adenocarcinoma [2]. The main factor contributing to such 
a low survival rate is the diagnosis of PC in its advanced 
stages (52% for advanced stages vs. 9% for the initial stages) 
for whom the 5-year-survival rate is only 2–5%. The cancer 
mortality is caused predominantly by dysfunction of organs 
due to metastasis. This process is related to epithelial–mes-
enchymal transition (EMT), which is the transformation of 
cells from the epithelial to the mesenchymal-like phenotype. 

Cells which undergo EMT have increased motility, are more 
invasive, and are resistant to apoptosis [3]. The most impor-
tant contributory factors in PC are smoking (strong cor-
relation) and the presence of Helicobacter pylori infection 
(moderate correlation), although diet and type 2 diabetes 
also play an important role [4, 5]. In addition, a recent study 
emphasized the role of chronic ethanol consumption on the 
transformation of normal human pancreatic ductal epithe-
lial cells into altered cells with cancer stem cell phenotypes 
(CSCs) [6].

CSCs are a specific population of cancer cells showing 
stem-cell like characteristics and, according to increasing 
evidence, they may initiate the development of PC as is 
the case with other neoplasms [7] [8] [9]. CSCs seem to 
generate daughter cells through the process of cell division, 
which may occur next to ordinary tumor cells representing 
the major component of the tumor, or self-renew, maintain-
ing the full ability to differentiate and divide just as the par-
ent stem cell does [10] [11]. The possibility of detecting 
specific markers identifying PC CSCs was investigated. 
There are several specific proteins that belong to this group, 
including CD133, CD24, CD44, CXCR4, EpCAM, Oct4, 
ABCB1, ABCG2, c-Met, ALDH-1, and nestin [12] [13] 
[14]. A unique feature of CSCs is their resistance to drugs. 
Without the elimination of this subpopulation during chemo- 
or radiotherapy of PC, it may induce tumor recurrence and 
subsequent clinical progression [15]. This may be one of 
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the reasons for the unsatisfactory outcomes in the cases of 
PC treatment [16].

Five-year-survival accounts for no more than 32%, 
even among patients who are diagnosed during the early 
stages of this disease. The classical approach to treatment 
is gemcitabine-based chemotherapy as the first line option, 
however this approach shows only limited benefit on the 
overall survival rate of patients with locally advanced or 
metastatic PC [16] [17]. Currently, monotherapy with gem-
citabine is recommended as an adjuvant treatment, in locally 
advanced cancer for 6 months, and as a palliative procedure 
among patients with ECOG (Eastern Cooperative Oncol-
ogy Group) [18] performance scores of 2 and/or bilirubin 
levels higher than 1.5 × ULN [19]. Fluorouracil (5-FU) with 
folinic acid, is another method used in addition to surgery 
[19]. To improve the outcome in cases of advanced PC, new 
cycles of chemotherapy were investigated in individuals with 
this disease, which led to new regimens in clinical practice, 
such as FOLFIRINOX (Leucovorin + Fluorouracil + Iri-
notecan + Oxaliplatin) or nab-paclitaxel plus gemcitabine 
[20] [21] [22]. However, these regimens are recommended 
for palliative care, in cases of metastatic disease, only for 
patients with ECOG performance status scores of 0 or 1 and 
a bilirubin level below 1.5 × ULN, because of the increased 
toxic side effects [19]. Nonetheless, the effectiveness of the 
new treatments remain limited.

The aim of this review was to summarize the most current 
and available information about the diverse subpopulation 
of CSCs in cases of PC, strictly in connection with their 
influence on the clinical features of the disease, prognostic 
features of specific CSC markers, and with the challenges 
related to the treatment process and behavior of these cells. 
Another aim was to collect data about the future possibility 
of targeting CSC markers in order to increase the efficacy of 
chemotherapy in PC.

Markers of cancer stem cells in pancreatic 
cancer as independent prognostic factors

CD24

CD24 is a small mucin-like glycosyl phosphatidylinositol 
(GPI)- linked cell surface protein involved in cell adhe-
sion. It is present in the developing brain and kidneys [23, 
24]. CD24 seems to be involved in the development of PC. 
Jacob et al. revealed diminished or absent expression of 
CD24 in normal pancreatic tissue and noticeable cytoplas-
matic levels in PanIN (pancreatic intraepithelial neopla-
sia). Increasing expression of CD24 was observed in cells 
during the progression from normal ductal epithelium to 
invasive intraductal papillary mucinous carcinoma. Expres-
sion levels increased in line with increasing grade of atypia 

in intraductal papillary mucinous neoplasms. Smith et al. 
showed that CD24 expression is regulated by Ral GTPases. 
The Ral family initiates transcription through TCF down-
stream pathways and activation of transcription factors, 
such as Jun, NF-κB and AFX, which regulate the expression 
of CD24 [25] [26]. Moreover, Moghadam et al. observed 
more intensive oncogenic activity of the Ras-related pro-
tein Ral-A (RalA) in CD24+ cancer cells in comparison to 
CD24− cancer cells. Overexpression and increased RalA 
activity is predominant in PC and it is associated with tumo-
rigenic growth [27] [28]. CD24 also seems to be involved in 
integrin-associated cell to matrix adhesion and regulation 
of cellular morphology through stress fibers, processes of 
rounding, and nuclear condensation, and therefore protects 
cancer cells from apoptosis [25]. In primary PC, CD24 was 
overexpressed in high-grade tumors and more advanced PC 
stages, suggesting its role in the progression of PC. Accord-
ing to Ikenaga et al. higher tumor stage, nodal metastasis, 
higher-grade tumors, microscopic lymphatic and venous 
and neural invasion was more frequently observed in their 
CD24+ group than in the group with CD24-negative PC. 
The shorter survival period was also associated with higher 
levels of CD24 expression, 12 months in the group with 
strong expressions, 19 in those with weak expression, and 
23 in those with none [29, 30].

CD133

CD133 is a transmembrane protein that is found in lipid 
rafts, with a ganglioside-binding extracellular domain and 
a cytoplasmic domain, with the capability of tyrosine phos-
phorylation [31–34]. The process of CD133 transcription 
is regulated by five promoters (P1, P2, P3, P4 and P5) [35]. 
According many studies P5 seems to play crucial role by 
CD133 expression in PC CSCs. Its activation could be per-
formed by a downstream signaling pathway initiated by 
one of the extracellular signal–regulated kinases (ERKs), 
mainly by ERK1 or ERK2 [35]. In CSCs of PC ERKs are 
inducted by MAPK/ERK pathway triggered through the 
TrkA receptor in response to auto- or paracrine secreted 
Nerve growth factor (NGF) [36–39]. On the other hand 
P5 appears to be a target for heat shock proteins such as 
HIF-1α and HIF-2α [35].Their expression increases during 
carcinogenesis in pancreatic tissue due to oxygen deficiency 
in the PC region, leading to increased CD133 transcription 
[40–42]. Other studies showed that Wnt/β-catenin signaling 
has been closely associated with regulating PC development 
and has promoted the self-renewal of CD133+ cancer cells 
[43–45]. Moreover, a study by Nagathihalli et al. showed 
that inhibition of Janus kinases (JAK) or Signal Trans-
ducer and Activator of Transcription protein 3 (STAT3) 
cause downregulation of CD133 + [39]. Recent studies 
have revealed significantly lower expression of CD133 in 
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normal pancreatic tissue (in under 0.01% of cancer cells) in 
regards to PC [46] [38]. PCs are characterized by popula-
tions of 0.5–1% of CD133+ cells in less aggressive cell lines 
to more than 9% of CD133+ cells in clones with increased 
rates of migration [47]. CD133 is a substrate for Src-family 
tyrosine kinases such as the proto-oncogene tyrosine-protein 
kinases Src and Fyn, which phosphorylate its cytoplasmic 
domain at tyrosine-828 and tyrosine-852 [31, 48].The result 
of this is the triggering of downstream regulatory signals for 
stemness properties (such as enhanced telomerase reverse 
transcriptase expression, increased Akt phosphorylation 
and ligand-independent EGFR activation) and EMT [49]. 
EMT has been reported to be regulated in PC by the NF-κB 
signaling pathway, which is activated by CD133 [50] [51]. 
The overexpression of CD133 increases the expression and 
secretion of IL1β (IL1B) by CSCs, activating an autocrine 
signaling loop that upregulates NF-κB signaling in cancer 
cells [52]. Studies have suggested that CD133 expression is 
significantly associated with metastases to the lymph nodes, 
clinical TNM stage and tumor differentiation in patients with 
PC [53] [54]. Moreover, high CD133 expression has been 
described as an independent prognostic factor for lower 
disease-free survival [46]. On the other hand, Durko et al. 
concluded that there was no significant influence of CD133 
expression on overall patient survival [55].

DCLK1

The microtubule regulator DCLK1 marks a subpopulation 
of morphologically and functionally distinct pancreatic cells 
identified at the earliest stages of pancreatic tumorigenesis, 
which could function as CSC [56–58]. The upstream regu-
lators of DCLK1 have not yet been satisfactorily investi-
gated. The upregulation of DCLK1 could be promoted by 
the overexpression of immune cell-derived IL17 which is 
produced by mesenchymal inflammatory cells, increas-
ing DCLK1 expression through activation of nuclear fac-
tor kB (NF-kB) via the canonical pathway to promote 
stemness [59]. Overexpression of DCLK1 is responsible 
for the regulation of many intracellular pathways during 
malignant transformation of pancreatic tissue, mostly due 
to microRNA-related mechanisms [60–62]. It promotes 
tumorigenesis through the upregulation of important driv-
ers of pancreatic tumorigenesis, such as cMyc and KRAS 
through a let-7a microRNA(let-7a)-dependent mechanism 
[62–64]. KRAS is mutated in more than 95% of all PC 
cases [65, 66]. The increasing level of DCLK1 cells could 
be an early event in KRAS-induced pancreatic tumorigen-
esis and its overexpression is significant related with pres-
ence of activated mutant Kras in PC tissues [58, 62, 67]. 
Another commonly overexpressed PC oncogene is epider-
mal growth factor receptor (EGFR) [68]. According to the 
findings of Sureban et al. DCLK1 may upregulated by EGF 

signaling [61]. It was reported that miR-145 and miR-143 
inhibit cell proliferation by targeting EGFR in various types 
of cancers, [69, 70] and through their suppression, depend-
ent on DCLK1, cell cycle arrest could be overcome. The 
NOTCH pathway (especially Notch-1) is a target of sup-
pressor MicroRNAs, such as the miR-200 family (ZEB1 
and miR-200) and the miR-144 family, whose deregulation 
could be caused by DCLK and lead to increased proliferative 
signaling in PC [61, 62, 71]. DCLK1 is also associated with 
the pluripotency of PC due to the repression of other tumor 
suppression factors including miR-143, miR-145 and let-7a, 
resulting in overexpression of pluripotency agents such as 
OCT4, SOX2, KLF4, NANOG and LIN28B [61, 62, 72, 73].
It has also been reported that the influence of DCLK1 on 
apoptosis is due to the stimulation of 14-3-3 σ expression, 
which is an inhibitor of pro-apoptotic activity in PC [62, 74, 
75]. DCLK1 induces deregulation of VEGF-inhibitors and 
leads to neovascularization of PC and, as a consequence, 
tumor growth [61, 76–81]. Clinically, the DCLK1+ expres-
sion correlates with the histological grade and preopera-
tive CA19-9 level [82]. Furthermore, the overexpression of 
DCLK1 was observed in metastatic PCs, and the population 
of DCLK1+ cells in metastatic tissues was larger than that 
of primary tumors [83]. DCLK1 may promote the metastatic 
capability of PC through its impact on EMT. One of the 
functions of the miR-200 family is the prevention of EMT in 
several cancers by inhibiting the transcription factors ZEB1 
and ZEB2 [84, 85]. DCLK1 decreases the levels of these 
MicroRNAs and, in consequence, leads to the activation of 
processes by upregulation of EMT proteins such as Snail, 
Slug and Twist [61, 62]. The overexpression of DCLK1in-
directly stimulates the oncogene BMI1 with upregulation 
of the Polycomb complex protein Bmi-1 expression in PC, 
which leads to the triggering of EMT through upregulation 
of mesenchymal markers such as Snail and Vimentin, as well 
as by downregulation of the epithelial marker E-cadherin 
[86]. The study also found that DCLK1 is an unfavorable 
prognostic factor in PC, with median overall survival after 
resection being 18.7 or 49.5 months in tumors with positive 
and negative DCLK1 expression respectively. Additionally, 
the median disease free survival time has been found to be 
shorter among PCs with DCLK1 expression (10.2 months) 
in comparison to PCs without DCLK1 surface expression 
(25.5 months) [82].

CD44

Another important marker is CD44. It is a membrane 
receptor for hyaluronic acid (HA), osteopontin, chondroi-
tin, collagen, fibronectin and serglycin/sulphated proteo-
glycan. Therefore, CD44 is involved in processes such as 
cellular adhesion, angiogenesis, the release of cytokines 
and muscle repair [1] [2].There is evidence that this 
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protein might have an important role in the development 
of PC cancer. The CD44 gene is encoded by 20 exons. The 
standard CD44 isoform (CD44s) is composed of exons 
1–5 and 16–20, thus it is called the constant form. The 
variant CD44 isoform (CD44v) consists of the middle 
exons, which can be spliced and assembled with the ten 
exons present in CD44s. Therefore thousands of CD44 
isoforms could possibly be generated [87–89]. In healthy 
cells p53 binds to a noncanonical p53-binding sequence 
of the CD44 promoter, which inhibits its expression. It has 
been shown that loss-of-function mutations of p53 may 
be associated with up-regulation of CD44, leading to the 
promotion of tumor growth [90]. The study of Li et al. 
showed increased CD44v and decreased CD44s expres-
sion in metastatic PC. Furthermore, CD44s and CD44v 
were found to be associated with metastases to the lymph 
nodes and liver. [1] [3]. Probably, the role of CD44v in 
invasion is associated with its interaction with the onco-
genic transcription factor c-Myc. c-Myc activates the 
MEK and Erk pathways which leads to increased antia-
poptotic activity due to decreased Fas signalling [91] [92]. 
Studies have shown that HA-CD44 binding also leads to 
upregulation of other transcription factors such as Nanog, 
Sox2 and Oct4. This interaction promotes miR-302 and 
miR-21 overexpression resulting in increased spheroid 
and clone formation, as well as cell growth/self-renewal 
in CD44vhigh cancer cells [93–96]. High invasiveness 
and the increased ability to metastasise of CD44+ PC is 
also associated with EMT. Overexpression of CD44 leads 
to an increase in EMT-related mesenchymal cancer cell 
phenotypes. What is more, switching between CD44v and 
CD44s is crucial in EMT and the CD44s isoform seems 
to be the most prevalent in EMT [87, 97, 98]. A study by 
Brown et al. showed that CD44s upregulation correlated 
with the levels of mesenchymal markers and high grade 
of cancer. The authors also observed that CD44s activated 
the Akt pathway inhibiting E-cadherin expression and thus 
introducing EMT. According to their evidence, epithelial 
cell-type-specific splicing regulator (ESRP1) is connected 
with this process. It stimulates CD44 posttranscriptional 
changes and is commonly expressed in epithelial cells. 
ESRP1 knockdown in CD44v cells was found to be asso-
ciated with switching to CD44s and to the suppression of 
metastasis. ESRP1 overexpression prevented cells from 
undergoing EMT by stimulating CD44 splicing, which 
led to high levels of CD44v and blocked the switch from 
CD44v to CD44s [3] [99] [100]. There are clinical con-
sequences of these alternations and several studies have 
demonstrated the correlation between CD44 expression 
and poor prognosis in PC. CD44 overexpression has been 
correlated with advanced clinical stage and lymph metas-
tases [101]. Hong et al. revealed that median survival of 
patients with CD44 positive PC was shorter (20.3 months) 

than for patients with CD44 negative PC (25.3 months) 
[102].

CXCR4

CXCR4 is a G-protein-coupled receptor for stromal-derived-
factor-1 (SDF-1). CXCR4 expression occurs mainly on 
hematopoietic cells but its presence can be found on other 
cells such as endothelial cells, stromal cells or on the sur-
face of mature blood cells [103, 104]. CXCR4 and SDF-1 
are currently playing an increasingly important role in the 
pathogenesis of PC. In the work of Koshiba et al. CXCR4 
expression was shown to be present in most cases [105–107]. 
The expression of CXCR4 is regulated in healthy cells 
by Nuclear Respiratory Factor 1 (NRF1) and Ying Yang 
1. NRF1is a second messengers of many cellular signal-
ing pathway and growth factors promote transcription of 
CXCR4 whereas Ying Yang 1 and proinflammatory fac-
tors have the opposite effect CXCR4, by joining CXC12, is 
involved in the migration of immune cells within the bone 
marrow and lymph nodes [110, 111]. In the case of the neo-
plastic process, of PC, a similar principle may lead to metas-
tasis. Expression of CXCR4 on the surface of tumor cells 
can direct the tumor metastases towards SDF-1 expressing 
tissues via SDF-1-CXCR4 axis [112, 113]. Other studies 
have suggested the involvement of CXCR4 in metastases as 
a result of increased NK cell apoptosis. A number of mecha-
nisms have been proposed in which CXCR4 interacts with 
the tumor microenvironment. Burger and Kipps have pre-
sented the influence of tissue hypoxia on the expression of 
CXCL12 by fibroblasts which directly activates CXCR4 and, 
at the same time, stimulates the attraction of cancer cells 
that contain this receptor on their surface [114]. Maréchal 
et al. suggested a positive correlation between high CXCR4 
expression and a shorter 5-year overall survival and a greater 
risk of lymph node and liver metastases [115]. One of the 
possible mechanisms by which CXCR4 may affect the 
development and progression of PC is its interaction with 
CXCL12, which may lead to increased angiogenesis and the 
formation of new blood and lymphatic vessels. In the study 
of Cui et al. a higher microlymphatic vessel density was 
found in patients with higher CXCR4 expression, but with 
no apparent effect on microvessel density, which was more 
dependent on higher CXCL12 expression [116].

Oct4

Oct4 is a protein belonging to the POU family and is respon-
sible for differentiation and pluripotency [117, 118]. Oct4 is 
a transcription factor, whose gene is located on chromosome 
6 (6p21.31). This protein is the main factor in pluripotency, 
participating in cell differentiation, reprogramming and 
renewal [119]. Oct4 fulfills its role by binding an octameric 
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sequence motif (ATG​CAA​AT) which allows for the regula-
tion of gene expression [120]. In the initial stage of devel-
opment, this protein is present in all parent pluripotent cells 
whereas in later stages its expression can be demonstrated 
in germinal stem cells [121]. The highest expression of Oct4 
occurs in undifferentiated cells and decreases as the cells are 
differentiated. Oct4, combining with other factors such as 
SOX2 and NANOG, participates not only in the regulation 
of gene expression responsible for cell renewal and differ-
entiation but also affects the expression of other factors such 
as fibroblast growth factor 4 (FGF4) [122, 123]. Statisti-
cally significant increased expression of Oct4 can be found 
in metaplastic ducts (79.2%) compared to malignant (19.4%) 
and nonmalignant (16.7%) tissue and high Oct4 expression 
is correlated with tumor differentiation [124, 125]. In order 
to explain the role of Oct4 in pancreatic tumors, Lu et al. 
knocked down both Oct4 and Nanog, which contributed to 
a reduction in proliferation, migration and invasion of PC 
stem cells and to increased sensitivity to chemotherapy with 
gemcitabine. The probable mechanism, as postulated by the 
authors, is based on the regulation of Caspase-3 and Bcl-2 
expression [126].

ESA

ESA (EpCAM) is a type I transmembrane glycoprotein 
expressed on most epithelia. A study by Maetzel et  al. 
showed that EpCAM intracellular domains form a complex 
with β-catenin and LEF-1 which activates the transcriptions 
of genes such as c-Myc and cyclins A and E. Its overexpres-
sion increased the phosphorylation of AKT, mTOR, p70S6K 
and 4EBP1 as well as decreased PTEN expression. EpCAM 
regulates EMT and metastasis in vivo [127] [128]. The study 
of Fong et al. revealed that ESA was overexpressed in PC 
and that it was related to shorter survival of patients with 
advanced PC. Patients with advanced PC and ESA over-
expression had an overall survival period of 48 months, 
whereas without this marker, the period was more than 
70 months [129].

ABCB1

ABCB1 (MDR1 P-glycoprotein) is a member of the ABC 
superfamily of drug transporters, and is involved in the 
resistance of pancreatic cells due to increased drug efflux 
[130]. Histopathological studies indicate that 63% of pancre-
atic tumors express glycoprotein, which is related to multid-
rug resistance of these cancers [131]. ABCB1 is a transcrip-
tional targets of WNT/β-catenin signaling and, in the case 
of gain-of-function CTNNB1 mutations, leads to overex-
pression of ABCB1 in PC [132]. Moreover, transcription of 
ABCB1 is also increased by the activation of cells by leptins 
in the PC microenvironment [133]. It has been reported that 

microRNA-21, detected in PC tissue, promotes upregulation 
of ABCB1 in cancer cells [134–136]. ABCB1 expression 
is directly activated by the demethylation of CpG islands 
in the ABCB1/MDR1 promoter region [137]. Patients with 
high ABCB1 immunostaining had a shorter postoperative 
survival time (7.5 months) when compared with patients 
with weak to moderate expression of this protein [138].

Co‑expression of CSC markers in pancreatic 
cancer

The co-expression of several of the above-mentioned CSC 
markers was also investigated in the clinical context. There 
is more and more evidence that emphasizes the role of the 
triplet CD24, CD44, ESA in PC. The expression patterns of 
these proteins could be associated with the microenviron-
ment of PC [139]. Furthermore, a study by Li et al. revealed 
a correlation between a subset of CD24+CD44+ESA+ 
CSCs, with the capability of self-renewal and with up-regu-
lated developmental signaling pathways. Moreover, they had 
increased rapidity of tumor growth potential and invasive-
ness, in comparison to CD24, CD44, ESA-negative cancer 
cells [140]. Li et al. showed that CD44+CD24+ESA+ CSC 
clearly exhibits different morphology to that seen in common 
PC cells. In addition to cellular alternations related to the 
individual aforementioned CSC markers, the expression of 
these markers are strictly related to the hedgehog (hh) sign-
aling pathway due to upregulation of Sonic hedgehog protein 
expression and its exudation outside the cell [139]. High 
concentrations of this protein in the PC microenvironment 
is associated with increases in CD44+CD24+ESA+ cells 
in the cancer mass. The deregulation of the hh pathway 
probably leads to transformation of adult stem cells of the 
pancreatic glands into CSC [141]. Recent studies have 
suggested that the expression of other CSC markers such 
as DCLK1 and CD133 may correlate with triple-positive 
expression of CD44/CD24/EpCAM in this cancer type [82] 
[142]. This observation could indicate that the majority of 
CSC markers in PC are strongly associated with each other. 
In addition Skoda et al. found that the highest proportions 
of CD24+CD44+EpCAM+CD133+ cells could be detected 
in cell lines derived from the tumors of patients with the 
shortest survival [142]. Deregulation of the Wnt pathway in 
the form of upregulation WNT2B has been detected in these 
cells. Upregulated expression of LYN, and downregulation 
of FYN expression have been also observed in this cell pop-
ulation [142]. As earlier discussed, both alternatives on this 
pathway seem to be associated with CD133 expression and 
cases with cells with more than one CSC marker could be 
also related to this protein. Co-expression of CD44/CD133 
was significantly related to poor 5-year of overall survival 
of patients, as was CA 19–9 levels [46]. This short summary 
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suggests that there exists a wide complexity of interactions 
and relationships between CSC markers in PC. Understand-
ing these dependences would seem to be of importance in 
cases where the influence of the aforementioned proteins 
may affect treatment strategy. All the molecular pathways 
related to CSC markers in PC are graphically summarized 
in Fig. 1.

CSC as a cause of resistance to standard 
chemotherapy in pancreatic cancer

Most current therapies for the treatment of PC do not affect 
CSCs, which can result in the reestablishment of tumors 
after traditional treatment. Growing evidence seems to 
confirm the resistance of pancreatic CSCs to treatment 
with gemcitabine [143]. Researchers have shown that 
high CD44+ PC developed resistance to gemcitabine after 
12 weeks of treatment, whereas cases of low CD44 positive 
PC were sensitive through 22 weeks of therapy. This fact 
suggests, that CD44+ PC cells may be gemcitabine resist-
ant. Moreover, it could be possible that the level of CD44 
overexpression may predict the time of resistance to chemo-
therapy. Also, the ability of PC to recur can be explained 
by the observation that CD44+ PC cells are characterized 
more by their tumorigenic potential than as cells with higher 
gemcitabine sensitivity. The study showed that anti-CD44 
therapy was effective in the recurrence PCs. Studies have 
also revealed, that the knocking down of CD44 in CD44 
high PC caused decreased invasiveness and increased sen-
sitivity to gemcitabine [102, 144]. CSCs are naturally resist-
ant to chemotherapy through their quiescence, capacity for 
DNA repair and ATP-binding cassette (ABC) transporter 
expression [145]. The mechanism of drug resistance in 
CSCs is mostly reported in relation to ABC transporters. 
The overexpression of these proteins increases drug efflux, 
thereby reducing intracellular drug levels and, therefore its 
biological effect [146]. Among ABC transporters, ABCB1 
(MDR1) was significantly augmented during the acquisi-
tion of drug resistance, and in many studies co-expression 
of these proteins with CD44 has been shown after expo-
sure to gemcitabine [102, 147–149]. Thus, a therapy based 
on verapamil, an inhibitor of ABC transporters such as 
ABCB1, to sensitize gemcitabine resistant cells to gemcit-
abine, together with anti-CD44 siRNA, caused a significant 
decrease in CD44+ PC cells [150]. After binding of HA to 
CD44 the expression of the homeobox protein Nanog is acti-
vated, whereupon this protein forms a complex with another 
CD44-overexpressed protein STAT3 and induces activation 
of ABCB1 transporter transcription [148]. Understanding 
of another molecular mechanism for PC resistance to gem-
citabine stays remains unexplained. In this process, many 
genes are involved, related both to nucleoside transport or 

metabolism (M1 or M2 subunits of ribonucleoside reduc-
tase) and to cell cycle regulation, proliferation or apoptosis. 
These include mutated, Bcl-xl, Proto-oncogene tyrosine-
protein kinase Src (Src), focal adhesion kinase and p53 
[151–155]. Earlier we noted that the loss of functional p53 
is one of the triggers of CD44 overexpression. Moreover, 
cancer cells lacking p53 activity become insensitive to gem-
citabine, owing to the loss of cell cycle control and altera-
tions in the apoptotic cascade [154]. Other molecular events 
during the acquisition of resistance to gemcitabine in PC 
include the upregulation of c-MET and STAT3, which are 
accompanied by CD44 upregulation and downregulation of 
the Src family protein as well as increased autocrine produc-
tion of EGFR ligand amphiregulin and, as a consequence, 
hyperactivity of EGFR [156]. Autocrine epidermal growth 
factor receptor (EGFR) signaling is also upregulated by 
NRF2, a transcription factor that is overexpressed during 
oxygen stress in cancer cells [157]. One of the gemcitabine-
induced effects in affected cancer cells is the production 
of reactive oxygen species (ROS) [158, 159]. In response 
to this, the expression of antioxidant agents, such as glu-
tathione (GSH) and heme oxygenase 1 (HO-1) increases in 
PC cells due to activation of the transcription factor NRF2 
and results in a reduction in intracellular ROS [157, 160, 
161]. Inhibition of HO-1 reduced expression of the CSC 
markers CD133, and CD44, which may suggest that the 
avoidance of ROS-related injuries of PC cells during gem-
citabine treatment is related to the stemness abilities of the 
cells and specifically to CD44 +positive CSC in PC [41]. 
The influence of EGFR signaling could explain the pro-
cess of intensive repopulation of CSCs after gemcitabine 
treatment. The mechanisms for gemcitabine resistance in 
CD44+ cells are summarized in Fig. 2. The latest studies 
have additionally shown that not only CD44+ PC CSC but 
also CD24+CD44+ESA+ and CD24+ cells are resistant to 
gemcitabine [162] [140, 163, 164]. In these cells there addi-
tional mechanisms have been detected for both gemcitabine 
and 5 fluorouracil resistance related to pancreatic adeno-
carcinoma up-regulated factor (PAUF), which increased the 
mRNA expression of multidrug resistant protein 5 (MRP5) 
and ribonucleotide reductase M2 (RRM2) [165]. These 
alternations result not only in chemotherapeutic efflux from 
cells, but also accelerate the formation of deoxyribonucleo-
tides from ribonucleotides, which supports proliferation 
of cancer cells. Moreover, PAUF seems to take part in the 
activation of transcription of another CSC marker, namely 
CD133 [165]. In a previous study of this CSC marker, 
that is CD133, gemcitabine decreased only the viability 
of CD133- cells at higher concentrations, no therapeutic 
effects were observed among CD133+ PC cells regardless 
of the drug concentration used [42, 47, 53, 166]. The influ-
ence of CD133 on cancer cell biology may be mainly due 
to metabolic pathways. The characteristic localization for 
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Fig. 1   Molecular pathways related to cancer stem cells mark-
ers in pancreatic cancer cell [25–28, 31, 35–45, 48, 49, 59, 61–64, 
69–71, 87, 90–98, 108, 109, 112, 113, 127, 128, 132, 133]. (1) Ral 
GTPases initiates transcription of CD24 through TCF downstream 
pathways and activation of transcription Jun, NF-κB, AFX, which 
regulates the expression of CD24 in conjunction with Ras-related 
protein RalA. The overexpression of CD24 protects cancer cells from 
the apoptotic process. (2) The upregulation of DCLK1 is promoted 
by immune cell-derived IL17 which increases DCLK1 expression 
through activation of nuclear factor kB (NF-kB). The overexpressed 
DCLK1 promotes tumorigenesis through the upregulation of cMyc 
and KRAS through a let-7a microRNA(let-7a)-dependent mechanism 
and cell proliferation by overexpression of EGFR through a miR-
145/143-dependent mechanism. DCLK1 downregulates the miR-200 
family, which causes activation of the NOTCH pathway. (3) The 
loss-of-function mutation of p53 leads to up-regulation of CD44 in 
pancreatic cancer cells. Overexpression of CD44 activates c-Myc, 
which leads to MEK and Erk pathway activation and decreases 
apoptosis. Activated CD44 triggers the Akt pathway which inhibits 
E-cadherin expression and induces EMT. Moreover, overexpres-
sion of CD44 also leads to upregulation of Nanog, Sox2 and Oct4, 
which results in increased spheroid and clone formation as well as 
cell growth/self-renewal. (4) The triggering of the TrkA receptor in 
response to auto- or paracrine excreted Nerve growth factor (NGF) 

activates the MAPK/ERK pathway and leads to the CD133 transcrip-
tion pathway, as initiated by one of the extracellular signal–regulated 
kinases (ERKs), mainly by ERK1 or ERK1. CD133 expression is also 
induced in pancreatic cancer by the heat shock proteins HIF-1α and 
HIF-2α or by hyperactivity of Janus kinases (JAK) or by the Signal 
Transducer and Activator of Transcription protein 3 (STAT3). CD133 
is a substrate proto-oncogene of the tyrosine-protein kinases Src 
and Fyn, which phosphorylate its cytoplasmic domain and increase 
downstream signaling in the form of Akt phosphorylation, which 
cause NF-κB activation and induction of epithelial-mesenchymal 
transition (EMT). CD133 activates WNT/β catenin signaling. (5) 
WNT/β-catenin signaling and leptins from the pancreatic cancer 
microenvironment trigger transcription of ABCB1. (6) EpCAM (ESA) 
intracellular domains form a complex with β-catenin and LEF-1, 
which causes transcription of genes such as c-Myc, and the cyclins 
A and E. Its overexpression increased the phosphorylation of AKT, 
mTOR, p70S6K and 4EBP1and also decreased PTEN expression, 
also EpCAM regulates EMT and metastasis. (7) Nuclear Respiratory 
Factor 1 (NRF1) regulates the expression of CXCR4. Expression of 
CXCR4 on the surface of cancer cells can direct tumor metastases 
towards SDF-1 expressing tissues via the SDF-1-CXCR4 axis. More-
over, CXCR4 joins with CXC12 leading to the migration of cells and 
the formation of metastases
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CD133+ cells is in the hypoxic regions of the tumor, which 
are associated with increasing hypoxia-inducible factor 1 
(HIF1) activity. HIF1 increases glucose uptake in these 
cells, and upregulates glycolysis enzymes, which allows for 
ATP synthesis in low-oxygen conditions [42]. It might also 
have effects on the neovascularization of PC. Moreover, in 
CD133+ cells low mitochondrial activity has been detected, 
in spite of having physiologically healthy mitochondria [42]. 
This altered metabolic profile of CD133+ cells make them 
resistant to ROS injury caused by gemcitabine and conse-
quently to this form of chemotherapy. The glycolysis also 
induces expression of the CSC marker DCLK1, which is 
therefore also related to gemcitabine resistance [167].

CD133+ cells show increased expression of anti-apop-
totic genes such as Bcl-2 [47]. Another study suggested that 
the reoccurrence of PC after treatment with gemcitabine was 
composed of mainly CD44+ cells, compared to the num-
ber of CD133+ and ESA+ cells [150]. This observation add 
weight to the previously described supposition that CD44 
not only upregulates cancer cell survival pathways, but also 
accelerates the proliferation of CSC. In summary, clinical 

studies in genetics suggest that CD44+ cells are able to 
proliferate at a faster rate, which enables their dominancy 
in tumor recurrence. Not only gemcitabine, but also other 
standard anticancer drugs are ineffective in PC with CSCs. 
Studies revealed that CD133+ cells also seem to be resist-
ant to 5FU and nab-paclitaxel, which only reduce the popu-
lation of CD133− cells but without having any effect on 
CD133+ cells [42, 47]. These effects seems to be caused 
by ABC transporters, which have the ability, in the case of 
CD133+ cells, to dispose not only of Gemcitabine, as is the 
case with CD44+ cells, but also Paclitaxel and 5FU [47]. 
To explain why this phenomenon has been observed only in 
DC133+ cells requires additional studies, however.

The molecular observations described above may be 
suitable for use in clinical practice. A retrospective multi-
center study including 1056 patients with metastatic PC 
showed that the median overall survival is dependent on 
the palliative chemotherapeutic cycle used, and on the use 
of FOLFIRINOX for up to 9.9 months, nab-paclitaxel with 
gemcitabine for 7.9 months, and 4.9 months of gemcitabine 
monotherapy [168]. Similarly, an adjuvant treatment study 

Fig. 2   Molecular mechanism of CD44+ cell resistance to gemcit-
abine [146, 148, 151–161]. (1) After the binding of HA to CD44, the 
expression of the homeobox protein Nanog is activated, whereupon 
this protein makes a complex with another CD44-overexpressed pro-
tein, STAT3, and induces the activation of ABCB1 transporter tran-
scription. The overexpression of these proteins increases drug efflux, 
thereby reducing intracellular drug levels and therefore their biologi-
cal effects. (2)The lack of p53 activity in cells reduces their sensitiv-
ity to gemcitabine due to the loss of cell cycle control and alterations 

in the apoptotic cascade. The antiapoptotic effect is also induced by 
mutation of Bcl-xl, with similar effects on gemcitabine sensitivity. 
(3) In response to gemcitabine-induced production of reactive oxy-
gen species (ROS) the transcription factor NRF2 is activated, which 
results in the expression of antioxidant agents, such as glutathione 
(GSH) and heme oxygenase 1 (HO-1) resulting in a reduction of 
intracellular ROS and prevention of injuries caused by it. Moreover, 
NRF2 stimulates autocrine epidermal growth factor receptor (EGFR) 
signaling and therefore upregulates proliferative signals
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among a population of 493 patients, by Conroy et al. showed 
that this kind of therapy with a FOLFIRINOX regimen led 
to significantly longer survival (54.4 months) than gemcit-
abine (35.0 months) [169]. Furthermore, the overall survival 
rate at 3 years was 63.4% in the modified-FOLFIRINOX 
group and 48.6% in the gemcitabine group. These results 
could be explained by the tendency of CSCs, and above 
all CD44+ CSCs, to be insensitive to gemcitabine treat-
ment. The visibly shorter survival period of patients who 
were treated with this drug, in comparison to remaining 
options, may be associated with the drug related selection 
of CD44+ cells and their unlimited proliferation. In the case 
of combined nab-paclitaxel and gemcitabine treatment, the 
longer survival rate in comparison to gemcitabine alone 
might arise from the sensitivity of CD44+ cells to nab-
paclitaxel, whose proliferation is stopped with this drug. 
However, given that the PC resistance to gemcitabine might 
be explained by well described CSCs features, in a mostly 
CD44+ subpopulation, the sensitivity of these cells popula-
tion to FOLFIRINOX needs further studies. The progression 
of disease during chemotherapeutic treatment may be the 
result of CD133+ proliferation, which could indicate resist-
ance to both nab-paclitaxel and gemcitabine, and could 
become dominant in the CSC population, while CD44+ cells 
are eliminated.

New possibility of pancreatic cancer 
treatment based on CSC‑targeting factors

The relationship between PC chemotherapy resistance and 
CSC markers described above leads us to conclude that the 
targeting of these proteins may increase both disease-free 
and overall survival periods for patients with this neo-
plasm. A study revealed that CD24 monoclonal antibodies 
inhibited the growth of human high CD24+ PCs in relation 
to both time and dose of exposure [140]. Furthermore, 
the group’s next study showed that anti-CD24 antibodies 
might enhance the effects of oxaloplatin, 5-fluorouracil, 
doxorubicin, irinotecan, and paclitaxel on the reduction 
of CD24+ cells [139]. Moreover, Shah et al. observed that 
CD24+ , CD44+ , and ESA+ cells were more invasive and 
exhibited increased activation of c-Met, which is one of 
the potential CSC targets [163]. The c-Met inhibitor with 
gemcitabine reduced the population of CD24+ , CD44+ , 
and ESA+ cells, decreased tumor sphere formation in these 
cells and prevented the growth of the tumor for 6 weeks 
after the therapy. The authors suggested that the combined 
use of c-Met inhibitor and gemcitabine might be an effec-
tive treatment of PC, due to effects on CSC and bulk PC 
cell populations [19]. Furthermore, the research of Mueller 
et al. showed that a combination of cyclopamine/CUR, 

rapamycin, and gemcitabine may cause tumor regression 
and abolishes CD24+ CD44+ ESA+ and CD133+ CSC 
subpopulations with a better survival rate after a 100 days 
of observation in comparison to gemcitabine only [170]. 
Moreover, their studies suggested that metformin could 
inhibit the proliferative activity of CD133+ PC cells lead-
ing to decreased pancreatic tumor weights by as much 
as 34–49% according to drug concentration [54, 171, 
172]. On the other hand, the influence of metformin did 
not affect PC stem cells with other CSC markers, such 
as CD24+ , CD44+ , ESA+ and co-expression of them 
[54]. Gupta et al. also showed significantly lower tumor 
volume among PCs with an initially high population of 
CD133+ cells (10–25% of cells) in mice treated with lov-
astatin in combination with paclitaxel when compared to 
a control group, which suggests that lovastatin may sen-
sitize these cells to paclitaxel [173]. In the Rangarajan 
et al. study it was found that crocetinic acid suppressed 
the growth of the tumor and the expression of CD133 and 
DCLK1 [174]. Another interesting result observed dur-
ing a study with the kinase inhibitor XMD8-92, showed 
that injecting this drug caused a reduction in xenograft 
volume and weight, as well as significant downregulation 
of DCLK1 expression [175]. In a recent study, signifi-
cantly reduced cell survival in cases of combined treat-
ment of PC with gemcitabine and DCLK1 inhibitor was 
demonstrated, compared to individual treatment with 
gemcitabine in a cell line model [176]. Interestingly, a 
study by Cioffi et al. described finding that EpCAM/CD3-
Bispecific T cell Engaging Antibody MT110 may elimi-
nate primary human pancreatic CSCs in vivo and in vitro, 
due to the redirection of cytotoxic T lymphocytes against 
human pancreatic CSCs. As a result, it induced apopto-
sis, inhibited sphere formation and reduced tumorigenic-
ity of PC in mice. Additionally, the authors observed that 
the addition of gemcitabine caused no further reduction 
of tumor size [143]. Another substance, namely acetyl-
11-keto-b-boswellic, could be useful in the suppression 
of progression in CXCR4+ cancer due to downregulation 
of the CXCR4 receptor and by reduction of the invasive-
ness of PC [177]. On the other hand, Wang and al. have 
shown that a blocking ligand binding to CXCR4 had posi-
tive effects, not only by reducing PC growth, but also by 
increasing the sub-G1 apoptotic compartment, thus affect-
ing the G0–G1 phase and, by extension, slowing the G2 
and S phases [178]. Moreover, because knockdown of 
CXCR4 and OCT4 decreases the invasiveness of PC, these 
factors may also be a promising point in the future of PC 
therapy [178] [179] Equally interesting are the results of 
Gao et al. in which it was shown that there is less micro-
RNA-335 to be found in OTC4 (+) PC cells than in OCT4 
(−) cells and that miR-335 may cause OCT4 suppression, 
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which in turn results in slower development and decreased 
tumor expansion [179].

Summary

The expression of PC stem cell markers such as CD133, 
CD24, CD44, DCLK1, CXCR4, ESA, Oct4 and ABCB1 
could be negative prognostic factors in PC and are respon-
sible for its faster progression and its resistance to standard 
treatment. The expression of these factors may be respon-
sible for the reduction of overall-survival and 5-year sur-
vival. Moreover, it seems to be proven that the expression 
of CD24, CD133, DCLK1, CD44, CXCR4, and Oct4 are 
associated with a higher incidence of lymph node metas-
tasis, whereas CD24 is also responsible for microscopic, 
lymphatic, venous and neuronal invasion. The expression 
of CD44, CD24, ESA and CD133 could also be largely 
involved in the resistance of PC to gemcitabine therapy, 
and thus the targeting of these proteins may increase both 
disease-free and overall survival in PC. All conclusions of 
our review are summarized in Table 1.
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