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Abstract
Recent investigations have indicated that altered expression of non-coding RNAs (ncRNAs) could be associated with human 
diseases such as type 2 diabetes (T2D). Circular RNAs (circRNAs) are a new discovered class of ncRNAs with unique 
structural characteristics that involved in several molecular and cellular functions. Exploring of the circulating circRNAs as 
a reliable non-invasive biomarker for monitoring and diagnosing of human diseases has grown significantly. However, the 
molecular functions and clinical relevance of circRNAs are not yet well clarified in T2D. Accordingly, in this review, the 
involvement of circRNAs in the β-cell function and T2D-related complications is highlighted. The study also shed light on 
the possibility of using circRNAs as a biomarker for T2D diagnosis.
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Introduction

Diabetes mellitus (DM) refers to a group of metabolic disor-
ders characterized by hyperglycemia and defect in metabo-
lism of macromolecules [1]. According to the international 
diabetes federation (IDF) reports, about 415 million people 
suffered from diabetes worldwide in 2017, and this number 
will rise to 645 million people by 2040 [2, 3]. The etiology 
of DM varies from the defect in insulin production to defect 
in response to insulin or both [4]. Type 2 diabetes (T2D) is 
the most common form of diabetes that mainly develops in 
adults [5, 6]. T2D starts with postprandial hyperglycemia 

and insulin resistance followed by the compensatory 
response of pancreatic β-cells for insulin production, which 
in turn, lead to decreased β-cell mass [4]. Therefore, it can 
be concluded that T2D is a combination of insulin resistance 
and insulin deficiency conditions. T2D is associated with 
several complications that mainly include: hyperosmolar 
coma, nephropathy, neuropathy, retinopathy, and cardio-
vascular disease [7]. Therefore, this metabolic disorder is 
one of the main factors involved in mortality and morbidity 
worldwide, and out of the 56.4 million deaths in 2015, about 
1.6 million were due to T2D [8]. Since T2D develops as a 
result of the interaction between genes and environment [9], 
investigation of gene regulating factors is among the issues 
of interest to researchers.

It is documented that the majority of the mammalian 
genome is transcribed to the non-coding RNAs (ncRNAs) 
that play an important role in the regulation of gene expres-
sion [10]. Usually, ncRNAs are categorized according to 
their size into two major groups: long non-coding RNAs 
(lncRNAs, length > 200 bp) and small non-coding RNAs 
(small ncRNA, length < 200 bp) [11, 12]. lncRNAs can be 
also categorized by their structure, function and genomic 
location. Structurally, lncRNAs are divided into linear 
RNAs and circular RNAs (CircRNAs). Furthermore, small 
ncRNA are also composed of two groups that involved in 
translation, transcription and gene regulation (Fig. 1) [13, 
14]. An increasing number of experimental investigations 
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are providing evidence that altered expression of ncRNAs 
patterns is associated with several human diseases such as 
T2D [15, 16] and human malignancies [17, 18].

CircRNAs are a new class of RNAs that in contrast to 
linear RNAs have a covalently closed loop in their struc-
ture that protects them against RNA exonucleases [19]. 
The history of circRNAs dates back to 1976, when RNAs 
with covalently closed loop were discovered in some plant 
viroids [20]. Further investigations showed that the genome 
of the hepatitis delta virus is composed from circRNAs, and 
therefore it was thought that circRNAs are viroid [21]. Later 
research on human tumor suppressor genes showed tran-
scripts with different exon arrangement compared to parent 
gene that were actually circRNAs [22]. However, due to the 
technical limitations as well as structural characteristics of 
circRNAs, many aspects of these molecules have remained 
unknown, but with the advent of new techniques such as 
advanced sequencing and bioinformatics tools, circRNAs 
have become one of the interesting research topics. CircR-
NAs are involved in gene expression regulation through 
mimicking of several roles including: microRNA (miRNA) 
inhibition, the sequestering of RNA-binding protein, and 
nuclear transcriptional regulators [23, 24].

In this narrative review, a systematically literature review 
was performed by Pubmed, Google Scholar, and Web of Sci-
ence for English up to 4 June 2019; using the terms “T2D”, 
“diabetes” and “circRNAs”. Actually, we discussed the 
properties and molecular functions of circRNAs and their 
clinical relevance as potential biomarkers for T2D. More-
over, we highlighted the involvement of circRNAs in the 
β-cell function and T2D-related complications.

Biogenesis and classification of circRNAs

In eukaryotic systems, messenger RNA (mRNA) is first 
synthesized as pre-mRNA and subsequently undergoes a 
further process by splicing which removes its introns. In 
the canonical splicing process, there are three strategic 
positions that include: GU sequence at the 5′ end of the 
intron that plays the role of donor site, the AG sequence 
at the 3′ end of intron as an acceptor site, and a highly 
conserved adenosine, located 20–50 nucleotides upstream 
of the acceptor position [25]. In summary, the splicing 
procedure starts with the formation of a ribonucleopro-
teins complex from the five small nuclear RNAs (snRNAs) 
and their related proteins followed by enzymatic cleavage, 
thereby the intron is deleted and adjacent exons are joined 
together [26].

The circRNAs are transcribed by RNA polymerase II 
mainly from coding regions of genes [27]. In addition, cir-
cRNAs may be produced by introns, 5′ untranslated region 
(5′ UTR), and 3′ untranslated region (3′ UTR) or intergenic 
regions of genes [27, 28]. Indeed, circRNAs are formed by 
the process known as back-splicing. In this process, 5′ splice 
site (donor site in downstream) is linked to the 3′ splice 
site (acceptor site in upstream) [29]. Previous evidence 
revealed that inhibition of canonical spliceosome complex 
by isoginkgetin, decreases the levels of pre-mRNA and cir-
cRNAs [30]. Therefore, it can be concluded that circRNA 
production depends on canonical spliceosome.

There are three models that describe the circRNA 
formation, namely intron pairing-driven circularization 

Fig. 1   Schematic representation of ncRNAs classification. ncRNAs 
are categorized according to their size into lncRNAs and small ncR-
NAs. LncRNAs can be also categorized by their structure, function 
and genomic location. Structurally, they are divided into linear RNAs 
and CircRNAs. tRNA transfer RNA, piRNA piwi RNA, siRNA small 

interfering RNA, rRNA ribosomal RNA, cisRNA cis-acting RNA, 
transRNA trans-acting RNA, ceRNA competing endogenous RNA, 
eRNA enhancer- derived RNA, NAT natural antisense transcript, 
TUCRNA transcribed ultraconserved RNAs, lincRNA long intergenic 
noncoding RNA
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[31], lariat-driven circularization (exon skipping) [31], 
and RNA binding proteins (RBPs) [32, 33] (Fig. 2). The 
intron pairing-driven circularization model is based on 
the pairing between complementary sequences (mainly 
Alu elements) within the introns that results in the correct 
positioning of splicing site and followed by nucleophilic 
attack and circRNA release [34]. There is evidence that 
approximately 20% of the total circRNAs loci have intron 
with complementary sequences [31], so other mechanisms 
are involved in the circularization process. Lariat-driven 
circularization known as the exon skipping model is pro-
ceeding by rotation of downstream exon and interaction 
with the upstream exon that subsequently release an exon-
containing lariat. In the next step, the formed lariat under-
goes back-splicing and produces circRNAs [34]. One of 
the key factors in circularization of RNAs is RBPs. In this 
model, RBPs interact with their binding sites within the 
flanking introns followed by intron pairing and subsequent 
circularization [34]. Generally, the back-splicing process 
can be affected by several genomic features. For example, 
the length of exons, especially in single-exon circRNA, as 
well as the presence of reverse complementary sequence, 
induces the circRNA formation [35]. However, the stabil-
ity of intron base pairing has a negative effect on the cir-
cRNA production [36]. Furthermore, previous studies have 
indicated that RNA-binding proteins -as a transregulators- 
can stimulate or inhibit the circRNA formation [37].

Since circRNAs are produced by different regions 
of genes, they can be classified as: exonic circRNAs 

(ecircRNAs) [27, 31, 38], circular intronic RNAs (ciRNAs) 
[28], retained-intron or exon–intron RNAs (EIciRNAs) [39, 
40] and intergenic circRNAs [27]. EcircRNAs are the most 
common form of circRNAs that involve approximately up 
to 80% of the total circRNAs and are mainly located in the 
cytoplasm [27, 35].

Molecular functions of circRNAs in human 
genome

There are several functions proposed for circRNAs that are 
mainly categorized into five types, including: (I) regulation 
of gene splicing and transcription, (II) miRNA sponging, 
(III) protein sponging, (IV) affecting the protein function 
and (V) regulation of protein translation [41].

Regulation of gene splicing and transcription

In general, the mechanism of transcription regulation by 
circRNAs is different from that by many linear lnRNAs, in 
which lncRNAs are involved in assembling chromatin-regu-
latory complexes in specific gene loci and also interact with 
several proteins simultaneously. However, these mechanisms 
have not been described for circRNAs [41]. An in vitro study 
on Arabidopsis thaliana revealed that the circRNAs bind 
to the sequence from which it has been transcribed, opens 
DNA locally and is then paired with one strand of DNA. 

Fig. 2   Different models of circRNA biogenesis. a Lariat-driven cir-
cularization (or exon skipping model) proceed by interaction between 
downstream and upstream exons that result in exon-containing lariat. 
In the next step, the formed lariat undergoes back-splicing and cir-
cRNA was formed. b Intron pairing-driven circularization model is 

based on the pairing between introns that continued by nucleophilic 
attack in splicing site and release of circRNA. c Circularization 
model based on the RBPs. In this model interaction between introns 
are mediated by RBP and thereby back-splicing is facilitated
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This scenario leads to the formation of a circRNA:DNA 
R-loop that inhibits the transcription process in elongation 
phase [42].

In mammalian models, circRNAs are among the fac-
tors that regulate the transcription of linear RNAs through 
affecting RNA polymerase II activity in initiation and elon-
gation phases [43]. It has been documented that intronic 
circRNAs, such as ciRNAs and EIciRNAs can affect the 
expression of their host genes. Accordingly, c-sirt7, pro-
duced by lariat mechanism, can affect the polymerase II and 
thereby decrease parental gene ankyrin repeat domain 52 
(ANKRD52) as well as sirtuin 7 (SIRT7) [44].

miRNA sponge

miRNAs are referred to small non-coding RNAs (18-24 
nucleotides) that are involved in gene expression regula-
tion at the post-transcriptional regulation stages [45]. The 
miRNAs interact with the 3′ UTR of the target mRNA and 
subsequently leads to translation suppression, degradation 
or deadenylation of mRNAs [46, 47]. Recently, studies have 
shown that circRNAs have several binding sites for miRNAs 
and thereby can suppress their inhibitory effects or sponge 
them [48]. Accordingly, there is several pieces of evidence 
that overexpression of circRNAs could induce the expres-
sion of miRNAs targets and vice versa [49].

One of the well-known circRNAs that has sponging 
effects for mir-7 is human cerebellar degeneration related 
protein 1 antisense (CDR1as). This circRNA contains over 
70 binding sites for mir-7 and plays an important role in neu-
ronal development (Fig. 3) [49]. Therefore, CDR1as (has-
circ-0001946) overexpression is followed by inhibition of 
the miR-7 activity and subsequently increased expression 
of miR-7 target genes [49].

Another example for miRNAs sponging is cirSRY, a testis 
specific circRNA. This circRNA has 16 conserved binding 
sites for miR-138 [24, 50, 51]. Furthermore, cir-ZNF609, 
mm9-circ-012559 and circ-BIC6 are other examples of cir-
cRNAs with sponging activity for miRNAs [52–54]. On the 
other hand, accumulating evidence suggests that circRNAs 
are more effective than linear RNAs in miRNAs sponging 
[55, 56].

Protein sponging

CircRNAs can participate in sponging of RBPs and thereby 
affect the levels of proteins. The MUSCLEBLIND protein 
(MBL) is encoded by mbl gene of Drosophila and is required 
for differentiation and development of muscle and eye photo-
receptor cells [57]. Increased concentration of MBL protein 
promotes back-splicing in parental pre-mRNA and produces 
circ-MBL. Low concentrations of MBL, on the other hand, 
induce the canonical splicing of Mbl mRNA. Therefore, 

it can be concluded that MBL protein has self-regulating 
properties [51]. The interesting point in this regard is MBL 
binding sites in the structure of circMBL that enable it to 
sequester MBL. In other words, circ-MBL regulates its own 
expression through MBL sponging.

Protein interaction

CircRNAs can also interact with proteins and thereby affect 
several phenotypic properties. The PeBoW complex is 
involved in the maturation process of pre-60 ribosome [58, 
59]. Circ-ANRIL interferes with this process and thereby 
decreases the translation potential of cells [60].

HuR protein is one of the best known of RBPs partici-
pate in RNAs splicing and nuclear export [61]. One of the 
main targets of HuR is polyadenylate-binding nuclear pro-
tein 1 (PABPN1) mRNA. PABPN1 protein is required for 
poly adenylation of 3′ terminal of mRNA in eukaryotic spe-
cies and therefore is involved in mRNAs stability. There 
is evidence that circPABPN1 bind to the linear mRNA of 
PABPN1 in competition with HuR, followed by inhibition 
of PABPN1 translation as well as other mRNAs dependent 
on PABPN1 [61].

Circ-FOXO3 is encoded by Foxo3 gene and is involved 
in cell cycle. Indeed, cyclin-dependent kinase2 (CDK2) as 
a member of CDK family is essential for the transition from 
G1 to S phase in the cell cycle. The p21 can bind to CDK2 
protein and inhibit the cell cycle in G1 stage. Circ-FOXO3 
could interfere with the CDK2-p21 interaction, release 
CDK2, and subsequently induce cell cycle [62, 63].

Fig. 3   Binding energy for all binding sites within the CDR1as/miR-7 
sponge. Red points show the binding energy for each predicted bind-
ing site in the CDR1as, as predicted by RIsearch2 [128]. The lower 
the binding energy is, the stronger the binding site. The box plot 
shows the distribution of those predicted binding energies for miR-
NAs with experimentally verified targets. (Color figure online)
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Regulation of protein translation

A challenging question that could be posed at this juncture 
is: Are circRNAs translated? Generally, 7-methylguano-
sine structure in 5′ end (5′ cap) and polyA tail in 3′ end of 
mRNAs are required for the translation process [41]. Cir-
cRNAs do not contain these structures and their translation 
is beyond expectation. However, recently it has been shown 
that some of the circRNAs can be translated into proteins. 
This was suggested in a study in 1995, where internal ribo-
some entry site (IRES) of encephalomyocarditis virus was 
shown to be able to translate an artificial circRNA [64]. The 
human circ-ZNF609 is highly expressed in myoblasts and 
participates in myogenesis regulation. Circ-ZNF609 con-
tains an open reading frame with 753nt length and can be 
translated into a protein [65]. Indeed, untranslated region of 
circ-ZNF609 mimics the IRES and promotes 5′ cap-inde-
pendent translation [66].

One of the most common modifications of eukaryotic 
RNAs is methylation of adenosine into N6-methyladenosine 
(m6A) by methyltransferase complex [67, 68]. This modi-
fication has several effects on the metabolism of mRNAs, 
such as localization, translation, splicing and degeneration 
of mRNAs [69, 70]. Furthermore, previous studies have 
revealed that m6A in 5′ UTRs increase the potential of trans-
lation through the 5′-cap independent process [71, 72].

Molecular functions and clinical relevance 
of circRNAs in T2D

Recent studies suggest that the deregulation of circRNAs 
could be associated with human disorders such as coronary 
artery disease [73], neurodegenerative and autoimmune dis-
eases [74, 75], and several types of cancer [76]. In this sec-
tion, we will highlight the involvement of circRNAs in the 
β-cell function and T2D-related complications. We will also 
discuss the possibility of using circRNAs as a biomarker for 
T2D diagnosis.

CircRNAs and β cell function

Genome wide association studies have shown that most risk 
loci in type 2 are implicated in islet function [77]. circR-
NAs are widely expressed in human cells including both 
α- and β-cells of pancreas and could act as novel regulators 
of β-cell activities [78]. It has been reported that 10,830 
high-confidence circRNAs expressed in human α, β, and 
exocrine cells. The most highly expressed candidates are 
MAN1A2 (hsa_circ_0000118), RMST, and circ-HIPK3 
(hsa_circ_0000284) [79]. Lisa Stoll et al. reported that the 
expression of circ-HIPK3 and ciRS-7/CDR1as were reduced 
in the islets of diabetic db/db mice and knock-downing of 

circ-HIPK3 resulted in increased apoptosis and decreased 
β-cell proliferation [78]. Moreover, their transcriptomic anal-
ysis revealed that circ-HIPK3 acts by sequestering a group 
of miRNAs, including miR-124-3p and miR-338-3p, and by 
regulating the expression of key β-cell genes, such as Slc2a2, 
Akt1, and Mtpn [78]. It has been also demonstrated that both 
insulin content and secretion were significantly increased 
by overexpression of CDR1as in islet cells [80]. CDR1as 
was recently revealed to act as a powerful sponge for miR-
7, therefore could upregulate miR-7 target genes such as 
Myrip in islet cells and thereby regulates insulin granule 
secretion [80]. Figure 4 summarizes the molecular roles of 
circ-HIPK3 and CDR1as circRNAs in β-cell function.

Association of circRNA expressions with T2D 
pathogenesis and its related complications

Complications of diabetes including diabetic nephropathy, 
diabetic retinopathy, and the risk of cardiovascular diseases 
are the leading causes of increased morbidity and mortality 
of diabetes patients and posing a huge burden on the health 
care system [81]. Recent data have demonstrated that circR-
NAs play crucial roles in vascular endothelial cell dysfunc-
tion and diabetic neuropathic pain [82, 83]. Accordingly, 
deregulation of circRNAs could be associated with T2D 
pathogenesis and related complications (Fig. 5).

Cardiovascular complications

Impaired proliferation of vascular smooth muscle cells 
(VSMCs) plays an important role in the atherosclerotic pro-
motion in diabetes [82]. It has been reported that the expres-
sion of circ-WDR77 in high glucose treatment VSMCs is 
significantly up-regulated compared to the normal group. 
This circRNA regulates VSMCs proliferation and migration 
via targeting miR-124/FGF2 axis [83].

Several investigations have shown that increased blood 
glucose impairs vascular endothelial cells and could 
develop cardiovascular complications in diabetic patients 
[84, 85]. Fei-Fei et al. demonstrated that high glucose level 
dramatically altered expression profiles of 95 circRNA 
including NC_000007.14:149492859_149558839 and has-
circ-0004182 in endothelial cells [86]. This indicates the 
contribution of circRNAs in the pathogenesis of hypergly-
cemia-induced endothelial cells injury and diabetic cardio-
vascular diseases.

Interestingly, it has been reported that cZNF609 silenc-
ing decreases retinal vessel loss and suppresses pathologi-
cal angiogenesis in vivo, and also protects endothelial cell 
against oxidative stress [87]. Furthermore, down-regulation 
of cZNF609 could elevate endothelial cell migration and 
tube formation, and also protected endothelial cell against 
oxidative stress. This circRNA could act as an endogenous 



5636	 Molecular Biology Reports (2019) 46:5631–5643

1 3

miR-615-5p sponge, which led to the increased expression of 
MEF2A level [87]. MEF2A activation is strongly correlated 
with vascular endothelial cell function [88].

CircRNA-000203 was shown to be up-regulated in the 
diabetic mouse myocardium and in Angiotensin II (Ang 
II)-induced mouse cardiac fibroblasts [89]. Moreover, 
over-expression of this RNA could increase expression 
levels of Col1a2, Col3a1 and α-SMA in mouse cardiac 
fibroblasts [89]. Indeed, circRNA-000203 could block the 
interactions of miR-26b-5p and 3′UTRs of these genes 
by molecular sponge formation [89]. Taken together, 
that suppressing the function of miR-26b-5p contributes 

to the pro-fibrosis effect of circRNA-000203 in cardiac 
fibroblasts. Furthermore, Zhou B et al. reported that cir-
cRNA-010567 was markedly up-regulated in diabetic mice 
myocardium and cardiac fibroblasts treated with Ang II 
[90]. They revealed that circRNA-010567 silencing could 
up-regulate miR-141 and down-regulate TGF-β1 expres-
sion, and suppress fibrosis-associated protein resection in 
cardiac fibroblasts, including Col I, Col III and α-SMA 
[90]. These findings show that the circRNA-010567/miR-
141/TGF-β1 axis plays an important regulatory role in the 
diabetic mice myocardial fibrosis model.

Fig. 4   Schematic presentation of the circRNAs role in β-cell func-
tions. Circ-HIPK3 acts as a sponge for miR-124-3p and miR-338-3p, 
and thereby regulating the expression of key β -cell genes includ-

ing Slc2a2, Akt1, and Mtpn. In addition, Cdr1as acts as a powerful 
sponge for miR-7, and up-regulates miR-7 target genes such as Myrip 
and Pax6 in islet cells

Fig. 5   The association of circRNA expression levels with T2D pathogenesis and its related complications. Deregulation of circRNA levels with 
sponging effects on miRNAs, induces or suppress the expression of miRNAs targets
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Neuropathic pain and diabetic retinopathy

Increasing evidence has verified that neuropathic pain is 
one of the most common diabetic complications. Its inci-
dence is about 30% in T2D cases and is growing with the 
duration of diabetes [91]. It has been reported that circ-
HIPK3 knockdown alleviated neuropathic pain in STZ-
induced diabetic rats. Circ-HIPK3 could interact with 
miR-124 and negatively regulated its expression. Indeed, 
this circRNA regulates neuropathic pain progression 
through miR-124 [92]. Moreover, circ-HIPK3 silencing or 
overexpressing changed retinal endothelial cell viability, 
proliferation, migration, and tube formation in vitro. It has 
been revealed that circ-HIPK3 silencing in vivo alleviated 
retinal vascular dysfunction, as shown by decreased reti-
nal acellular capillaries, vascular leakage, and inflamma-
tion. Circ-HIPK3 could serve as endogenous miR-30a-3p 
sponge retinal endothelial cells and inhibit its activity 
[93]. Inhibition of miR-30a-3p led to increased Vascu-
lar Endothelial Growth Factor-C (VEGF-C), FZD4, and 
WNT2 expression which have been shown to be involved 
in diabetic retinopathy [94, 95].

The circRNAs could also play a critical role in the 
responses of human umbilical vein endothelial cells 
(HUVEC) to the glucose stress [96]. It has been reported 
that circRNA-001175 could be involved in the protec-
tion of HUVECs against high glucose stress. Xiaoyan 
Pei et al. showed that the HUVECs glucose treatments 
gradually decreased the expressions of circRNA-00117 
[97]. Moreover, they reported that the up-regulation of 
circRNA-001175 inhibits the HUVECs apoptosis and 
also increases the tubule formation ability of that under 
high glucose situation [97]. Furthermore, it has been 
recently observed that high glucose treatment could induce 
the expression of circ-0054633 and miR-218 levels in 
HUVEcs. In addition, circ-0054633 expression suppressed 
the injurious effects of high glucose to HUVEcs by tar-
geting miR-218 [98]. Long Pan et al. reported that over-
expression of circ-0054633 could reverse high glucose-
induced cell proliferation, migration and angiogenesis 
inhibition by targeting the miR-218/ROBO1 and miR-218/
HO-1 signals. Indeed, elevated expression of circ-0054633 
increased HO-1 level by targeting miR-218, which resulted 
in reducing the apoptosis of HUVEcs [98].

A current investigation reported that circ-0005015 
facilitated retinal endothelial angiogenic function via reg-
ulating endothelial cell proliferation, migration, and tube 
formation [99]. Circ-0005015 could act as miR-519d-3p 
sponge, leading to increased MMP-2, STAT3 and XIAP 
expression [99]. These genes are involved in many path-
ways, including regulation of vascularization [100], dia-
betic retinopathy [101], and neuroprotection [102].

T2D related‑chronic inflammation and oxidative stress

T2D is a metabolic disorder characterized by chronic, low-
grade inflammation which can lead to insulin resistance 
and impaired glucose tolerance [103]. The expression of 
circRNAs, and their association with chronic inflamma-
tion in T2D was evaluated in some investigations [98, 
104]. It has been reported that circ-ANKRd36 expres-
sion level is positively correlated with IL-6 and TNF-α in 
diabetic patients, suggesting an association between circ-
ANKRD36 and inflammation in T2D [104]. Yuan Fang 
et al. prediction analysis showed that circ-ANKRd36 may 
be involved in T2D and inflammation-associated path-
ways via interaction whit miR-3614-3p, miR-498 and 
miR-501-5p [104]. Moreover, it has been indicated that 
circ-0054633 expression may suppress cellular oxidative 
stress and inflammation [98]. This circRNA could target 
miR‑218 and inhibits its expression [98]. A previous study 
showed that miR-218 accelerated high glucose-induced 
podocyte apoptosis through directly downregulating HO-1 
[105]. HO-1 has been demonstrated to have a protective 
effect against high glucose-induced cell toxicity, includ-
ing oxidative stress and inflammation [106]. Furthermore, 
Jun-Hui Yang et al. revealed that deregulated expression 
of mmu-circRNA-34132, mmu-circRNA_017077 and 
mmu-circRNA-015216 in the Substantia Nigra and Corpus 
Striatum of Nrf2-Knockout Mice models could be involved 
with Nrf2-mediated neuroprotection against oxidative 
stress [107]. They reported that mmu-circRNA-34132 
may be a potential regulator of Nrf2-mediated protection 
for diabetes mellitus and Nrf2-mediated defense against 
reactive oxygen species (ROS) in hearts [107]. In addi-
tion, it has been reported that the has-circ-0068087 level 
is up-regulated in high glucose treated-HUVECs. Down-
regulation of this circRNA, suppressed the inflammation 
and endothelial cell dysfunction by sponging miR-197 and 
as a result, suppression of the TLR4/NF-κB/NLRP3 sign-
aling pathway [108].

Diabetic nephropathy

Diabetic nephropathy is one of the most common causes 
of chronic renal failure in diabetic patients [109]. Previ-
ous investigations demonstrated that a large number of 
circulating circRNAs can be reliably detected in blood 
of acute kidney injury patients and in renal tissues [110, 
111]. It has been validated that circRNA-15698 was up-
regulated in both db/db mice and high glucose-exposed 
mouse mesangial cells [112]. CircRNA-15698 could act 
as a molecular sponge of miR‐185, and then positively 
regulated the transforming growth factor‐β 1 (TGF‐β 1) 
protein expression [112].



5638	 Molecular Biology Reports (2019) 46:5631–5643

1 3

CircRNAs and wound healing

Impaired wound healing has been a major public health 
issue in patients with DM [113]. Currently, a study shows 
that the circ-Amotl1 can accelerate wound healing by 
facilitated Stat3 nuclear translocation and binding to 
Dnmt3a promoter, which enhanced Dnmt3a expression 
[114]. Zhen-Guo Yang et al. showed that the increased 
Dnmt3a level could methylated the promoter of miR-
17 and thereby decreasing its levels. Interestingly, they 
reported that Stat3, similar to Dnmt3a, was a target of 
miR-17-5p. Therefore, decreased miR-17-5p levels would 
increase expression of Dnmt3a and Stat3, which led to 
increased cell adhesion, migration, proliferation, survival, 
and wound repair [114].

CircRNAs as a potential biomarkers in T2D

Most of the classical biomarkers for T2D diagnosis are use-
ful only after the establishment of disease and fails to predict 
the prediabetic cases or diabetes complications at early stage 
of disease. Accordingly, the novel and more sensitive and 
complications-related biomarkers are needed [115, 116]. 
Due to the circular structure of circRNAs and lacking of 
free 5′ and 3′ ends, these molecules are highly resistant to 
exonuclease RNase R [117]. Indeed, circRNAs are stable 
molecules in body fluids with an average half-life of 48 h 
in plasma, much longer than 10 h of the average value of 
mRNAs [118]. Moreover, circRNAs are tissue and cell spe-
cific, additionally; the abundance of circRNA is higher in 
body fluid including blood, cerebrospinal fluid, saliva and 
urine [119]. Therefore, there is a growing trend in explor-
ing the use of circulating and tissue profiling of circRNAs 
as a potential biomarker for the diagnosis and prognosis of 
a range of human disorders including diabetes [93, 119]. 
Table 1 represents the deregulated levels of important cir-
cRNAs in T2D.

Circ‑HIPK3

It has been shown that the expression level of circ-HIPK3 
is highly abundant in serum from diabetes patients who suf-
fered from neuropathic pain compared to controls. Moreo-
ver, the circ-HIPK3 expression was up-regulated in serum 
and dorsal root ganglion from STZ-induced diabetes rats 
compared with control rats [92]. Kun Shan et al. showed that 
retinal level of circ-HIPK3 in diabetic mice was significantly 
higher than that in the non-diabetic controls [93]. Thus, circ-
HIPK3 has great potential to become a diagnostic or predic-
tive biomarker for neuropathic pain of T2D.

cZNF609

Chang Liu et al. revealed that cZNF609 expression level in 
the fibrovascular membranes of diabetic patients was sig-
nificantly higher than that in the idiopathic epiretinal mem-
branes of non-diabetic patients. In addition, they reported 
that cZNF609 expression was up-regulated in the plasma 
fraction of peripheral blood of diabetic patients compared 
with non-diabetic controls [87].

Circ‑0054633

Zhenzhou Zhao et al. evaluated the expression levels of 
some circRNAs in the peripheral blood from control, pre-
diabetes and T2D subjects [120]. They reported that the lev-
els of circ-0124636 and circ-0139110 expression among the 
three groups presented no significant differences. However, 
the expression levels of circ-0018508 in the pre-diabetes and 
T2D groups were higher than that of the control group. They 
also revealed that, the expression levels of circ-0054633 and 
circ-0068087 were increased gradually from the control 
group to the T2D subjects. After ROC curve analysis, they 
demonstrated that circ-0054633 has the potential to be used 
as a diagnostic biomarker for pre-diabetes and T2D in clini-
cal practice [120]. In the line with this finding, Sally et al. 
reported that plasma level of circ-0054633 was significantly 
increased gradually from controls to the T2D patients [121].

Circ‑RNA11783‑2

Xuejie Li et al. determined the expression profile of cir-
cRNAs in the peripheral blood of coronary artery disease 
and T2D patients [122]. They did not observe a significant 
difference for the expression levels of circ-0009036 and 
circ-0054129 between groups. However, they showed that 
the levels of circ-RNA11806-28, circ-RNA6510-1 and cir-
cRNA11783-2 were lower in both the T2D and CAD groups 
compared with the controls. Subsequently, they validated the 
significance of differential circ-RNA11783-2 expression in 
the third cohort including 60 control, 64 T2D and 81 CAD 
subjects. Their result showed that circRNA11783-2 was 
down-regulated in both the CAD and T2D groups compared 
with the controls [122].

Circ‑0005015

Shu-Jie Zhang et al. performed circRNAs microarray to 
investigate differential expression profile of that between 
diabetic and non-diabetic human retinas [99]. They identi-
fied 529 differentially expressed circRNAs, including 356 
up-regulated and 173 down-regulated circRNAs compared 
with non-diabetic controls. In addition, they revealed that 
circ-0005015 expression was significantly up-regulated in 
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the plasma fraction of diabetic retinopathy patients com-
pared to cataract patients, and healthy controls [99].

Circ‑ANKRD36

It has been reported that there is an association between the 
expression profiles of circRNAs in peripheral leucocytes of 
patients with T2D and inflammatory cytokines [104]. The 
RNAseq analysis revealed 220 differentially expressed cir-
cRNAs, including 107 up-regulated and 113 down-regulated 
circRNAs in diabetic subjects compared with non-diabetic 
controls. Among these, the expression of circ-ANKRD36 

was up-regulated in patients with T2D and its expression 
level was positively correlated with IL-6, glucose and gly-
cosylated hemoglobin levels [104].

Other circRNAs

Yonghao et al. reported that thirty circRNAs were signifi-
cantly unregulated in the serum of T2D retinopathy patients 
compared with the serum from both T2D and control sub-
jects [123]. Further, the expression of 7 circRNAs includ-
ing circRNA-063981, circRNA-404457, circRNA-100750, 
circRNA-406918, circRNA-104387, circRNA-103410, and 

Table 1   Different expression level of circRNAs in T2D patients

circRNA name Gene symbol Disease Expression pattern Experimental techniques References

hsa_circ_0005015 HAS2 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0000615 ZNF609 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0019069 SLC16A12 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0066922 HGD Diabetes retinopathy U Q-PCR [99]
hsa_circ_0081108 COL1A2 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0081162 COL1A2 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0087206 ALDH1A1 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0087215 ANXA1 Diabetes retinopathy U Q-PCR [99]
hsa_circ_0041796 C17orf81 Diabetes retinopathy D Q-PCR [99]
hsa_circ_0072410 NNT Diabetes retinopathy D Q-PCR [99]
hsa_circ_0026388 KRT75 Diabetes retinopathy D Q-PCR [99]
hsa_circ_0057093 PDK1 Diabetes retinopathy D Q-PCR [99]
hsa_circ_0030055 MTRF1 Diabetes retinopathy D Q-PCR [99]
hsa_circ_0026372 KRT81 Diabetes retinopathy D Q-PCR [99]
hsa_circ_0068489 MASP1 Diabetes retinopathy D Q-PCR [99]
hsa_circRNA_063981 SBF1 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_ 404457 TCEA3 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_100750 STIM1 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_406918 IGF2BP3 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_ circRNA_104387 WBSCR17 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_103410 LRIG1 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_ 100192 ST3GAL3 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circ_0000615 ZNF609 Diabetes retinopathy U Microarray and qRT-PCR [123]
hsa_circRNA_003251 N/A T2D with depression U Microarray and qRT-PCR [126]
hsa_circRNA_015115 N/A T2D with depression U Microarray and qRT-PCR [126]
hsa_circRNA_100918 N/A T2D with depression U Microarray and qRT-PCR [126]
hsa_circRNA_005019 N/A T2D with depression D Microarray and qRT-PCR [126]
circRNA name Gene symbol Disease Expression pattern Experimental techniques References
hsa_circ_0054633 PNPT1 T2D U Microarray and qRT-PCR [120]
hsa_circ_0018508 DNA2 T2D U Microarray and qRT-PCR [120]
hsa_circ_0068087 GNB4 T2D U Microarray and qRT-PCR [120]
hsa-circRNA11783-2 ENST00000251081 T2D D Microarray and qRT-PCR [122]
hsa-circRNA11806-28 N/A T2D D Microarray and qRT-PCR [122]
hsa-circRNA6510-1 N/A T2D D Microarray and qRT-PCR [122]
hsa_circ_0000284, circHIPK3 Circ-HIPK3 T2D U qRT-PCR, Sanger sequenc-

ing, and Northern blots 
[93]
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circRNA-100192 were significantly elevated in T2D retin-
opathy patients relative to the T2D or control groups [123].

Several investigations have shown that T2D is closely 
associated with the onset and progression of depression 
[124, 125]. Guangjian Jiang et al. showed that 183 circRNAs 
were significantly up-regulated, whereas 64 were down-reg-
ulated in the whole blood samples from T2D with depression 
group compared with that in the T2D group [126]. They sug-
gested that differentially expressed circRNAs could clarify 
the pathogenesis of depression in patients with T2D [126]. 
Interestingly, it has been reported that Baduanjin, a tradi-
tional Chinese exercise therapy, could effectively ameliorate 
the symptoms of depression and blood glucose levels in dia-
betic patients with depression by regulating the expression 
of circRNAs [127].

Conclusions and perspectives

CircRNAs are involved in the genome regulation through 
mimicking of several roles including: regulation of gene 
splicing and transcription, miRNA and protein sponging and 
affecting the protein function and translation. Therefore, an 
increasing number of experimental investigations are provid-
ing evidence that the altered expression of circRNAs could 
be associated with several human diseases such as T2D. 
However, the molecular functions and clinical relevance of 
circRNAs are not yet well elucidated in T2D and there is 
still no available clinical relevance of circRNAs in diabetic 
patients.

This review provides current knowledge about the proper-
ties and functions of circRNAs and their clinical relevance 
as potential biomarkers for T2D. In addition, we highlight 
the involvement of circRNAs in the β-cell function and T2D-
related complications. Further in vitro and in vivo studies 
are required to confirm and elucidate the functional roles 
of circRNAs in the establishment and development of T2D 
pathogenesis and the possibility using of these ncRNAs as a 
potential therapeutic targets and biomarkers for T2D.
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