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Abstract
Oxidative stress occurs due to an imbalance between antioxidant defenses and pro-oxidant agents in brain. This condition 
has been associated to the pathogenesis of several brain diseases; therefore, increasing the use of compounds that exert 
antioxidant activity. Thus, the objective of this study was to evaluate, in vitro, the effect of isoflavones in: (1) lipid peroxida-
tion, catalase activity and thiol groups in the presence of pro-oxidants: sodium nitroprusside or Fe2+/EDTA complex in rat 
brain homogenates; (2) the activity of the enzyme monoamine oxidase (MAO). As a result, the isoflavones reduced lipid 
peroxidation in a manner dependent on the concentration and protected against the reduction of catalase activity as well as 
the induced thiol oxidation in brain tissue. In addition, isoflavones inhibited MAO activity (MAO-A and MAO-B). Taken 
together, our results showed that isoflavones avoided oxidative stress and decreased the MAO activity, suggesting a promis-
sory use in the treatment of neurodegenerative diseases.
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Introduction

Oxidative stress is a biological condition that occurs due to 
an imbalance between antioxidant defenses and reactive oxy-
gen species (ROS) and/or reactive nitrogen species (RNS) 
generated from normal oxidative metabolism or from pro-
oxidant environmental exposures [1, 2]. This condition has 
been described to be involved in neurodegenerative disorders 
such as Parkinson’s (PD), Alzheimer’s (AD) and Hunting-
ton’s (HD) disease [3, 4], where ROS can contribute to their 

worsening by causing alterations in the cell membrane (lipid 
peroxidation and protein oxidation) and DNA mutations [5, 
6].

It is known that the brain is vulnerable to oxidative dam-
age because of a relative lack of antioxidants and abundance 
of oxidizable substrates like polyunsaturated fatty acids and 
catecholamines such as dopamine [7, 8]. The toxic potential 
of dopamine is mainly due its oxidation by monoamine oxi-
dase (MAO), which generates hydrogen peroxide (H2O2) [9].

Two isoforms of MAO (MAO-A and MAO-B) have been 
identified in humans which are found in the outer mitochon-
drial membrane and are responsible for the metabolism of 
monoamine neurotransmitters in the brain and peripheral 
tissues.

Studies have demonstrated that MAO is associated with 
psychiatric and neurological disorders, including depression, 
PD and AD [10]. Furthermore, it was demonstrated the inhi-
bition of MAO-A prevents cell apoptosis [11], suggesting its 
important role in neurodegenerative diseases.

In this context, alternative ways have been considered as 
adjuvant treatment of numerous diseases, mainly those asso-
ciated with oxidative stress [12, 13] and a special attention 
has been given to natural products as sources of antioxidants 
[14].

 *	 Luis Ricardo Peroza 
	 perozalr@gmail.com

1	 Curso de Biomedicina, Universidade Franciscana (UFN), 
Santa Maria, Rio Grande do Sul, Brazil

2	 Programa de Pós‑Graduação em Farmacologia, 
Universidade Federal de Santa Maria (UFSM), Santa Maria, 
Rio Grande do Sul, Brazil

3	 Programa de Pós‑Graduação em Bioquímica Toxicológica, 
Universidade Federal de Santa Maria (UFSM), Santa Maria, 
Rio Grande do Sul, Brazil

4	 Mestrado em Ciências da Saúde e da Vida, 
Universidade Franciscana (UFN), Santa Maria, 
Rio Grande do Sul 97010‑032, Brazil

http://orcid.org/0000-0002-5361-0043
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-019-04684-z&domain=pdf


2286	 Molecular Biology Reports (2019) 46:2285–2292

1 3

Isoflavones are phenolic compounds present in high con-
centrations in leguminous plants, such as soybeans. When 
ingested isoflavones are hydrolyzed in the intestine by 
intestinal glycosidases, releasing the main bioactive forms: 
aglycones, daidzein, genistein and glycitain [15] that will 
promote beneficial action in human body, including the 
decrease in menopausal symptoms [16] and treatment of 
hormonal diseases [17]. It is generally believed that many 
of the beneficial effects of isoflavones are at least partially 
associated with their antioxidant activity [18, 19] which 
may be related to the number of hydroxyl groups present 
in their chemical structure [18]. In addition, isoflavones 
are capable of inhibiting lipid peroxidation in vitro by free 
radical scavenging [15]. Pharmacologically, isoflavones are 
phytoestrogens because of their ability to bind to estrogen 
receptors in vivo [20]. There are reports in the literature sug-
gesting isoflavones as promising agents in the treatment of 
neurodegenerative diseases due to their ability to cross the 
blood brain barrier, have a half-life (15–22 h) and low oral 
toxicity in vivo [21].

Thus, the objective of this study was to investigate, 
in vitro, the antioxidant effect and inhibitory activity on 
the activity of MAO, using isoflavones extracted from soy, 
because it is the formulation that is marketed in pharmacies 
and the way in which the population has access and use.

Materials and methods

Animals

Male Wistar rats (± 2 months old), weighing between 200 
and 250 g, from breeding colony of UFSM (Brazil) were 
kept in cages with free access to food and water in a room 
with controlled temperature (22 ± 1 °C) and in 12 h light/
dark cycle with lights on at 7:00 am. The brain tissues used 
were brain samples that left over from control animals from 
other experiments that were previously approved by the Eth-
ics Committee on Animal Use (CEUA) of the UFSM that 
had been stored at − 80 °C until the use.

Reagents

Tris–HCl, thiobarbituric acid, malonaldehyde bis(dimethyl 
acetal) (MDA), 5,5-dithiobis(2-nitrobenzoic acid), l-Glu-
tathione reduced, Folin and Ciocalteu’s phenol reagent, 
kynuramine dihydrobromide, clorgyline, and pargyline 
were obtained from Sigma (St. Louis, MO, USA). Hydrogen 
peroxide and trichloroacetic acid (TCA), sodium nitroprus-
side, ferrous sulfate, and EDTA were obtained from Merck 
(Brazil).

Isoflavones

Isoflavones were acquired from Xi’an Green Life Natural 
Products®. The certificated of analysis contain the following 
information: 41.73% of the powder was composed by iso-
flavones. Among them: daidzein (35.8%), daidzin (3.11%), 
glycitin (1.21), genistin (1.18%), glycitein (0.32%), genistein 
(0.11%). The concentrations of isoflavones varied accord-
ing with their potencies in each test since in some tests they 
presented effect only in higher concentrations than another.

Preparation of isoflavones solution

The isoflavones were weighted and dissolved in distilled 
water. For each experiment, a new solution was prepared.

Determination of thiobarbituric acid reactive 
substances (TBARS)

To evaluate the effects of isoflavones on TBARS produc-
tion induced by different pro-oxidants in vitro, the rat brain 
tissue was homogenized in 10 mM Tris–HCl, pH 7.4 (1:10) 
and centrifuged at 3000 rpm for 10 min. After, an aliquot 
of the supernatant (S1) was incubated for 1 h at 37 °C with 
pro-oxidants and in the presence or absence of different con-
centrations of isoflavones (equivalent to 25, 50, 100, 200 and 
300 µg/mL of isoflavones). After, TBARS reaction was per-
formed by adding thiobarbituric acid (0.6%), acetic acid/HCl 
buffer (pH 3.4), sodium dodecyl sulfate (8.1%) and incu-
bated at 95 °C for 1 h. As pro-oxidant agents, sodium nitro-
prusside (SNP 5 µM) and Fe2+/EDTA (100 µM/100 µM) 
were used. Malondialdehyde (MDA) was used as standard 
and samples were read at 532 nm [22].

Catalase activity

The antioxidant activity of isoflavones was also verified 
through to its ability in to maintaining the enzyme catalase 
activity. To this brain homogenate (S1) was incubated at 
37 °C for 1 h with the pro-oxidant agents: SNP (5 µM) 
and Fe2+/EDTA (100 µM) in the presence or absence of 
isoflavones (equivalent to 25, 50, 100, 200 and 300 µg/mL 
of isoflavones). Immediately after, the reaction was cen-
trifuged and an aliquot was used to measuring the activity 
of catalase. An aliquot of supernatant was added to potas-
sium phosphate buffer 50 mM, pH 7.4 at 25 °C and then 
hydrogen peroxide (H2O2, 0.5 M). The reading was made 
at 240 nm during 2 min and the data were expressed as 
µmol of H2O2/min/g tissue [23].
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Oxidation of thiols groups

The following concentrations of isoflavones were used for 
this experiment: 25; 50; 100; 200 and 300 µg/mL and, as pro-
oxidants Fe2+/EDTA (100 µM) or SNP (5 µM). An aliquot 
of S1 was incubated under the same experimental conditions 
described above for catalase activity and, after 1 h, levels of 
protein and non-protein thiol were determined. The reagent 
5,5′-dithiobis (2-nitrobenzoic acid)—DTNB was added to the 
samples and the chromogen formed was measured spectro-
photometrically at 412 nm. For levels of non-protein thiol, 
10% trichloroacetic acid (TCA) was added to the pre-incubated 
aliquot, centrifuged at 500 g for 5 min and the supernatant was 
used. The results were expressed in µmol of protein thiol/g of 
tissue and non-protein thiol/g of tissue [24].

Activity of the enzyme monoamine oxidase (MAO)

Monoamine oxidase (MAO) activity was determined by 
measuring the kynuramine oxidation to 4-hydroxiquino-
line [25–27]. For assessing the effect of isoflavones on the 
activity of MAO, the following concentrations were used: 
12.5; 25; 50; 100; 200; 300; 600 µg/mL. The whole brain 
was homogenized in buffer containing: 16.8 mM, Na2PO4, 
10.6 mM, KH2PO4, 3.6 mM KCl pH 7.4. Brain homogen-
ates (0.25 mg of protein) were pre-incubated during 10 min 
at 37 °C with MAO-A (chlorgiline, 250 nM) or MAO-B 
(pargyline, 250 nM) inhibitors in the presence or absence 
of different concentrations of isoflavones. After this, kynu-
ramine was added as MAO substrate in sub maximal concen-
tration (60 µM). The reaction was incubated during 30 min 
at 37 °C. After this time, the reaction was stopped with 10% 
trichloroacetic acid (TCA). The samples were centrifuged 
at 500×g for 5 min and the supernatant was used to estimate 
the MAO activity. It was added 1 mL of 1N NaOH with an 
equal volume of supernatant. The product of reaction was 
measured spectrofluorimetrically at 315 nm for excitation 
and 380 nm for emission [28]. The results are represented 
as nmol 4-HQ/mg of protein/min.

Statistical analysis

The results were expressed as the means ± SEM. Differences 
between groups were evaluated for significance using one-way 
analysis of variance (ANOVA) followed by Tukey’s test or 
unpaired t-test. Significance was considered when p < 0.05.

Results

Effect of isoflavones on lipid peroxidation induced 
by SNP or Fe2+/EDTA

The protective effect of isoflavones against pro-oxidants-
induced lipid peroxidation was measured using the TBARS 
test. Both NPS and Fe2+/EDTA complex increased TBARS 
in brain homogenates of rat (123.7 ± 3.35 nmol MDA/g of 
tissue [NPS], 305.7 ± 8.17 nmol MDA/g of tissue [Fe2+/
EDTA], p < 0.0001, Fig. 1a, b). Isoflavones reduced this 
increase in a concentration-dependent manner with an IC50 

Fig. 1   Effect of isoflavones on lipid peroxidation induced by SNP or 
Fe2+/EDTA complex in rat brain homogenates. The data show the 
mean ± SEM of 3 experiments performed in duplicate and analyzed 
by one-way ANOVA followed by Tukey’s test. *, ****(p < 0.05 and 
p < 0.0001) Significant differences from basal. ##, ####p < 0.01 and 
p < 0.0001) Significant differences with induced by SNP or Fe2+/
EDTA
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of 71.39 ± 2.01 µg/mL to SNP and 124.5 ± 8.13 µg/mL to 
Fe2+/EDTA.

Effect of isoflavones on catalase activity

To investigate whether the protective effect of isoflavones 
against oxidative stress was associated with the preserva-
tion of antioxidant enzymes, catalase activity was meas-
ured in brain tissue incubated with pro-oxidants. NPS 
5 µM (Fig. 2a) and Fe2+/EDTA 100 µM (Fig. 2b) complex 
decreased catalase activity (20.31 ± 3.30 µmol of H2O2/
min/g tissue and 10.73 ± 2.69 µmol of H2O2/min/g tissue, 
respectively) when compared to control (41.14 ± 2.14 µmol 

of H2O2/min/g tissue). However, isoflavones avoided the 
decrease of catalase activity at the concentration of 100 
and 200 µg/ml (32.58 ± 1.92 µmol of H2O2/min/g tissue and 
38.08 ± 3.02 µmol of H2O2/min/g tissue) compared to that 
induced with SNP (Fig. 2a), and at concentrations of 200 
and 300 µg/mL (38.97 ± 3.90 µmol of H2O2/min/g tissue and 
42.42 ± 1.13 µmol of H2O2/min/g tissue) when compared 
with the induced with Fe2+/EDTA (Fig. 2b).

Effect of isoflavones on oxidation of thiols groups

Results show that both pro-oxidant agents caused oxidation 
of protein thiol groups (18.78 ± 0.45 µmol of protein thiol/g 
of tissue [NPS] and 15.29 ± 0.31 µmol of protein thiol/g of 
tissue [Fe2+/EDTA]) and non-protein thiol (3.18 ± 0.41 non-
protein thiol/g of tissue [SNP] and 2.15 ± 0.21 non-protein 
thiol/g of tissue [Fe2+/EDTA]) when compared to control 
(20.53 ± 037 µmol of protein thiol/g of tissue and 4.23 ± 0.21 
non-protein thiol/g of tissue, respectively). Isoflavones were 
able to protect against thiol oxidation at concentrations of 
50–200 µg/mL for protein thiol (24.03 ± 0.99 µmol of pro-
tein thiol/g of tissue at 200 µg/mL of isoflavones) and non-
protein thiol (5.24 ± 0.30 non-protein thiol/g of tissue at 
200 µg/mL of isoflavones) compared with induced by SNP 
(p < 0.05–p < 0.0001; p < 0.05 and p < 0.001, respectively) 
(Fig. 3a, c). Similarly, concentrations of 100–300 µg/mL 
for protein thiol (23.35 ± 0.18 µmol of protein thiol/g of tis-
sue at 300 µg/mL of isoflavones) and the concentrations of 
200–300 µg/mL for non-protein thiol (4.19 ± 0.30 non-pro-
tein thiol/g of tissue at 300 µg/mL of isoflavones) presented 
significant difference compared to induced by Fe2+/EDTA 
(p < 0.001 and p < 0.0001; p < 0.05 respectively) (Fig. 3b, d).

Effect of isoflavones on MAO activity

Isoflavones showed a significant inhibitory effect (p < 0.0001) 
on the activity of MAO-A at all tested concentrations 
(12.5–600 µg/mL [0.050 ± 0.000 nmol 4-HQ/mg of protein/
min at 600 µg/mL of isoflavones]; IC50 = 196.4 ± 9.59 µg/mL) 
compared with control (0.419 ± 0.001 nmol 4-HQ/mg of pro-
tein/min; Fig. 4a). With regard to MAO-B activity, all concen-
trations tested of isoflavones, except the lowest concentration 
(12.5 µg/mL) inhibited it ([0.056 ± 0.001 nmol 4-HQ/mg of 
protein/min at 600 µg/mL of isoflavones]; IC50 = 161 ± 6.70 µg/
mL) when compared to the control (0.72 ± 0.01 nmol 4-HQ/
mg of protein/min; p < 0.0001) (Fig. 4b).

Discussion

Estrogen is an agent related to the neuroprotective effect 
in insults in central nervous system [29, 30]. Thus, this 
study aimed to evaluate in vitro, the antioxidant potential 

Fig. 2   Effect of isoflavones on catalase levels in brain homogen-
ates incubated with NPS 5 µM (a) or Fe2+/EDTA 100 µM (b). Data 
show the mean ± S.E.M. of 3 experiments performed in duplicate and 
analyzed by one-way ANOVA followed by Tukey’s test. *, **, ***, 
****(p < 0.05, p < 0.01, p < 0.001 and p < 0.0001) Significant differ-
ences from basal. #, ##, ####(p < 0.05, p < 0.01 and p < 0.0001) Signifi-
cant differences compared with SNP or Fe2+/EDTA
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of isoflavones and their inhibitory effect on MAO enzyme 
in rat brain homogenate, once the increased metabolism of 
monoamines is responsible for the production of reactive 
species and pro-apoptotic events.

Isoflavones are phytoestrogens found in various grains, 
particularly soybeans. Basically, the isoflavones have the 
capacity to act beneficially in the body in 4 different ways: 
(1) estrogens and antiestrogens; (2) inhibitors of enzymes 
linked to the development of cancer; (3) antioxidant; (4) 
anti-inflammatory [31].

In this context, our first aim was to evaluate the antioxi-
dant potential of isoflavones in vitro by using pro-oxidant 
agents in brain tissue. SNP has been suggested to cause 
cytotoxicity via the release of cyanide and/or nitric oxide 
(NO) [32, 33]. NO is a RNS and has several roles in mam-
mals, but unregulated RNS production can cause adverse 
effects (e.g., cell damage or cell death) through reaction 

with biological target molecules such as DNA, lipids, and 
proteins [34]. Also, NO has the ability to inhibit the activity 
of certain enzymes such as catalase, and it occurs through 
of the NO binding on enzyme active site [35, 36]. Besides, 
the iron and the complexes Fe3+/EDTA can react with H2O2 
via Fenton reaction [37] to form the hydroxyl radical which 
is highly reactive and one of the responsible to initiate lipid 
peroxidation, causing damage on cell membranes by disrupt-
ing fluidity and permeability [38, 39]).

Then, the effect of isoflavones was tested in oxidative 
(lipid peroxidation) and antioxidant markers (catalase activ-
ity and thiol levels) in the presence of pro-oxidant agents 
(SNP or Fe2+/EDTA), which are widely used to cause lipid 
peroxidation. Here, the results show that isoflavones were 
able to reduce brain lipid peroxidation induced by SNP 
or Fe2+/EDTA in brain homogenates. Lipid peroxidation 
is a complex process occurring in cells which reflects the 

Fig. 3   Effect of isoflavones on thiol content (protein and non-pro-
tein) in brain homogenates of rats incubated with pro-oxidant agents. 
Oxidation of protein thiol induced by SNP (a) and induced by Fe2+/
EDTA (b). Oxidation of non-protein thiol induced by SNP (c) and 
induced by Fe2+/EDTA complex (d). Data show the mean ± SEM 

of 3 experiments performed in duplicate and analyzed by one-way 
ANOVA followed by Tukey’s test. *, **, ***, ****(p < 0.05, p < 0.01, 
p < 0.001 and p < 0.0001) Represents significant differences from 
basal. #, ###, ####(p < 0.05, p < 0.001 and p < 0.0001) Significant differ-
ences compared to that induced with pro-oxidants
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interaction between ROS and polyunsaturated fatty acids. 
The products of lipid peroxidation are reactive aldehydes 
and malondialdehyde, many of which are highly toxic to 
cells [40], being present in neurodegenerative disorders [41]. 
Corroborating with our results, a study using genistein at 
100 µM significantly reduced the iron-induced TBARS in 
neurons culture [42].

We decided to test the effect of isoflavones on catalase 
activity because it is one of the most important endogenous 
antioxidants, which acts by catalyzing the reduction of H2O2 
into molecular oxygen and water [43] and protects the tis-
sues from highly reactive hydroxyl radicals that could be 
generated from H2O2. The present results show that the 
presence of isoflavones in the reaction in a concentration-
dependent manner avoided the decrease in catalase activity 
induced by pro-oxidants. Corroborating with this, a study 
conducted by Zhang et al. [44] verified that tectorigenin, an 
isoflavone, reduced H2O2-induced death of Chinese ham-
ster lung fibroblasts (V79-4) and increased the activity and 

protein expression of catalase in a time-dependent manner, 
thus highlighting the antioxidant effect of isoflavones.

In addition to the effect of isoflavones on the catalase 
enzyme, we demonstrated that isoflavones protect against 
thiol groups oxidation induced by SNP or Fe2+/EDTA. Glu-
tathione (GSH) is a powerful antioxidant and is the major 
soluble, non-enzymatic antioxidant in cells. It is the major 
intracellular thiol compound (non-protein thiol—NPSH) 
synthesized intracellularly from cysteine, glycine and glu-
tamate. GSH is capable of scavenging hydroxyl radical and 
is important in maintaining –SH groups in other molecules 
including proteins. Also, –SH groups react with H2O2 and 
the OH˙ radical and may prevent tissue damage [45, 46]. It 
is hypothesized that isoflavones could avoid the oxidation of 
thiol groups induced by pro-oxidant agents either by promot-
ing the regeneration, probably through redox system [47]. In 
addition, this hypothesis may also justify the maintenance 
of the catalase activity and the protection against lipid per-
oxidation, as we observed in this study.

Dysregulation of redox states is being increasingly rec-
ognized in many illnesses, such as PD, where the increase 
in the enzymatic metabolism of dopamine by MAO-B could 
lead to the formation of H2O2 and OH˙ [48]. Considering 
that the increase in the activity of the MAO enzyme can 
lead to mitochondrial damage and neurodegenerative distur-
bances [49], and that the enzyme inhibition is used as part 
of the treatment of neurodegenerative diseases [50, 51], we 
resolved to verify if the isoflavones would be able to inhibit 
the activity of the enzymes MAO.

MAO is an enzyme that catalyzes the oxidative deamina-
tion of monoamines. In humans, the MAO activity increases 
with age [52] and is also depleted in certain neurodegenerative 
diseases [53, 54]. Therefore, an inhibition of MAO-B activity 
has been suggested to delay the neurodegenerative process 
and, consequently, improve the quality of life, especially of 
the seniors [53]. Moreover, it was demonstrated the inhibition 
of MAO-A prevents cell apoptosis [11]. Clinically, MAO-A 
inhibitors are used as antidepressants agents, while MAO-B 
inhibitors are used as therapeutics for AD and PD [9].

However, there are few information about the inhibi-
tory effects of isoflavones on MAO enzymes. Zarmouh 
et al. [55] reported that genistein inhibits non-selectively 
MAO-A and MAO-B with IC50 values of 9.7 and 6.8 µM, 
respectively. Recently, a study published by Zarmouh et al. 
[56] showed that Biochanin-A, an isoflavone, is a revers-
ible and competitive inhibitor MAO with high selectivity 
index and high affinity to inhibit MAO-B. The predicted 
interactions of Biochanin-A with the active site amino acids 
involve reversible H-bonds and hydrophobic interactions. 
Here, in our study, isoflavones showed a significant inhibi-
tory effect on the activity of MAO-A and MAO-B, with an 
IC50 = 196.4 ± 9.59 µg/mL and IC50 = 161 ± 6.70 µg/mL, 
respectively.

Fig. 4   Effect of isoflavones on MAO activity [MAO-A (a)  and 
MAO-B (b)]. Data show the mean ± SEM of three experiments per-
formed in duplicate and analyzed by one-way ANOVA followed by 
Tukey’s test. ****p < 0.0001 versus control
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Isoflavones are considered phytoestrogens due to its struc-
tural similarity with estradiols [17]. In addition, the classical 
actions of estrogens and phytoestrogens are mediated via the 
transcriptional activation of genes responsive to estrogen, 
involving intracellular receptors [57], exhibiting a greater 
affinity to ERβ receptors than to ERα [58]. Numerous publi-
cations point out hormones, such as estrogen, as responsible 
for the activation or inhibition of some enzymes that act on 
the synthesis of neurotransmitter [59]. A study by Gundlah 
et al. [60] analyzed the effect of ovarian steroid hormones on 
MAO as well as its molecular expression and demonstrated 
that brain areas with a predominance of ERβ receptors showed 
regulation for MAO-A and lower interaction for MAO-B and 
ERα receptor with greater regulation for MAO-B and lower for 
MAO-A. ERβ is highly expressed in nerve tissue and can be 
expected to have a greater effect on the expression of MAO-A 
than ERα [57]. With this information we can suggest that the 
mechanisms of inhibition of MAO activity by isoflavones are 
complex, either through the modulation of the estrogen recep-
tor or by acting directly on the active site of the enzyme.

Conclusion

Studies with natural compounds are important, in particular 
because the population believes in the therapeutic action 
due to their natural origin, and generally have low toxic-
ity. In this study, isoflavones were able to reduce brain lipid 
peroxidation and protect against the reduction of the activity 
of catalase, and oxidation of thiols induced by well-known 
pro-oxidants agents in brain tissue. Moreover, isoflavones 
inhibited the activity of the MAO (MAO-A and MAO-B), 
which is related to the reactive species production during 
catecholamines metabolism. Considering the effects of iso-
flavones, they could be considered as an alternative to the 
prevention of degenerative diseases. However, more studies 
must be performed to investigate its mechanism of action 
with the aim of exploring the whole therapeutic potential 
of isoflavones.
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