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Abstract
To clarify the antioxidant, anti-glycation and immunomodulatory capacities of fermented blue-green algae Aphanizomenon 
flos-aquae (AFA), hot aqueous extract suspensions made from 10% AFA were fermented by Lactobacillus plantarum AN7 
and Lactococcus lactis subsp. lactis Kushiro-L2 strains isolated from a coastal region of Japan. The DPPH and  O2

− radical 
scavenging capacities and Fe-reducing power were increased in the fermented AFA. The increased DPPH radical scavenging 
capacity of the fermented AFA was fractionated to mainly < 3 kDa and 30–100 kDa. The increased  O2

− radical scavenging 
capacities were fractionated to mainly < 3 kDa. Anti-glycation activity in BSA-fructose model rather than BSA-methylglyoxal 
model was increased by the fermentation. The increased anti-glycation activity was fractionated to mainly 30–100 kDa. The 
NO concentration in the murine macrophage RAW264.7 culture media was high with the fermented AFA. The increased 
immunomodulation capacity was also fractionated to mainly 30–100 kDa. These results suggest that the fermented AFA is 
a more useful material for health foods and supplements.
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Introduction

A large quantity of blue-green algae, the cyanobacterium 
Aphanizomenon flos-aquae (AFA) inhabits Upper Klamath 
Lake in south-central Oregon in the United States [1]. AFA 
is rich in polyunsaturated fatty acids, proteins, vitamins, 
and minerals [2]. Additionally, the hypocholesterolaemia 
and anti-diabetes properties of AFA have been reported [3]. 
Although AFA inhabiting other regions is regarded as unde-
sirable microalgae due to its toxins (such as aphantoxins), 
AFA from Upper Klamath Lake does not have toxins and is 
used for human health food supplements [4].

Reactive oxygen species (ROS), such as superoxide anion 
radicals  (O2

−), hydrogen peroxide  (H2O2), hydroxyl radicals, 

and singlet oxygen, are generated in the bodies of living 
organisms [5]. These oxygen species react with important 
cell components, such as DNA, proteins, lipids, and small 
cellular molecules, and induce a wide range of common 
diseases and age-related degenerative conditions [6, 7]. A 
correlation between ROS and age-related diseases, such as 
cardiovascular disease, inflammatory conditions, and neu-
rodegenerative diseases, such as Alzheimer’s disease and 
cancer, has been reported [8, 9]. To prevent diseases and 
aging caused by ROS, the antioxidative capacities of various 
foods have been studied [10].

Glycation is a non-enzymatic reaction of reducing sugars 
with amino acids and/or proteins in processed food (Maillard 
reaction) and in vivo [11, 12]. Advanced glycation end prod-
ucts (AGE), such as carboxylmethyl lysine and carboxylethyl 
lysine are generated irreversibly after various intermediates 
such as glyoxal, methylglyoxal (MGO), and 3-deoxygluco-
sone [13]. AGEs are thought to induce diabetes and other 
diabetes- and age-related illnesses such as retinopathy, cata-
racts, arteriosclerosis, and renal dysfunction [14]. Due to the 
AGE synthesis contain oxidation process, already there are 
reports about food materials have both antioxidant and anti-
glycation activities with some phenolic compounds [15].
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Nitric oxide (NO) is an ROS that is an endogenously syn-
thesised free radical and a member of the gaseous signal-
ling molecules widely known as gasotransmitters [16]. NO 
directly modifies its intracellular targets due to its ability 
to passively permeate the cellular membrane, and it plays 
important roles in inflammation, life-style, neurological 
and age-related diseases as mentioned above [17, 18]. The 
anti-inflammatory effects of various plant foods and eth-
nic medicinal plants and their chemical compounds were 
evaluated by the inhibitory effect on NO secretion induced 
by Escherichia coli lipopolysaccharide (LPS) in murine 
RAW264.7 macrophages [18, 19]. Alternatively, stimula-
tory effects on NO production have been reported in other 
food materials, particularly in exopolysaccharide (EPS) con-
taining probiotic lactic acid bacteria (LAB), polyunsaturated 
fatty acids, and oligo- and poly-saccharides in RAW264.7 
cells [20–22].

The antioxidant properties of AFA have been reported 
[23–25]. The immunomodulation capacities of AFA also 
have been reported; though, the mechanisms are still not 
clear [26, 27]. Some LABs isolated from coastal regions can 
increase the antioxidant ( O−

2
radical scavenging, and protec-

tion of macrophages and epithelial-like cells against  H2O2), 
anti-inflammation, and anti-glycation capacities of suspen-
sions and/or aqueous extract solutions of some edible algae 
during fermentation [28–31].

In the present study, we sought to clarify the effect of 
LAB fermentation on the antioxidant, anti-glycation and 
immunomodulatory capacities of AFA. Hot aqueous extract 
suspensions made from dry-powdered AFA were fermented 
by Lactobacillus plantarum and Lactococcus lactis subsp. 
lactis strains isolated from a coastal region in Japan. These 
LAB strains showed higher stress (acid, bile and salinity) 
resistances compared with ones of their type strain [19, 32]. 
Then, the in vitro antioxidant and anti-glycation proper-
ties and immunomodulation effects on NO secretion from 
RAW264.7 cells of the non-fermented and fermented AFA 
suspensions were determined.

Materials and methods

Chemicals

( + )-Catechin, Folin–Ciocalteu phenol reagent, the sta-
ble 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical phen-
azine methosulphate (PMS), 3-(2-pyridyl)-5,6-di(p-
sulfophenyl)1,2,4-triazine disodium salt (ferrozine), 
β-nicotinamide adenine dinucleotide (NADH), nitroblue 
tetrazolium salt (NBT), methylglyoxal (MGO), and lipopoly-
saccharide (LPS) from Escherichia coli O111 B4 were pur-
chased from Sigma-Aldrich (St. Louis, MO). Potassium fer-
ricyanide, trichloroacetic acid (TCA), bovine serum albumin 

(BSA), D-fructose (Fru) and Griess-Romijn nitrite reagent 
were purchased from FUJIFILM Wako Pure Chemicals 
(Osaka, Japan).

Freeze-dried powder of Aphanizomenon flos-aquae 
(AFA) harvested from Upper Klamath Lake was obtained 
from Dr’s Choice Co., Tokyo, Japan. The other reagents 
were of analytical grade.

Screening of AFA fermentative lactic acid bacteria

AFA (5 g) was suspended with 200 mL of distilled water 
(DW) and autoclaved (121 °C for 15 min, 2.5% AFA-S). 
Twenty-nine Lactobacillus plantarum and 10 Lactococcus 
lactis subsp. lactis isolated from coastal regions [19, 28, 
31, 33] were pre-incubated in 3 mL of de Man, Rogosa, and 
Sharpe (MRS) broth (Oxoid, Basingstoke, UK) and incu-
bated at 37 °C for 24 h. Then, 0.03 mL of the pre-culture 
was inoculated into 3 mL of the 2.5% AFA-S. After 4 days 
fermentation at 37 °C, the pH value was measured using 
a pH meter (LAQUA Twin B-711, Horiba, Kyoto, Japan). 
Strains of L. plantarum and L. lactis that showed the lowest 
pH values were selected as starters for further experiments.

Fermentation of 10% AFA‑S

AFA powder (20 g) was suspended with 200 mL of DW, 
the pH was adjusted to 7.0 with 0.1 mol/mL NaOH, and 
the suspension was autoclaved (10% AFA-S). 5 mL of 10% 
AFA-S (5 mL) was fermented by inoculation of the pre-
culture (0.05 mL) of the two selected LAB strains. After 0, 
1, 2, 4, and 7 days fermentation, the pH values and viable 
counts with MRS agar plates were determined.

To analyse glucose, lactic acid, and acetic acid in the 
7 day fermented 10% AFA-S by high-performance liquid 
chromatography (HPLC), the sample was centrifuged at 
3000 ×  g at 4 °C for 5 min and the supernatant was filtered 
using a 0.2 µm pore filter. The HPLC conditions were as 
follows: column, ICSep ICE-ORH-801 (Tokyo Chemical 
Industry Co., Ltd., Tokyo, Japan); operating temperature, 
35 °C; elution, 0.005 mol/L of sulfuric acid  (H2SO4); flow 
rate, 0.8 mL/min. Eluted compounds were detected by a 
refractive index (RI) detector.

Among the major minerals (Na, K, Ca, Mg, Fe, Cu, and 
Mn), K, Ca, Fe, Cu, and Mn were measured using commer-
cially available kits from the series of Reagent Set for Water 
Analyzer (No. 36, No. 48, No. 41B, No. 50, and No. 28, 
respectively, Kyoritsu Chemical-Check Lab., Corp., Tokyo, 
Japan). Na was measured using a Na-ion meter (LAQUA 
Twin B-721, Horiba, Kyoto, Tokyo). Mg was determined 
using a commercial diagnosis kit (Magnesium B-Test Wako, 
FUJIFILM Wako Pure Chemical).

After diluting the sample solution with nine volumes of 
distilled water, the free amino acid content was determined 
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by an amino acid analyser (L-8900, Hitachi, Tokyo, Japan), 
as previously reported [34]. This high-performance liquid 
chromatography (HPLC) analysis method can also detect 
some amino-acid-related compounds, such as ammonia, 
ethanolamine, and aminobutyric acids.

Total phenolic compound content (TPC) 
of fermented 10% AFA‑S

For experiments to determine phenolic content and antioxi-
dant properties, intact and fermented 10% AFA-S was cen-
trifuged at 3000 ×  g at 4 °C for 10 min. The experiments to 
determine TPC, antioxidant properties, and anti-glycation 
properties were conducted in triplicate.

Then, 0.03 mL of a diluted supernatant and 0.06 mL 
of 10% Folin–Ciocalteu solution were placed in a 96-well 
microplate. After 3 min, 0.12 mL of 10% sodium carbon-
ate was added. The mixture stood for 60 min at ambient 
temperature and the absorbance was measured at 750 nm 
using a grating microplate reader (SH-1000 Lab; Corona 
Electric, Hitachinaka; Ibaraki, Japan). The phenolic content 
is expressed as catechin equivalents (CatEq)/g dry sample.

DPPH radical‑scavenging capacity

Sample diluted solution (0.1 mL) and ethanol (0.1 mL) were 
put into a 96-well microplate and absorbance at 517 nm 
(Abs1) was measured using the microplate reader. Next, 
1 mmol/L DPPH radical was added and incubated at 37 °C 
for 30 min and the absorbance (Abs2) was measured again. 
The DPPH radical-scavenging capacity was calculated using 
the following formula:

O
−
2

radical‑scavenging capacity

The sample solution (0.1 mL) was treated with 0.05 mL of 
250 mmol/L phosphate buffer (pH 7.2), 2 mmol/L NADH 
(0.025 mL), and 0.5 mmol/L NBT (0.025 mL), while the 
absorbance at 560 nm was measured as a blank value. After 
5 min incubation at room temperature (20–24 °C) with 
0.025 mL of 0.03 mmol/L PMS, the absorbance was meas-
ured again. The radical-scavenging capacity was calculated 
using the above formula.

Ferric‑reducing power

For each 0.05 mL of the sample solution, 0.025 mL of 
0.1 mol/L phosphate buffer (pH 7.2) and 0.025 mL of 10 g/L 

Radical scavenging capacity (%)

= (1 − (Abs2 of sample − Abs1 of sample) ∕

(Abs2 of control − Abs1 of control) × 100

potassium ferricyanide were placed in a 96-well microplate. 
After incubation at 37 °C for 60 min, 0.025 mL of 10% TCA 
and 0.1 mL of distilled water were added, and the absorb-
ance was measured at 700 nm (Abs1). Next, 0.025 mL of 
0.1%  FeCl3 was added to the mixture and the absorbance 
was measured again (Abs2). The ferrous-reducing power 
was calculated using the following formula:

Anti‑glycation property

The anti-glycation assays in the BSA-Fru and BSA-MGO 
models were determined using the method of [35] with slight 
modification [28]. BSA-Fru and BSA-MGO models evalu-
ate all stages and the middle stage, respectively, of protein 
glycation. 1.5 mol/L Fru or 60 mmol/L (0.5 mL) was mixed 
with 0.5 mL of AES and 0.5 mL of sodium phosphate buffer 
(50 mmol/L, pH 7.4, with 0.02% sodium azide) in screw-
capped test tubes and kept at 37 °C for 2 h. BSA (30 mg/
mL, 0.5 mL) was added to each test tube, and the mixtures 
were incubated at 37  °C for 5 days. Fluorescent AGEs 
were monitored on a multiple microplate reader (SH-9000; 
Corona Electric) using 340 nm as the excitation wavelength 
and 420 nm (for BSA-Fru) or 380 nm (for BSA-MGO) as 
the emission wavelength. Percentage of the AGE inhibition 
was calculated by the following equation:

F0 and F5d represent fluorescent intensity after the reac-
tion for 0 and 5 days, respectively.

Effects on nitric oxide (NO) secretion by RAW264.7 
murine macrophages

The sample suspensions were heated in boiling water for 
20 min. After cooling, the suspensions were 1/2 serial-
diluted with Dulbecco’s modified Eagle’s medium (DMEM; 
Nissui Pharmaceutical, Tokyo, Japan) containing 5% v/v 
foetal bovine serum (FBS). To determine the immune stimu-
lation and anti-inflammation properties, murine macrophage 
like RAW264.7 cells (TIB-71; American Type Culture Col-
lection, Manassas, VA) were used [36].

RAW264.7 cells were suspended in the aforementioned 
medium (6 log cells/mL) and seeded into a 96-well micro-
plate (0.1 mL/well). After incubation at 37 °C for 2 h in 
an atmosphere of 5%  CO2, the medium was replaced with 

Reducing power (OD700 nm)

= (Abs2 of sample − Abs1 of sample)

− (Abs2 of control − Abs1 of control)

Anti − glycation capacity (%)

= (1 − (F5d of sample − F0d of sample)∕

(F5d of blank − F0d of blank)) × 100
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fresh medium (0.1 mL) and the sample containing medium 
(0.1 mL) was added. After a 20 h incubation, the nitric oxide 
(NO) concentration in the cultured medium was determined 
with 10% (w/v) Griess-Romijn nitrite reagent as described 
previously (Shikano et al., 2018). To confirm the cell tox-
icity, after the incubation, the viability of the RAW264.7 
cells with and without the samples were determined with a 
commercial kit containing a reducing indicator: WST-8 (Cell 
Counting Kit-8, Dojindo Laboratories, Mashiki, Japan), 
according to the manual.

For the anti-inflammation assay, LPS solution (4 µg/mL) 
was added 2 h after the addition of the sample containing 
medium (0.01 mL/well for a final concentration of 0.19 µg/
mL). The sample was incubated for 18 h, and the NO con-
centration was measured.

Measuring the TPC, antioxidant capacity, 
anti‑glycation activity and induction capacity 
for the NO secretion of RAW264.7 cells 
of the ultrafiltered fractions of the intact 
and fermented 10% AFA‑S

Portions (20 mL) of the supernatant of the intact and fer-
mented 10% AFA-S were separated into six fractions 
(based on their molecular weights: > 300, 100–300, 30–100, 
10–30, 3–10, and < 3 kDa), using an ultrafiltration system 
VIVASPIN 20 (Sartorius AG, Gottingen, Germany) [19]. 
The TPC, antioxidant capacities, and NO secretion in the 

culture of RAW264.7 cells were measured using the meth-
ods described above.

Statistical analysis

Measured values (n = 3) are presented as mean ± stand-
ard error of the mean (SEM). One-way ANOVA was 
performed to assess differences among groups, and indi-
vidual means were compared by Tukey’s post hoc test or 
Student’s t-test, using statistical software (Excel Statistic 
Ver. 6, Esumi, Tokyo, Japan). Significant differences were 
accepted at p < 0.05.

Results and discussion

Selected LAB strains

Among the 29 Lactobacillus plantarum stocked strains, L. 
plantarum AN7 (Accession No: LC384876, Fig. 1A) iso-
lated from traditional fermented horse mackerel with rice 
made in Noto Peninsula, Ishikawa [32] showed the clear-
est pH lowering in 2.5% AFA-S, from 6.3 to 5.1. Among 
the 10 Lactococcus lactis subsp. lactis strains, L. lactis 
Kushiro-L2 (Accession No: LC333954, Fig. 1B) isolated 
from Shirarutoroko Lake, Hokkaido in the present study, 

Fig. 1  Images of Lactobacillus plantarum AN7 (A) and Lactococcus 
lactis subsp. lactis Kushiro-L2 (B) with a table top SEM (TM3030) 
and the cells in a 10% (w/v) Aphanizomenon flos-aquae suspension 
(AFA-S) observed under a phase-contrast microscope (C). D and F: 

Changes of the viable counts of the strains and pH, respectively, of 
the 10% AFA-S during 7 days fermentation at 37 °C. Values are mean 
and SEM (n = 3). F: HPLC chromatograph of 7 day fermented 10% 
AFA-S
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showed the clearest pH lowering from 6.3 to 5.6. These 
two LAB strains were selected for further experiments.

Fermentation properties

After 7 days incubation of the selected LAB strains in 
10% AFA-S, both LAB cells could be observed under a 
phase-contrast microscope (Fig. 1C). As shown in Fig. 1D, 
the inoculated L. plantarum AN7 increased immediately 
in 24 h and then decreased. Along with viable count, the 
pH value decreased in 24 h from 6.3 to 4.8, and then it 
was 5.1 at 7 days fermentation (Fig. 1E). In contrast, the 

inoculated L, lactis Kushiro-L2 increased slowly and the 
pH was lowered to 5.5.

By the HPLC analysis (Fig. 1F; Table 1), glucose and 
other some saccharides were detected in the intact 10% 
AFA-S and these were converted to mainly lactic acid, fol-
lowed by acetic acid and a small amount of ethanol. These 
organic acid generations were high with L. plantarum AN7 
rather than L. lactis Kushiro-L2. The concentration of the 
10% AFA-S fermented with both LAB strains were similar 
with ones of L. plantarum AN7 fermented 10% AFA-S.

These results indicate that L. plantarum AN7 can typi-
cal lactic acid fermentation in 10% AFA-S, though the pH 

Table 1  Glucose, lactic acid, 
acetic acid, major minerals 
and free amino acids in 
Aphanizomenon flos-aquae 
suspension fermented with 
lactic acid bacteria

*Values are mean and SEM (n = 3). Values with different superscript with p < 0.05
**The triplicate samples shown were pooled and measured. Glutamine, proline, and taurine were not 
detected in all samples

Minerals Control L. plantarum AN7 L. lactis Kushiro-L2 AN7 + Kushiro-L2

Glucose and organic acids (mg/mL)*
 Glucose 3.83 ± 0.13a 0.16 ± 0.02b 0.85 ± 0.85b 0.16± 0.01b

 Lactic acid 1.02 ± 0.02c 3.92 ± 0.42a 2.73 ± 0.03bc 3.72± 0.34ab

 Acetic acid 0.97 ± 0.05c 1.66 ± 0.07ab 1.16 ± 0.13bc 1.83± 0.20a

Minerals (μg/mL)*
 Na 250 ± 10b 280 ± 10a 280 ± 10a 280± 10a

 K 47±35b 745 ± 24a 789 ± 18a 738± 28a

 Ca 84 ± 1c 200 ± 5a 159 ± 3b 214± 7a

 Mg 39  ± 1b 30 ± lc 37 ± 1b 49 ± 1a

 Fe 28 ± 1b 31 ± 1a 33 ± 1a 31 ± 1a

 Cu 282 ± 2 264 ± 1 285 ± 6 264 ± 8
 Mn 218 ± 3 224 ± 3 226 ± 3 215 ± 5

Free amino acids (μg/mL)**
 Aspartic acid 540 549 558 558
 Threonine 70 89 97 90
 Serine 46 11 61 10
 Asparagine 49 50 61 49
 Glutamic acid 251 264 265 261
 Glycine 76 98 99 99
 Alanine 610 642 655 649
 Valine 101 151 142 154
 Cystine 103 101 97 103
 Methionine 47 52 53 52
 Isoleucine 109 136 132 138
 Leucine 402 433 437 439
 Tyrocine 80 87 93 88
 Phenylalanine 94 101 110 103
 Tryptophan Trace Trace Trace Trace
 Lysine 64 74 71 75
 Histidine 14 16 17 16
 Argine 156 185 ND 36
 γ-amnobyutyric acid 45 48 49 58
 Ornitine 54 53 162 152

Total 2909 3140 3158 3131
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value was not so low. The prebiotic effect of blue extract and 
pure phycocyanin in AFA on Lactobacillus acidophilus has 
been reported [37]. However, it is possible that glucose in 
AFA might maintain the growth of various LAB, similarly 
to this study.

Mineral composition

Soluble minerals in 10% AFA-S are also summarized 
in Table 1. Even in intact AFA-S, the concentration of K 
(0.48 mg/mL), Cu (0.28 mg/mL), and Mn (0.22 mg/mL) 
were high. Specifically, the ratio of K to Na (K/Na) was 
1.9. During the fermentation, the Na concentration was 
only 1.1 times increased. On the other hand, K and Ca were 
approximately 1.6 times increased by the fermentation and 
the K/Na ratio was increased to approximately 2.7. Ca was 
increased 2.4 and 1.9 times with L. plantarum AN7 and L. 
lactis Kushiro-L2, respectively.

The K/Na ratio is important for people who take diuret-
ics to control hypertension and who suffer from excessive 
excretion of potassium [38, 39]. Minerals, Ca, Cu, and Mn 
are also important as constituents of bones, teeth, and soft 
tissues and are vital for overall mental and physical wellbe-
ing [40–42]. From the K and Ca concentrations that might 
be liberated due to acidification with lactic acid and acetic 
acid, the fermented AFA-S rather than the non-fermented 
AFA-S is promising.

Free amino acids

AFA-S was rich in alanine (0.61 mg/mL), aspartic acid 
(0.54 mg/mL), and leucine (0.40 mg/mL), and these and 
total free amino acids tended to be high in the fermented 
AFA-S. Arginine was 0.16 and 0.18 mg/mL in intact 10% 
AFA-S and 10% AFA-S with L. plantarum AN7, respec-
tively. It was not detected in 10% AFA-S fermented with L. 
lactis Kushiro-L2. It might be converted to ornithine.

The major free amino acids: alanine, aspartic acid, leu-
cine, and glutamic acid, shown in this experiment are also 
major amino acids in various food materials. Besides taste, 
various food and medicinal functions of amino acids are 
known, e.g. liver protection, neural system improvement, 
and TCA cycle promoting compounds [43, 44]. Since 
the1980s, arginine-ornithine exchange pathways in Lacto-
coccus lactis have been known [45]. Various functions of 
both arginine and ornithine, such as improvement of gut 
function and liver protection, are also known [46, 47]. Fur-
thermore, the antioxidant properties of alanine have been 
reported [48].

Antioxidant properties of whole 10% AFA‑S

TPC in the AFA was 8 µmol CatEq/g dry samples and was 
little increased by the fermentation (Fig. 2A). It is closed 
to concentrations of the phenol group having amino acids 
phenylalanine and tyrosine content (Table 1).

In the antioxidant tests, the concentration of the intact 
sample that had 40–50% of max reaction value was used 
to determine the effect of the fermentation. DPPH radical 
scavenging capacity was increased by fermentation with L. 
lactis Kushiro-L2 but not with L. plantarum AN7 (Fig. 2B). 
The  O2

− scavenging capacity was high with L. plantarum 
AN7 compared with L. lactis Kushiro-L2 (Fig. 2C). The 
Fe-reducing power was slightly high with fermentation by 
L. lactis Kushiro-L2 (Fig. 2D). In all antioxidant assays, the 
10% AFA-S fermented with the mixed culture of AN7 and 
Kushiro-L2 showed high capacities compared with the intact 
one. In the following experiments, intact and fermented 
mixed-cultures of 10% AFA-S were used.

Antioxidant properties of the ultrafiltered fractions

Figure  3 shows the TPC and antioxidant properties of 
the ultrafiltered fractions. Most of TPC was smaller than 
3 kDa, followed by 30–100 kDa and 300 kDa < compounds 
(Fig. 3A). During the fermentation, the low molecular TPC 
was little increased and the high molecular TPC was little 
decreased.
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Before the fermentation, the DPPH radical scaveng-
ing capacity was highest in 30–100  kDa, followed by 
10–30 and 300 < kDa fractions (Fig. 3B). During the fer-
mentation, the capacity was increased significantly in 
the < 3 kDa and 30–100 kDa fractions. The capacity of 
10–30 kDa and 300 < kDa fractions disappeared with the 
fermentation.  O2

− radical scavenging compounds of intact 
AFA-S might be fractionated to < 3 kDa, 3–10 kDa and 
30–100 kDa (Fig. 3C). In the case of 100 kDa and higher 
fractions,  O2

− radical or other NBT-oxidizable substances 
might be shown. The capacity in < 3 kDa, 10–30 kDa, and 
100–300 kDa fractions were increased by the fermentation. 
The Fe-reducing power was high in the < 3 kDa and fol-
lowed by 30–100 and 300 < kDa fractions (Fig. 3D). These 
were little decreased by the fermentation.

As mentioned in the introduction, the antioxidant proper-
ties of AFA with phycocyanin have been reported [23–27]. 
However, there are no reports about the activities of AFA 
fermented with LAB, though antioxidant, anti-inflammation, 
and anti-glycation capacities of some LAB-fermented edible 
algae had been reported [28–31].

From the results shown in Fig. 2, fermented AFA can be 
used more as an antioxidative food or supplement material. 
DPPH has been used extensively as a free radical to evalu-
ate the reduction of substances in various foods includ-
ing edible algae because it is simple and affordable [28, 
31]. In previous reports about brown algae that containing 
phenolic compounds: phloroglucinols as antioxidant com-
pounds show high DPPH radical scavenging capacity and 

Fe-reducing power [28, 31, 33]. In these reports, TPC and 
the scavenging capacity were lowered by the fermentation. 
It might due to decomposition by the LAB. Therefore, the 
scavenging capacity of < 3 kDa and 30–100 kDa fractions 
shown in Fig. 3B were not correlated with the TPC. The 
isolation and identification of the active compounds in the 
fractions are needed for future studies.

In most organisms, O−
2
 radicals are converted to hydro-

gen peroxide  (H2O2) by superoxide dismutase [49]. In 
the absence of transition metal ions, hydrogen peroxide 
is stable. However, hydroxyl radicals can be formed by 
the reaction of  O2

− with  H2O2 in the presence of metal 
ions, usually ferrous or copper [50]. Hydroxyl free radi-
cals are much more reactive and toxic than  O2

−. There-
fore, the  O2

− radical-scavenging activity shown in Fig. 2C 
suggests that the fermented 10% AFA-S can scavenge not 
only  O2

−, but also  H2O2 and hydroxyl radicals. This scav-
enging capacity (%) was well and moderately correlated 
with lactic acid and acetic acid concentrations shown in 
Table 1, approximately R2 = 0.998 and 0.861, respectively. 
Furthermore, increasing the scavenging capacity in the 
< 3 kDa fraction shown in Fig. 3C may be due to mainly 
lactic acid. Lactate salts are known as antioxidative food 
additives [51]. Additionally, Groussard et al. [52] reported 
that lactate has  O2

− scavenging activity in both water and 
plasma. Further studies on NBT-oxidizable products in the 
high molecular fractions are needed.

Most non-enzymatic antioxidant activities, such as 
the scavenging of free radicals and the inhibition of 

Fig. 3  Total phenolic com-
pound content (A), DPPH 
(B) and superoxide anion (C) 
radical scavenging capacities, 
and Fe-reducing power (D) in 
fractionated solutions of intact 
(open columns) or fermented 
(closed columns) AFA-S. Val-
ues are mean and SEM (n = 3). 
*p < 0.05, **p < 0.01
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peroxidation, are mediated by redox reactions [53]. Com-
pounds with reducing power are electron donors that can 
reduce the oxidized intermediates of lipid peroxidation pro-
cesses and thereby act as primary and secondary antioxi-
dants. The reducing power shown in Figs. 2D and 3D tended 
to be similar with the TPC result (Figs. 2A, 3A) and was 
slightly increased in < 3 kDa.

Anti‑glycation properties

BSA was used in this study to determine the anti-glycation 
property. Serum albumin can be glycated at multiple sites 
[12]. In the BSA-Fru model (Fig. 4A), anti-glycation activ-
ity of the 10% AFA suspension was increased clearly with 
the fermentation. The activity in fermented AFA was dose 
dependent manner. Before fermentation, the anti-glycation 
activity was mainly fractionated to < 3 kDa, 300 < kDa, and 
30–100 kDa fractions (Fig. 4B). During the fermentation, 
the activity was increased only in 30–100 kDa fraction. 
On the other hand, it was deceased in 100 and higher kDa 
fractions. In the BSA-MGO model (Fig. 4C), the anti-gly-
cation activity was shown with dose response manner and 
effect of the fermentation on the anti-glycation activity was 
small. The activity was mainly fractionated to < 3 kDa and 
30–100 kDa (Fig. 4D).

Due to the AGE synthesis contain oxidation process, 
already there are reports about food materials have both 
antioxidant and anti-glycation activities with some phe-
nolic compounds [15, 28, 29]. The anti-glycation activity 
of AFA suspension shown in BSA-MGO was correlated with 

TPC (Fig. 3A, r2 = 0.905) and Fe-reducing power (Fig. 3D, 
r2 = 0.933). On the other hand, in the case of BSA-Fru 
model, although the correlation with any antioxidant capaci-
ties shown in Fig. 3 was not shown (r2 < 0.489), the activity 
increasing in 30–100 kDa fraction during the of the fermen-
tation was agreed with DPPH radical scavenging capacity 
(Fig. 3B).

Effects on NO secretion from murine macrophage 
RAW264.7 cells of whole 10% AFA‑S

Without LPS and intact 10% AFA-S (Fig. 5A), the NO secre-
tion in the culture media was increased with a concentration 
response at 2.0 µL/mL and less sample. The NO secretion 
at 1.0–3.9 µL/mL samples was increased by the fermenta-
tion. In the higher sample concentration, the induction was 
reverse concentration dependent. To confirm the reverse 
dependence, the cell toxicity of the high sample concentra-
tion was determined using WST-8 (Fig. 5B). Only 125 µL/
mL sample of intact 10% AFA-S lowered 27% in viability, 
though this cell toxicity was not observed in the fermented 
10% AFA-S. The LPS induced NO was decreased by 16 µL/
mL and higher samples (Fig. 5C). The inhibition activity of 
the 10% AFA-S was not affected by the fermentation.

To determine the existence of fermented products 
with an induction capacity to NO secretion, the NO with 
the ultrafiltered fractions without LPS was determined. 
The NO secretion without LPS was induced clearly by 
100 kDa and higher molecular fractions (Fig.  6). The 
induction was not high in the high sample concentration 

Fig. 4  Effect of intact AFA-S 
(open columns) or AFA-S 
fermented with L. plantarum 
AN7 and L. lactis L2 (closed 
columns) on ant-glycation 
activity shown in BSA-fructose 
(A, B) and BSA-methylglyoxal 
models (C, D). Values are mean 
and SEM (n = 3). *p < 0.05, 
**p < 0.01
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(Fig. 6C); rather than the less concentration (Fig. 6A, B). 
This induction activity of the high molecular fractions 
was decreased by the fermentation. Furthermore, the high 
molecular fractions of fermented AFA-S dependent on 
the concentration. After the fermentation, the induction 
activity in 30–100 kDa fraction was very high. It can be 
considered that immunomodulation activity induced by 
the fermentation was correlated with DPPH radical scav-
enging (Fig. 3B) and anti-glycation, in BSA-Fru model 
(Fig. 3B), activities.

The immunomodulation activity of extracted com-
pounds from AFA, such as polysaccharides, chromopro-
tein-related compounds (phycobilins and phycobilipro-
teins), and low molecular (< 5 kDa) fraction, had been 
reported [54–56]. As shown in Fig. 5, AFA might have 
immune-promoting activity in lower concentrations and 
anti-inflammatory activity in high concentrations. Further-
more, the immune-modulating activity provided as NO 
secretion without LPS was increased by the fermentation 
(Fig. 5A). These phenomena were also observed for a 
green loofah Luffa cylindrica suspension [20]. Because 
some selected LAB strains have immune-modulating 
activity [19, 57], it is thought that the increasing NO secre-
tion was the result of additives or the synergistic effect 
of AFA and LAB cells. However, as shown in Fig. 6, the 
immunomodulation activity of 100 kDa and higher molec-
ular fractions was decreased by the fermentation and it was 
increased significantly in the 30–100 kDa fraction. This 
result suggests that the active compounds in fermented 
AFA-S are different from high molecular compounds 
including cell membranes and < 3  kDa compounds, 
already reported and mentioned above. In this fraction, the 
DPPH radical scavenging capacity was increased by the 
fermentation (Fig. 3B). The isolation and identification of 
the active compounds in the 30–100 kDa fraction, includ-
ing phycobiliprotein-related compounds, are also needed.

The results of this study suggest that the fermented AFA-S 
can play antioxidant, anti-glycation and immunomodulation 

Fig. 5  Effect of intact AFA-S 
(open columns) or AFA-S 
fermented with L. plantarum 
AN7 and L. lactis L2 (closed 
columns) on NO secretion from 
murine macrophage RAW264.7 
cells without (A) or with (C) 
LPS. (B) Cell viability in the 
high concentration samples 
confirmed by WST-8. Values 
are mean and SEM (n = 3). 
*p < 0.05, **p < 0.01. Values in 
(B) with different superscript 
letters are significantly different 
at p < 0.05
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Fig. 6  NO secretion from murine macrophage RAW264.7 cells 
induced by low (A), moderate (B), and high (C) concentrations of 
molecular size fractions of non-fermented AFA solution (open col-
umns) or fermented AFA solution (closed columns). Values are mean 
and SEM (n = 3). *p < 0.05, **p < 0.01
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roles in food and supplement materials. These activities 
are higher than in the non-fermented AFA-S. Future stud-
ies regarding the isolation of metabolites generated during 
fermentation and their biological effects on cultured mac-
rophages and in vivo are needed.

Conclusion

To clarify the effect of LAB fermentation on the antioxi-
dant and immunomodulatory capacities of AFA, hot aque-
ous extract suspensions made from dry-powdered AFA (10% 
AFA-S) were fermented by L. plantarum AN7 and L. lactis 
Kushiro-L2 strains isolated from a coastal region in Japan. 
Then, the in vitro antioxidant properties and immunomodu-
lation effects on NO secretion from RAW264.7 cells of the 
non-fermented and fermented 10% AFA-S were determined. 
The DPPH and  O2

− radical scavenging capacities and Fe-
reducing power were increased in the mixed culture of AN7 
and Kushiro-L2. The DPPH radical scavenging capacity of 
the fermented AFA-S was fractionated to mainly < 3 kDa 
and 30–100 kDa. The  O2

− radical scavenging capacities of 
the fermented AFA-S were fractionated to mainly < 3 kDa. 
Anti-glycation activity in BSA-fructose model rather than 
BSA-methylglyoxal model was increased by the fermenta-
tion. The increased anti-glycation activity was fractionated 
to mainly 30–100 kDa. Without LPS, 2.0 µL/mL and less 
non-fermented 10% AFA-S increased the NO secretion in 
the murine macrophage RAW264.7 culture media with a 
concentration response. The NO secretion activity was 
increased by the fermentation. The increased immunomodu-
lation capacity in the fermented AFA-S was also fractionated 
to mainly 30–100 kDa. These results suggest that fermented 
AFA-S is a more useful material for health foods and sup-
plements. Further study on the active compounds in < 3 kDa 
and 30–100 kDa fractions are needed in the future.
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