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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in the world, and more molecular mechanisms 
should be illuminated to meet the urgent need of developing novel detection and therapeutic strategies. We analyzed the 
related microarray data to find the possible hub genes and analyzed their prognostic values using bioinformatics methods. 
The mRNA microarray datasets GSE62452, GSE15471, GSE102238, GSE16515, and GSE62165 were finally chosen and 
analyzed using GEO2R. The overlapping genes were found by Venn Diagrams, functional and pathway enrichment analyses 
were performed using the DAVID database, and the protein–protein interaction (PPI) network was constructed by STRING 
and Cytoscape. OncoLnc, which was linked to TCGA survival data, was used to investigate the prognostic values. In total, 
179 differentially expressed genes (DEGs) were found in PDAC, among which, 130 were up-regulated genes and 49 were 
down-regulated. DAVID showed that the up-regulated genes were significantly enriched in extracellular matrix and structure 
organization, collagen catabolic and metabolic process, while the down-regulated genes were mainly involved in proteolysis, 
reactive oxygen species metabolic process, homeostatic process and cellular response to starvation. From the PPI network, 
the 21 nodes with the highest degree were screened as hub genes. Based on Molecular Complex Detection (MCODE) plug-
in, the top module was formed by ALB, TGM, PLAT, PLAU, EGF, MMP7, MMP1, LAMC2, LAMA3, LAMB3, COLA1, FAP, 
CDH11, COL3A1, ITGA2, and VCAN. OncoLnc survival analysis showed that, high expression of ITGA2, MMP7, ITGB4, 
ITGA3, VCAN and PLAU may predict poor survival results in PDAC. The present study identified hub genes and pathways 
in PDAC, which may be potential targets for its diagnosis, treatment, and prognostic prediction.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal cancers in the world, being characterized as high 
aggressiveness, early metastasis, and insensitive to chemo-
therapy or radiotherapy [1], its 5-year survival is only 8% 
based upon the latest data [2], and little improvement has 
been seen over the past years [1, 3]. Hence, illumination of 
the molecular pathophysiology mechanisms and identifica-
tion of the key signaling pathways and regulators is urgently 
needed to develop novel screening, diagnostic and therapeu-
tic strategies.

Recently, the microarray technology has been exten-
sively used to detect generally genetic alteration during 
tumorigenesis and cancer progression. With this technol-
ogy, several gene expression profiling studies have shown 
hundreds of differentially expressed genes (DEGs) in PDAC 
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carcinogenesis, which involved in various pathways, bio-
logical processes, and molecular functions. Comparative 
analysis of the overlapped DEGs may be more reliable when 
compared with a single expression profile. In this study, we 
used integrated bioinformatics methods to find the over-
lapped DEGs, analyzed the functional and pathway enrich-
ment and protein–protein interaction (PPI) network to find 
the possible hub genes, and by using The Cancer Genome 
Atlas (TCGA) database to obtain the survival data and pre-
dict the prognostic values of the hub genes.

Methods

Collection of studies

We searched the GEO database (https​://www.ncbi.nlm.nih.
gov/geo/) for publics from inception to February 10, 2018, 
using the following strategy: “pancreatic cancer”, “homo 
sapiens” (Organism), “tissue” (Attribute Name), “RNA” 
(Sample Type), “expression profiling by array” (Study 
Type). Further inclusion criteria were as follows: (1) samples 
composed of both PDAC tissues and normal tissues, (2) gene 
expression profiling of mRNA, (3) sample count of each 
group are more than 10, and total count more than 30, and 
(4) sufficient information to perform the analysis. Five gene 
expression profiles (GSE62452, GSE15471, GSE102238, 
GSE16515, and GSE62165) were finally chosen.

Microarray data and data processing

GSE62452 datasets contained 69 tumor samples and 61 nor-
mal samples [4], GSE15471 consisted of 39 tumor samples 
and 39 normal samples [5], GSE102238 included 50 tumor 
samples and 50 normal samples [6], GSE16515 was com-
posed of 36 tumor samples and 16 normal samples [7], and 
GSE62165 was formed by 118 tumor samples and 13 normal 
samples [8].

GEO2R (https​://www.ncbi.nlm.nih.gov/geo/geo2r​/) 
is an R programming languages-based tool to screen for 
DEGs [9]. By entering the series accession number, defin-
ing groups, assigning groups and clicking “Top 250”, the 
webpage could compare the differences between the groups. 
After saving the results, we picked the genes whose adjusted 
P-Values (adj. P) < 0.05 and |logFC|>1. Venn map (http://
bioin​forma​tics.psb.ugent​.be/webto​ols/Venn/) was drawn to 
identify the overlapped genes.

Functional and pathway enrichment analysis

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) Version 6.8 (https​://david​.ncifc​rf.gov/) 
is a comprehensive functional annotation tools to help us 

understand biological meaning behind the genes [10]. By 
Gene Ontology (GO) enrichment analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis, 
we found the potential relevant biological function annota-
tion. P < 0.05 was considered statistically significant.

PPI network construction and module analysis

The STRING database Version 10.5 (http://strin​g-db.org/) 
aims to collect and integrate interactions between proteins, 
including direct (physical) interactions and indirect (func-
tional) interactions [11], and combined score > 0.4 was set 
as the cut-off criterion. Then we used Cytoscape Version 
3.6.0 [12] to visualize the biomolecular interaction networks 
of the DEGs. Node degree ≥ 10 was set as the criterion of 
hub genes. Molecular Complex Detection (MCODE) plug-
in was used to screen modules from the PPI network with 
degree cutoff 2, haircut on, node score cutoff 0.2, k-score 2, 
maximum depth 100, and nodes more than 8. The functional 
and pathway enrichment analysis was performed through 
DAVID in the modules.

Survival analysis of hub genes

OncoLnc (http://www.oncol​nc.org/) is a tool for interactively 
exploring survival correlations, which contains survival data 
for 21 cancer studies performed by TCGA [13]. The PDAC 
patients were divided into two groups: low (expression lower 
than the first quartile) and high (expression higher than the 
third quartile), the overall survival of the two groups was 
assessed by Kaplan–Meier plots and log rank P-Value, log 
rank P-Value < 0.05 was the cut-off criterion. Since OncoLnc 
cannot provide with the hazard ratio (HR) with 95% confi-
dence intervals (CI), we downloaded data from OncoLnc, 
and then used IBM SPSS Statistic Version 24.0.0.0 to per-
form the survival analysis and calculate the HR and 95% 
CI. At last, we also performed survival analysis of the hub 
genes using the data obtained from the GEO database of 
GSE62452 and GSE71729 to validate the results.

Results

Identification of DEGs

A total of 295, 1793, 2133, 1824, and 4063 genes were 
extracted from GSE62452, GSE15471, GSE102238, 
GSE16515, and GSE62165, respectively. Among them, 179 
DEGs overlapped (Fig. 1), and 130 were up-regulated, 49 
were down-regulated.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
http://string-db.org/
http://www.oncolnc.org/
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Functional and pathway enrichment analysis

GO biological process (BP) analysis indicated that the up-
regulated DEGs were significantly enriched in extracellular 
matrix and structure organization, collagen catabolic and 
metabolic process, while the down-regulated genes were 
mainly involved in proteolysis, reactive oxygen species met-
abolic process, homeostatic process and cellular response to 

starvation. For GO cell component (CC), the up-regulated 
DEGs were significantly enriched in extracellular region 
part and matrix, proteinaceous extracellular matrix, and the 
down-regulated genes were mainly involved in extracellular 
space and region part. Upon molecular function (MF), the 
up-regulated DEGs were significantly enriched in extracellu-
lar matrix structural constituent, collagen binding, and inte-
grin binding, while the down-regulated genes were mainly 
involved in exopeptidase activity, peptidase activity, and 
serine-type peptidase activity. Additionally, KEGG analy-
sis proved that the up-regulated DEGs were significantly 
enriched in extracellular matrix (ECM)-receptor interaction, 
focal adhesion and phosphoinositide 3-kinase (PI3K)-Akt 
signaling pathway, while the down-regulated genes were 
mainly involved in pancreatic secretion, and complement 
and coagulation cascades (Fig. 2, if the terms enriched 
in this category were more than five, top five were chose 
according to P-Value).

PPI network construction and module analysis

In total, 126 nodes and 327 edges were mapped in the PPI 
network of identified DEGs (Fig. 3a). Twenty-one genes with 
degree ≥ 10 were chosen as hub genes (Table 1). Through 
the MCODE plug-in, one significant module was selected 
with average MCODE score = 5.6, nodes = 16 and edges = 42 
(Fig. 3b). Functional enrichment analysis indicated that the 
up-regulated genes in the significant module were enriched 

Fig. 1   Identification of differentially expressed genes (DEGs) in 
GSE62452, GSE15471, GSE102238, GSE16515, and GSE62165

Fig. 2   Functional and pathway 
enrichment analysis of up-regu-
lated and down-regulated genes 
in pancreatic ductal adenocarci-
noma (PDAC) tissue
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in extracellular matrix organization, extracellular structure 
organization, extracellular matrix disassembly, and colla-
gen metabolic process, while the down-regulated genes were 
involved in platelet degranulation (Fig. 4).

Survival analysis of hub genes

OncoLnc predicted that among the selected hub genes, 
high mRNA expression of ITGA2, MMP7, ITGB4, ITGA3, 

VCAN and PLAU may be associated with poor survival 
of PDAC patients (P < 0.05). Survival analysis performed 
by SPSS was more conservative than OncoLnc, and the 
result showed that, high expression of MMP7 predicting 
poor survival may be debatable, as its P-Value is 0.053 
(Fig. 5). The survival analysis of the hub genes using 

Fig. 3   a Protein–protein interaction (PPI) network of differentially 
expressed genes in pancreatic ductal adenocarcinoma. b A significant 
module selected from PPI network. Red nodes stand for up-regulated 
genes, while green nodes stand for down-regulated genes, and the 

darker color of the nodes stands for a larger |log FC|, the larger size 
of the nodes stands for a higher degree of connectivity. The lines rep-
resent interaction relationship between the nodes, and a wider line 
stands for a larger combined-score

Table 1   Top 21 hub genes with 
higher degree of connectivity

Gene Degree of 
connectivity

Adjusted P-Value

GSE62452 GSE15471 GSE102238 GSE16515 GSE62165

ALB 39 3.52E−08 2.22E−07 4.76E−07 7.79E−05 4.76E−07
EGF 29 3.49E−06 4.57E−05 4.57E−08 7.83E−04 4.57E−08
FN1 26 2.3E−12 4.79E−18 2.64E−13 6.99E−06 2.64E−13
COL1A1 25 1.19E−07 2.69E−16 1.32E−13 5.83E−04 1.32E−13
COL3A1 24 4.2E−07 3.03E−15 4.36E−10 2.59E−03 4.36E−10
SPARC​ 17 1.41E−06 1.04E−13 9.6E−10 1.88E−03 9.60E−10
ITGA2 17 1.85E−13 4.56E−14 1.28E−14 2.08E−08 1.28E−14
COL5A2 16 2.15E−08 4.21E−16 4.34E−11 7.75E−04 4.34E−11
COL6A3 15 4.22E−07 3.33E−15 2.82E−08 2.13E−02 2.82E−08
MMP1 14 9.21E−05 2.56E−08 4.1E−06 4.63E−04 4.10E−06
POSTN 14 2.43E−12 3.45E−15 3.77E−12 7.95E−05 3.77E−12
COMP 13 1.7E−07 1.6E−14 3.48E−06 3.99E−03 3.48E−06
MMP7 13 2.63E−04 6.5E−11 1.56E−04 8.22E−04 1.56E−04
PLAT 13 2.92E−09 1.12E−11 2.6E−12 4.05E−03 2.60E−12
ITGB4 12 1.97E−14 6.66E−09 1.86E−10 5.82E−07 1.86E−10
COL11A1 12 1.25E−12 4.13E−15 1.55E−06 2.42E−06 1.55E−06
ITGA3 12 2.14E−11 7.36E−09 4.13E−13 1.25E−06 4.13E−13
THBS2 12 4.89E−10 1.26E−17 1.19E−14 4.24E−04 1.19E−14
FBN1 11 3.92E−06 3.67E−12 3.46E−08 2.91E−02 3.46E−08
VCAN 11 1.18E−09 1.15E−17 3.35E−11 7.61E−04 3.35E−11
PLAU 11 7.6E−12 2.11E−11 1.31E−11 1.92E−05 1.31E−11
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the data in GSE62452 validated that, high expression of 
ITGA2, ITGB4, and ITGA3 predicted poor survival. Date 
in GSE71729 showed that high expression of ITGB4 and 
PLAU had a poor survival (Table 2).

Discussion

PDAC, with a high mortality and short period of survival, 
is a malignancy that poses a serious threat to human health 
[1], unfortunately, the early diagnosis and efficient treat-
ment of PDAC still remains as a huge problem due to the 
lack of understanding of the molecular mechanisms which 

Fig. 4   Functional and pathway 
enrichment analysis of up-
regulated and down-regulated 
genes in the significant module

Fig. 5   Prognostic values of ITGA2, MMP7, ITGB4, ITGA3, VCAN and PLAU in pancreatic ductal adenocarcinoma patients
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drive the occurrence and development of PDAC. There-
fore, it is of vital importance to have in-depth research into 
the factors and mechanisms, which might help in PDAC 
diagnosis and therapy [14]. With the development of bio-
informatic and microarray technology, the precious and 
tremendous data of the patients could be shard, and it is 
much easier to determine the general genetic alterations 
in diseases occurrence, progression and prognosis, which 
may shed light on some hub genes or targets for clinical 
utility.

In this study, we identified 5 datasets comparing the 
differences in mRNA between tumor tissues and normal 
tissues. Eventually, a total of 179 DEGs were screened, 
including 130 up-regulated genes and 49 down-regulated 
genes. Functional and enrichment analysis revealed that the 
up-regulated DEGs were significantly enriched in extracel-
lular organization, collagen catabolic and metabolic pro-
cess, while the down-regulated genes were mainly involved 
in proteolysis, reactive oxygen species metabolic process, 
homeostatic process. Additionally, KEGG pathway analy-
sis showed that the up-regulated DEGs were significantly 
enriched in ECM-receptor interaction, focal adhesion and 
PI3K-Akt signaling pathway, while the down-regulated 
genes were mainly involved in pancreatic secretion, and 
complement and coagulation cascades.

The results are in accordance with previous studies, which 
proved that PDAC was characterized by a dense stromal 
response, and stromal element contribute to its progression 
[15, 16], and Begum et al. showed that the ECM proteins 
increased PDAC tumor initiating potential, self-renewal and 
the frequency of cancer stem cells, indicating that the pre-
sent method is effective in identifying hub genes. PI3K-Akt 
pathway is vital in various cancers [17, 18], dysregulation 
of it is common in PDAC [17], and up to 60% of PDAC 
cases had increased PI3K-Akt activity [17, 19, 20]. Liu et al. 
proved that inactivation of PI3K-Akt increased gemcitabine 
induced apoptosis in pancreatic cancer cells [21]. Hence, 
targets on this pathway might be potentially novel therapy 

for PDAC. Ebrahimi et al. summarized the agents targeting 
PI3K-Akt, only Wortmannin, LY294002, and Perifosine has 
been tested in pancreatic cancer, and the results might be 
optimistic [17].

By PPI network construction, we identified top 21 
genes with high connectivity degrees, which include ALB, 
COL11A1, COL1A1, COL3A1, COL5A2, COL6A3, FBN1, 
FN1, COMP, EGF, ITGA2, ITGA3, ITGB4, MMP1, MMP7, 
PLAT, PLAU, THBS2, POSTN, SPARC​, and VCAN, and 
among them, only ALB and EGF are down-regulated. 
Further survival analysis proved that, high expression of 
ITGA2, MMP7, ITGB4, ITGA3, VCAN and PLAU may 
predict poor survival. In validation analysis using the data 
from GSE62452 and GSE71729, high expression of ITGA3, 
ITGA2, ITGB4 and PLAU was proved to be associated with 
poor survival.

Till now, no research has showed the expression of ALB 
(albumin) in PDAC, there are only studies investigating the 
correlation between serum ALB and PDAC. Deng et al. 
developed a nomogram for predicting survival in PDAC 
patients, decrease level of ALB indicated poor survival 
[22]. Arima and Liu et al. also proved that high C-reactive 
protein (CRP)/ALB ratio also indicated poor survival [23]. 
However, the serum ALB level is influenced by the patient’s 
nutrition status, the liver function and other elements, and 
could not reflect the expression of ALB in the tissues, there-
fore, further studies are needed on this issue.

COL11A1, COL1A1, COL3A1, COL5A2, COL6A3, are 
all collagen genes. In Garcia-Pravia et al.’s research, the 
expression of COL11A1 is significantly increased in PDAC 
samples compared with normal and chronic pancreatitis 
(CP) tissues, and they further pointed out that, proCOL11A1 
may be a powerful new marker for its diagnosis [24]. Araft 
et al. proved that PDAC tissues had significantly upregulated 
COL6A3 protein levels compared with paired adjacent tis-
sues, and that presence of COL6A3 isoform and high protein 
levels appeared to correlate with tumor stage [25]. As for 
the rest of the collagen genes, no study had showed their 
relationship with PDAC for the moment, and maybe that’s 
what we can do next.

FBN1 (fibrillin 1) and FN1(fibronectin 1) are also ECMs, 
the study investigating FBN1 and PDAC is rare, only one 
pointed out that in the process of pancreatic islets progressed 
to angiogenic to insulinoma, FN1 and FBN1 were found in 
significantly higher abundance [26]. Hu et al. verified 25 
protein biomarker candidates for PDAC prognosis, and they 
brought up that upregulated FN1 may predict poor survival 
[27]. Our survival analysis did not prove this, and the reason 
might lie in how we divided the group in our study. In their 
study, fold change ≥ 2 was regarded as upregulated, while 
in our study, expression higher than the third quartile was 
taken as highly expressed, and this may be the reason why 
the result does not accord.

Table 2   Validation of prognostic values of ITGA2, MMP7, ITGB4, 
ITGA3, VCAN and PLAU in PDAC patients

PDAC pancreatic ductal adenocarcinoma, HR hazard ratio, CI confi-
dence interval

Gene GSE62452 GSE71729

HR (95% CI) P-Value HR (95% CI) P-Value

ITGA3 1.60 (1.21–2.12) < 0.001 1.21 (0.97–1.52) 0.091
ITGB4 1.63 (1.14–2.33) 0.007 1.34 (1.05–1.70) 0.017
ITGA2 1.29 (1.01–1.67) 0.045 1.22 (0.95–1.58) 0.123
PLAU 1.51 (0.99–2.31) 0.058 1.18 (1.00-1.39) 0.049
MMP7 1.12 (0.89–1.39) 0.329 0.97 (0.86–1.08) 0.560
VCAN 1.10 (0.78–1.54) 0.579 1.05 (0.87–1.27) 0.624
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COMP (cartilage oligomeric matrix protein) is a member 
of the thrombospondin family of ECM, and it was proved 
that, COMP was preferentially expressed in degenerating 
acinar cells in CP-like areas in pancreatic cancers and CP, 
indicating that this molecule is important in the course of 
acinar cell deterioration and dedifferentiation [28]. From 
their results, COMP could be a marker for PDAC with CP-
like areas, but may not be of assistance in differentiating CP 
and PDAC.

The epidermal growth factor receptor (EGFR) signaling 
pathway is tightly related to tumorigenesis and progression 
[29]. Early studies [30–32] supported that overexpression 
of EGF (epidermal growth factor) and EGFR has been seen 
in pancreatic cancer samples compared with normal ones, 
in this point, our study is contrary to it. However, in another 
microarray analysis study, which used GSE16515 alone [33], 
the result was in accordance with ours, supporting that EGF 
was downregulated. This is really confusing, and the diver-
gence may lie in that what we known about EGFR family 
is just the tip of the iceberg, and multiple members may 
participated in the aberrant autocrine and paracrine activa-
tion of this pathway [34]. On the other hand, Uegaki et al. 
thought that, the expression of EGF or EGFR alone does 
not reflect the prognosis of patients, their coexpression mat-
tered [35], therefore new drugs blocking EGFR pathway still 
needs more exploration before advanced treatment shows up.

ITGA2, ITGA3, ITGB4 are all integrin subunits, which 
have important function in epithelial-mesenchymal transi-
tion (EMT). Nones et al. [36] proved that, in patients with 
PDAC, hypomethylation of ITGA2 correlated with high 
gene expression, which was related with poor survival, the 
result is the same as ours. There is also study showing that, 
ITGA3 was overexpressed in PDAC, and overexpression of 
ITGA3 correlated to poor survival [37], also the same as 
ours. Yamazaki and Masugi et al. firstly used microarray 
analysis, and identified ITG4 was upregulated in high-EMT 
xenografts derived from PDAC patients [38], additionally, 
they elucidated that, overexpression of ITGB4 promoted cell 
motility, and may be potential in regulating invasion and 
EMT [39]. Our study further believed that, high expression 
of ITGB4 was a risk factor for poor survival, and the results 
were validated both in GSE62452 and GSE71729, though 
no trial has been reported on this issue.

MMP1 and MMP7 are all metalloproteinases (MMPs), 
which have long been implicated for roles in cancer initia-
tion and invasion [40]. Pancreatic cancer cells could induce 
alterations in MMPs in pancreatic stem cells (PSCs), includ-
ing upregulation expression and activation of MMP1, and 
enhanced migration [41]. Fukuda et al. established that Stat3 
signaling enforces MMP7 expression in pancreatic cancer 
cells, while MMP7 deletion restricts tumor size and metas-
tasis in mice, and increased expression of MMP7 predicted 
shortened survival [42], our survival analysis of MMP7 is 

also in support of this. Even though data from GSE62452 
and GSE71729 was not in support of this result, it may be 
due to that the sample size is not large enough in the two 
dataset, and more studies with larger sample-size are still 
needed to validate.

Plasminogen activator, tissue type (PLAT) and plasmi-
nogen activator, urokinase (PLAU) are both plasminogen 
activators. Bournet et al. used endoscopic ultrasound-guided 
fine needle aspiration biopsy samples to compare the differ-
ent gene expression between advanced PDAC and pseudo-
tumoural CP, and they demonstrated PLAT and PLAU were 
significantly overexpressed in cancer samples [43]. Besides, 
PLAU is highly expressed in more invasive pancreatic cells, 
and a combination of CDH3, LENG, and PLAU panels were 
significantly associated with poor survival [44]. In our study, 
high expression of PLAU also predicted poor survival, and 
data from GSE71729 further validated this result.

The basic research about THBS2 (thrombospondin-2) and 
PDAC is scarce, Kim et al. revealed that, the concentra-
tions of plasma THBS2 discriminated among all stages of 
PDAC, and a new measurement combing both THBS2 and 
CA19-9 helped to increase the specificity to 98% in diagnos-
ing PDAC [45], suggesting a combined blood marker panel 
may improve the detection of PDAC. POSTON (periostin) is 
a secretory protein function in cell adhesion, and was proved 
to drive the carcinogenic process, and furthermore, increase 
the chemoresistance to gemcitabine in pancreatic cancer 
cells [46]. Yu et al. elucidated that SPARC​ (secreted pro-
tein acidic and rich in cysteine) expressed differentially not 
only between PDAC samples and normal samples, but also 
showed difference in metastatic and normal lymph nodes, 
moreover, patients with positive POSTON expression had 
poor overall survival [47]. VCAN (versican) is a kind of pro-
teoglycan, and was proved to be greatly increased in PDAC 
matrix, and disproportional increase of VCAN compared to 
another contradictory proteoglycan namely decorin may be 
associated with the aggressiveness of PDAC [48]. Survival 
analysis in our study pointed out high expression of VCAN 
was a risk factor for poor survival, but we failed to validate 
it with the data from GSE62452 and GSE71729, and no 
study has investigated the value of VCAN expression in the 
survival of PDAC for the moment, so this result still needs 
verification.

Conclusion

This study identified 179 DEGs, which include ALB, 
COL11A1, COL1A1, COL3A1, COL5A2, COL6A3, FBN1, 
FN1, COMP, EGF, ITGA2, ITGA3, ITGB4, MMP1, MMP7, 
PLAT, PLAU, THBS2, POSTN, SPARC​, and VCAN. In addi-
tion, high expression of ITGA2, ITGA3, ITGB4, MMP7, 
PLAU, and VCAN may be predictors of poor survival. 
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High-throughput technology, such as microarray analysis, 
and integrated bioinformatic analysis assist in the identifica-
tion of hub genes in tumorigenesis and progression, and the 
results coordinate with previous studies well. The significant 
genes and pathways may open up brand-new possibilities for 
early detection and treatment of PDAC; however, further 
researches are still required for untangling the mechanism 
of PDAC occurrence and development.
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