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Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most 
human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase 
activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)
P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. 
Although PTEN tumor suppressor function via it’s lipid phosphatase activity occurs primarily in the plasma membrane, 
it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase 
independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor 
suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA 
repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation 
outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exog-
enous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
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Introduction

PTEN was first identified in 1997 as a tumor suppressor gene 
on human chromosome 10q23. High susceptibility of PTEN 
gene to mutation and loss of its normal function is frequently 
found in a variety of cancers [1, 2]. PTEN is a dual-specificity 
phosphatase that has both protein phosphatase and lipid phos-
phatase activity [3, 4]. On the one hand, PTEN as a tumor 
suppressor is capable of dephosphorylation of the lipid second 
messenger PIP3 (phosphatidylinositol(3,4,5)-trisphosphate) 

and creates PIP2 (phosphatidylinositol(4,5)bi-phosphate). 
PTEN inhibits the PI3K/AKT signaling pathway by Hydrolyz-
ing PIP3 to PIP2 and prevents PIP3 membrane recruitment and 
stimulation of AKT [5]. Therefore, loss of PTEN phosphatase 
activity leads to activating cell survival, growth, and prolif-
eration [6, 7]. On the other hand, PTEN protein phosphatase 
activity is demonstrated and can dephosphorylate phospho-
peptides at tyrosine, serine, and threonine sites [8]. PTEN 
prevents cellular migration and controls cell adhesion by 
protein phosphatase activity and interacts with FAK and Shc 
(Src-homologous collagen) [9, 10]. Secretion of hepatitis C 
virus particles in the liver is regulated by protein phosphatase 
activity of PTEN, most likely through regulation of cholesterol 
metabolism [11]. Additionally, the lipid phosphatase activity 
of PTEN is promoted by its auto-dephosphorylation at ser-
ine and/or threonine residues through its protein phosphatase 
activity [12, 13]. Despite cytosol, PTEN can also be found in 
specific cellular compartments and is involved in PI3K/AKT-
independent activities [14]. Nuclear PTEN plays an impor-
tant role in chromosome stability, DNA repair and apoptosis 
by phosphatase-independent tumor suppressive functions [4, 
15]. In addition, recent evidence suggests that PTEN is able 
to exit from cell to intercellular space [16, 17]. Expression 
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level, stability and enzymatic activity of PTEN are important 
and are regulated by transcriptional, post-translational and pro-
tein–protein interactions [18] .

PTEN structure

PTEN has nine exons and 1209 nucleotides that encode for 
a 403-amino acid protein [19]. PTEN protein structure con-
sists of two main functional domains: a phosphatase domain, 
a C2 domain and three structural domains: an N-terminal PBD 
(phosphatidylinositol-4,5-bisphosphate-binding domain), a C 
terminal tail (C-tail), and a PDZ-B [20]. N-terminal PIP2-
binding domain plays a role in both cellular localization and 
catalytic activity of PTEN [21, 22]. The amino acid sequence 
of PTEN contains the active site sequence motif HCxxGxxR 
which is a landmark of protein tyrosine and phosphatase 
(PTPase) superfamily [2]. Amino acids 1–185 form the N-ter-
minal phosphatase domain that is shown with the catalytic 
core [23]. The N-terminal region of PTEN is homologous to 
auxilin and tensin. Auxilin is well known for its roles in the 
uncoating of clathrin-coated vesicles. Tensin as a focal adhe-
sion protein binds to actin filaments through its actin-binding 
domains [24, 25]. Amino acids 186–403 form the C-terminal 
domain contains C2 domain (amino acids 186–351) and the 
C-terminal tail. PTEN C2 domain has the ability to bind to 
membrane phospholipid. C2 domain found in many protein 
structures is involved in membrane localization and binding 
to phospholipid bilayer [23]. The PTEN C2 domain binds to 
phospholipid without the canonical loops which is necessary 
for binding Ca2+. This procedure, unlike other signaling pro-
teins that possess C2 domain, binds to the membrane in Ca2+ 
independent manner [20]. C-terminal tail contains the PDZ 
domain which has an essential role in protein–protein interac-
tion [26] (Fig. 1).

The PI3K/PTEN/AKT pathway

PI3K phosphorylates phosphatidylinositol (4,5)-bisphosphate 
to phosphatidylinositol (3,4,5)-trisphosphate in response 
to growth factor stimulation by binding to tyrosine kinase 
receptors and Ras at the plasma membrane [27]. Some of the 
proteins with pleckstrin homology domain, such as AKT are 
activated in reaction to second messenger PIP3. AKT activa-
tion stimulates survival, growth, and proliferation [28, 29]. 
PI3K/AKT pathway is negatively regulated by PTEN as a 
tumor suppressor through dephosphorylation of PIP3. PTEN 

antagonizes PI3K/AKT signaling pathway and its function loss 
leads to increasing PI3K/AKT pathway activity. As a conse-
quence, PTEN alterations can induce tumorigenesis and other 
disease [30] .Vivanco et al demonstrated that in addition to 
AKT, the JNK (Jun-N-terminal kinase) also could be stimu-
lated in response to growth factors as a PI3K effector. AKT 
and JNK are complementary signals with the parallel function 
in PIP3-driven tumorigenesis. JNK is a PTEN-regulated path-
way and its activity is increased in PTEN null cells compared 
to PTEN positive cells in an AKT-independent manner. Thus, 
clinically JNK inhibitors accompanied by AKT inhibitors may 
provide more potent therapeutic effects on PTEN null cancer 
cells [31].

PTEN as a PI(3,4)P2 phosphatase

The main function of PTEN has been associated with its 
tumor suppressor ability through dephosphorylation of phos-
phatidylinositol (3,4,5)-trisphosphate (PIP3) and inhibition 
of AKT activity. However, recent studies demonstrated 
that PTEN can also dephosphorylate phosphatidylinositol 
(3,4)-bisphosphate (PIP2) during stimulation of class I PI3K 
signaling pathway by growth factor [32]. Loss of PTEN like 
INPP4B alone has no noticeable effect on PI(3,4)P2 accu-
mulation. But, PTEN loss together with INPP4B loss has 
significant effects on PI(3,4)P2 accumulation upon epider-
mal growth factor (EGF) stimulation that leads to hyperac-
tivation of AKT. In contrary with the previous study which 
showed that an increase in PI(3,4)P2 level leads to a reduc-
tion in phosphorylation of AKT. Therefore, in addition to the 
putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is 
a PI(3,4)P2 3-phosphatase, suggesting that PTEN together 
with INPP4B regulates PI(3,4)P2 levels within EGF stimu-
lation, and they compensate each other [33]. Likely, PTEN 
has a wide effect on the biology of cells by controlling of 
PI(3,4)P2 levels. PI(3,4)P2 and PI(3,4,5)P3 bind AKT with a 
similar affinity. Distortion in class I PI3K signaling pathway 
will occur as a result of accumulations of a large amount of 
PI(3,4)P2 through a quantitative effect on common PI(3,4)
P2 and PI(3,4,5)P3 effectors activation such as AKT [34]. 
Previous studies have shown that PI(3,4)P2 also has a main 
role in many endocytic processes, membrane ruffling and 
invadopodia formation through activation of specific PI(3,4)
P2 effectors [34, 35]. Effects of PI(3,4)P2 accumulations are 
context dependent [32], however, in the PTEN-dependent 
tumor, possible involvements and effects of PI(3,4)P2-spe-
cific processes demand more investigation.

Genetic alteration, transcriptional 
and posttranscriptional regulation of PTEN

Various genetic alterations and molecular mechanisms can 
imply the loss of PTEN function partially or completely in Fig. 1   Structure of PTEN
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many types of cancer [36–38]. PTEN can be lost or inacti-
vated by complete Allelic losses, point mutations or trun-
cation mutations. Epigenetic alteration also causes PTEN 
silencing through hypermethylation or mutation of PTEN 
promoter region [18, 23]. Numerous genes can positively 
or negatively control PTEN gene expression in a variety of 
cell types. Positive regulators contain early growth response 
protein 1 (EGR-1) [39], peroxisome proliferator activated 
receptor γ (PPARγ) [40], P53 [41], ATF2 [42] and Myc [43]. 
NFκB [44], c-Jun [45], HES-1 [43], and TGFβ signaling 
[46] negatively regulate PTEN transcription. EGR-1, an ini-
tial member of the transcription factors has been shown to 
affect PTEN gene expression, upregulates PTEN transcrip-
tion at the beginning of the apoptotic pathway by binding 
to PTEN promoter in reaction to Insulin-like growth fac-
tor-2 (IGF-2) stimulation or radiation [39, 47]. Insulin-like 
growth factor-1 (IGF-1) affects PTEN mRNA upregulation 
through EGR1 phosphorylation by binding to IGF-1R and 
activation of AKT. This leads to activation and migration of 
EGR1 to the nucleolus. EGR1 sumoylation occurs through 
an ARF-dependent mechanism in the nucleolus. It is proved 
that the deletion of EGR1 or ARF in tumor cells leads to the 
reduction of PTEN [48]. A previous study demonstrated that 
IGF-1 could suppress PTEN’s phosphorylation, resulting in 
the upregulation of cell proliferation and invasiveness [49]. 
p53 regulates PTEN gene transcription by binding to PTEN 
and form a regulatory complex between PTEN and p53 [41, 
50]. PTEN gene expression can also be upregulated by acti-
vation of PPARγ which works as an anti-inflammatory and 
anti-tumor transcription factor through binding to two sites 
of PTEN promoter, PPAR response element 1 (PPRE1) and 
PPAR response element 2 (PPRE2) [40]. Resistin, a cytokine 
involved in inflammatory and insulin resistance, activates 
p38 MAPK pathway in aortic vascular endothelial cells. p38 
activation results in phosphorylation and activation of ATF2, 
then ATF2 binds to PTEN promoter and increases PTEN 
expression [42]. MKK4 can repress PTEN transcription by 

activation of NF-kB, a transcriptional suppressor of PTEN 
[44]. The proto-oncogene c-JUN, one of the AP-1 family of 
the transcription factors, promotes resistance to apoptosis 
and progresses cancer via binding to a variant AP-1 site 
found in the 5′ upstream sequences of PTEN promoter and 
suppress PTEN transcription [45]. Despite PTEN mutation 
occurring rarely in pancreatic cancers, TGF-β could sup-
press PTEN expression [46]. Ecotropic virus integration site 
1 (EVI-1) has an important role in hematopoietic stem cells 
proliferation from bone marrow cells. EVI-1 can also sup-
press PTEN transcription via binding directly to the PTEN 
promoter. Overexpression of EVI-1 has been reported, espe-
cially in acute myeloid leukemia [51]. NOTCH1 regulatory 
function on PTEN transcription depends on the cellular 
context and tissue specificity could be both negative and 
positive. Active NOTCH1 might increase PTEN expression 
through interacting with MYC [43] and CBF-1 transcription 
factor [52, 53] and decrease in PTEN expression through 
mechanisms involving the HES-1 transcription factor [43]. 
However, these results propose that transcriptional regula-
tion of PTEN has a complex network of agents as tumor sup-
pressors or oncogenes with a feedback loop that could affect 
PTEN protein levels concomitant with alteration of Akt acti-
vation [18]. miRNAs are small noncoding single-stranded 
RNAs (20–25 nucleotide) that modulate gene expression. 
miRNAs could post-transcriptionally repress gene expres-
sion through base-pairing with target mRNAs [54–56]. It 
has been demonstrated that miRNAs could affect PTEN 
expression through PTEN mRNA silencing and protein level 
reduction in multiple human cancers [57, 58] (Fig. 2). A 
large number of miRNAs involved in PTEN expression have 
been discovered, but Researches are continuing to find the 
new miRNAs. Some of these newly discovered miRNA still 
have unclear functions. Direct miRNAs targeting might be 
a major step toward cancer treatment.

Various post-translational modifications consist of 
phosphorylation [26], oxidation [59], acetylation [60], 

Fig. 2   The conformational regulation of PTEN. Phosphorylation 
of the C-tail domain of PTEN promotes an interaction between this 
acidic tail and the C2 domain, and this conformation (‘closed’ con-
formation) masks the membrane binding of PTEN. In the ‘open’ 

conformation, the basic N terminus binds to the acidic surface of the 
membrane and the PDZ—binding domain interacts with the PDZ 
domain—containing proteins in the membrane
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ubiquitination [61] and SUMOylation [62] can regulate 
PTEN activity and function (Fig. 3).

Phosphorylation of PTEN

Phosphorylation of C2 domain and C-terminal tail of PTEN 
regulate PTEN activity and modulate its function. Phos-
phorylation of PTEN mainly at Thr366, Ser370 and a clus-
ter containing Ser380, Thr382, Thr383 and Ser385 in the 
C-terminal tail can lead to C-terminal tail interacting with 
the N-terminal C2 and phosphatase domains [26, 63]. Dur-
ing phosphorylation, the conformational change of PTEN 
to “closed” state, is associated with deactivity of PTEN and 
increased protein stability, (Fig. 4). Mutation of these phos-
phorylation sites to the nonphosphorylatable alanine leads 
to the conformational change of PTEN to “open” state and 
consequently, increase in membrane affinity, catalytic activ-
ity, more instability and rapid degradation of PTEN [26]. It 
was suggested that the lipid phosphatase function of PTEN 
can be controlled by its auto-inhibitory mechanism through 
phosphorylation of the C-terminal tail. In fact, normal bio-
logical activities of PTEN have a balance between phos-
phorylation and dephosphorylation of PTEN [64]. Previous 
evidence shows that PTEN can be phosphorylated by sev-
eral kinases. Casein kinase 2 (CK2) plays a main role in the 
phosphorylation of PTEN [65] at Ser370, Ser380, Thr382, 
Thr383, and Ser385 [63]. Glycogen synthase kinase-3β 

(GSK3β) can phosphorylate PTEN at Ser362 and Thr366. 
Phosphorylation of PTEN by GSK3β, as part of the negative 
feedback loop of the PI3K signaling pathway, can control 
PTEN and PI3K activity [63, 66, 67]. Interestingly, phospho-
rylation at Ser370 by CK2 leads to enhanced phosphoryla-
tion of Thr366 by GSK3, which suggests phosphorylation at 
specific sites can be prime phosphorylation at distant sites 
[64, 65]. Ataxia telangiectasia mutated (ATM) can phos-
phorylate SUMOylated PTEN at T398 in genotoxic stress 
[68]. PTEN can be inactivated through phosphorylation on 
Ser385 by Liver kinase B1 (LKB1) [69]. PTEN can also 
be translocated to the membrane by the RhoA-associated 
kinase (ROCK) through phosphorylation at Thr223, Ser229, 
Thr319 and Thr321 in the C2 domain in chemoattractant 
stimulated leukocytes by unknown mechanisms [70]. Unex-
pectedly, PTEN is inactivated by p110, catalytic subunit of 
PI3K kinase, via a pathway involving RhoA and ROCK 
which decrease the activity of PTEN and increase tyrosine 
phosphorylation of PTEN [71] A Src family tyrosine kinase, 
FRK (Fyn-related kinase also known as RAK), targets PTEN 
on Tyr336 and promotes the phosphorylation and stability 
of PTEN through preventing PTEN from binding to the E3 
ubiquitin ligase NEDD4-1 (neural precursor cell expressed 
developmentally downregulated protein 41) and protecting 
PTEN from polyubiquitination and proteasomal degrada-
tion [61, 71, 72]. The site of phosphorylation and identity 
of the kinase, play an important role in PTEN activity and 

Fig. 3   Post-translational modifications of PTEN. PTEN is subject to 
several post-translational modifications including phosphorylation, 
oxidation, acetylation, ubiquitination and SUMOylation. Phosphoryl-
ation of multiple sites on the C-terminal region of PTEN affects pro-
tein stability, phosphatase activity and protein–protein interactions. 
Oxidation of PTEN at Cys124 leads to the formation of a disulfide 

bond with Cys71 resulting in decreased PTEN activity. PTEN is also 
acetylated at Lys125 and Lys128 by PCAF and at Lys402 by CBP. 
Ubiquitination of PTEN at Lys13 and Lys 289 by NEDD4-1, XIAP, 
and WWP2 regulates PTEN stability and cellular localization. PTEN 
SUMOylation at K254 and K266 is critical for PTEN tumor suppres-
sive functions
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stability. Therefore, phosphorylation of PTEN’s C2 domain 
increases PTEN’s membrane affinity and decreases PTEN 
degradation, whereas phosphorylation of the C-tail domain 
changes PTEN’s conformation and increases PTEN stabil-
ity but reduces its activity and PTEN’s membrane targeting. 
GLTSCR2 (glioma tumor suppressor candidate region 2 also 
known as PICT-1), is capable of enhancing PTEN stability 
through phosphorylation of PTEN at Ser380 in C-terminal 
[73]. Previous studies demonstrated that down regulated 
GLTSCR2 by RNA interference increases PTEN degrada-
tion by the proteasome and reduced PTEN phosphorylation 
and stability in MCF7 cells [60, 74].

Oxidation and acetylation of PTEN

PTEN by having a high reactive catalytic site cysteine 
has catalytic activity as a protein tyrosine phosphatase 
which is sensitive to oxidation [75, 76]. Reactive oxygen 
species (ROS) can reversibly oxidize cysteine124 and 
decrease PTEN phosphatase activity by creating a link 
between Cys124 and Cys71 through the disulfide bond 
[59, 77]. Reversible cysteine oxidation by hydrogen perox-
ide (H2O2) can inactivate PTEN. Thioredoxin reduces the 
H2O2-oxidized cysteine residues and inactivation of PTEN 
that occurs following oxidation [78]. Also, direct interaction 
between PTEN and peroxiredoxin I (PRDX1) prevents to 
forming the disulfide bond. Indeed, PRDX1 protects PTEN 
from oxidation by forming PTEN–PRDX1 complex results 
in preventing to PTEN inactivation [79]. Thioredoxin-inter-
acting protein (TXNIP) is an endogenous inhibitor of thiore-
doxin that modulates thioredoxin activity and subsequently 
reactivates oxidized PTEN and antagonize the PI3K/AKT 
signaling pathway [80]. PTEN inactivation by oxidative 

stress can indirectly occur through regulation of PTEN 
interaction proteins. Parkinson protein 7 (PARK7, DJ-1) 
binds PTEN under oxidative stress conditions resulting in 
inhibiting its activity and an increase in AKT activation 
[81]. Therefore, the increased levels of intracellular ROS in 
various tumor cells can cause oxidation-driven inactivation 
of PTEN resulting in activation of the PI3K/AKT signal-
ing pathway. Treatment with ROS scavengers can enhance 
PTEN activity in T cell acute lymphoblastic leukemia cells.

Previous researches showed that acetylation can regu-
late the catalytic activity of PTEN. Acetylation of PTEN 
at Lys125 and 128 in the catalytic cleft in response to 
growth factors occurs through interaction between the his-
tone acetyltransferase PCAF (p300/CREB-binding protein 
(CBP)-associated factor also called KAT2B) and PTEN 
which reduces PTEN catalytic activity and enhances AKT 
phosphorylation [60]. Acetylation of the PDZ binding 
domain of PTEN at Lys402 by CREB-binding protein can 
also regulate PTEN activity through increased communica-
tion and binding PDZ domain related proteins to PTEN [82, 
83]. Reversely, PTEN can be deacetylated by the histone 
deacetylase sirtuin SIRT1 [84, 85].

Ubiquitylation of PTEN

PTEN downregulation through the ubiquitin/proteasome 
pathway is another mechanism that can also affect PTEN 
protein levels. Ubiquitylation of PTEN at Lys13 and 289 
sites by NEDD4-1, which is the first identified E3 ubiquitin 
ligase involved in PTEN ubiquitylation, can help in deg-
radation of PTEN, nuclear-cytoplasmic shuttling of PTEN 
and inhibition of phosphatase activity. Polyubiquitylation 
of PTEN by NEDD4-1 results in degradation and missing 

Fig. 4   Transcriptional regulation of PTEN. Transcription factors that 
positively regulate PTEN gene expression (blue ovals) include EGR-
1, PPARγ, MYC, p53 and ATF2. Transcription factors that nega-
tively regulate PTEN messenger RNA (mRNA) levels (purple ovals) 
include NFκB, c-JUN, HES-1, CBF-1, TGFB and EVI-1. NOTCH1 
may be able to activate or repress PTEN transcription depending on 
the cellular context. CBF-1 serves as a switch for PTEN regulation 

by Notch. In the presence of Notch, CBF-1 becomes an activator of 
PTEN transcription. On the other hand, NOTCH1 activation has also 
been demonstrated to repress PTEN transcription through the HES-1 
transcription factor. miRNAs could be affected PTEN expression 
trough PTEN mRNA silencing and protein levels reduction and miR-
21 was identified as the first microRNA to regulate the expression of 
PTEN. (Color figure online)
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its tumor-suppressor activity, however, monoubiquitylation 
of PTEN causes nuclear import, genomic stability and cell 
cycle arrest [61, 86]. A previous study showed that despite 
the loss of NEDD4-1 in NEDD4-1 knockout cells, PTEN 
protein levels and localization do not change, suggesting that 
other E3 ligases may contribute to PTEN ubiquitylation [87, 
88]. Other E3 ligases, WWP2 (WW domain containing pro-
tein 2) [89], X-linked inhibitor of apoptosis (XIAP) [90], 
CHIP (Carboxyl terminus of Hsc70 interacting protein) [91], 
SPOP [92] have been identified which mediate ubiquitina-
tion and degradation of PTEN. E3 ligase RFP (Ret finger 
protein also called TRIM27) can also ubiquitylate PTEN at 
various lysine sites and inhibit its phosphatase activity with 
no change in PTEN location and stability [93, 94]. Lys 13 
and 289 have been identified as monoubiquitylation sites 
of PTEN that are important for cytoplasmicnuclear shut-
tling [86, 95]. Studies have shown that context-dependent 
regulation of PTEN by various E3 ligases to achieve specific 
functions is possible [87]. A recent study identified Lys 66 
as a new site of PTEN ubiquitylation. This site has a major 
role in the stability and polyubiquitylation of PTEN in com-
parison with other previously recognized sites (Lys 13 and 
289) in many cell types. Mutation of Lys 66 leads to sig-
nificant enhanced PTEN stability while combined mutation 
of Lys 13 and 289 affect slightly [96]. Regulation of PTEN 
protein stability has been widely studied, but detailed infor-
mation about the mechanism of controlling is in infancy. As 
discussed above, although it is clear that the phosphoryla-
tion state of PTEN and PTEN-interacting proteins plays a 
critical role in PTEN protein stability [26, 97] but ubiquitin-
mediated proteasomal degradation of PTEN has a dominant 
role. PTEN contains two PEST sequences, a landmark of 
short half-life proteins degraded through ubiquitination [98]. 
Disorders in controlling PTEN protein stability may lead to 
decreasing PTEN protein levels. Inhibition of proteasomes 
function as a therapeutic way can improve protein level and 
stability in many cell types. HAUSP (herpesvirus associ-
ated ubiquitin specific protease also known as USP7) as a 
deubiquitylase can reverse monoubiquitylation of PTEN and 
prevent the nucleus transportation of PTEN [99, 100]. In 
Acute promyelocytic leukemia (APL) and prostate cancer, 
inhibition of HAUSP by promyelocytic leukemia results 
in the absence of nuclear PTEN and promotes aggressive 
tumors [100]. Other ubiquitin proteases, such as OTUD3 
[101] and USP13 [102] have been identified to be able to 
deubiquitinate PTEN.

Sumoylation of PTEN

SUMOs (Small ubiquitin like modifiers), or SUMOyla-
tion, are able to regulate PTEN activity through covalent 
attachment of related proteins to C2 domain of PTEN at 
Lys254 and 266 sites. Covalent modification of PTEN at 

Ly266 leads to an increase in membrane affinity. Conse-
quently, PTEN binds to PIP3 resulting in downregulation 
PI3K/AKT pathway and suppressing cell proliferation and 
tumor progression [62]. SUMOlyation at Lys254 regulates 
the nuclear localization of PTEN and contributes to DNA 
repairing mechanism. Therefore, the existence of PTEN in 
the nucleus is important to decrease sensitivity to DNA dam-
age in cells [68].

PTEN regulation by protein–protein interactions

PTEN from gene to protein at all levels, including tran-
scriptional, translational and post-translational is regu-
lated. PTEN activity also regulated through interaction 
with other proteins [18]. Some researchers have shown that 
PTEN protein levels and activities can be regulated by sev-
eral PTEN-interacting proteins through binding to PTEN. 
These interactions can affect the tumor suppressor func-
tions of PTEN through alteration in conformation, location 
and stability of PTEN. MC1R is one of the PTEN-inter-
acting proteins, which increases PTEN stability through 
binding to PTEN and preventing PTEN ubiquitylation and 
degradation by the E3 ligase WWP2 in melanocytes [103]. 
In the same way, PTEN ubiquitylation by NEDD4-1 can 
be inhibited by FRK, a tyrosine kinase that phosphoryl-
ates PTEN, probably through preventing the binding of 
NEDD4-1 to PTEN [72]. Deletion of NEDD4-1 and FRK 
has been revealed in various cancers [104–106]. PTEN-
interacting proteins can also influence PTEN function and 
activity through the regulation of PTEN localization. Scaf-
folding proteins such as β-arrestins and membrane asso-
ciated guanylate kinase inverted 2 (MAGI2), which are 
stimulated by ROCK, increase PTEN membrane localiza-
tion resulting in activating PTEN phosphatase activity by 
binding to it [98, 104, 107]. Adaptor protein NHERF (Na+/
H+ exchanger regulatory factor also called SLC9A3R1) 
recruits PTEN to platelet-PDGFR through interaction 
between PTEN PDZ-domain and NHERF at the membrane 
and forming a ternary complex with the PDGFR. Stimula-
tion of PDGFR as a part of a ternary complex including 
NHERF, PDGFR and PTEN can limit activation of the 
PI3K–AKT pathway [108]. Interestingly, NHERF1 inter-
acts with PHLPP1 (PH domain leucine-rich repeat protein 
phosphatase 1) and reduces AKT activity by a phosphatase 
function in a PTEN independent manner [109]. The motor 
protein myosin V binds to PTEN directly and regulates its 
movement to the membrane resulting in enhancing PTEN 
activity by converting PIP3 to PIP2 [110]. The interaction 
between mammalian DLG1 (disks large homologue 1) and 
PTEN exhibited increased PTEN tumor suppressor func-
tion and axonal stimulation of myelination in Schwann 
cells. DLG1–PTEN interactions probably inhibit PTEN 
degradation and enhance its stability [111]. PI3K/AKT 
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pathway can be downregulated through p85, the regulatory 
subunit of PI3K associated with PTEN. The interaction 
between p85 and PTEN is stimulated by EGF resulting 
in activation of PTEN lipid phosphatase function [112, 
113]. Previous studies reported that mutation in p85 gene 
reveals disruption in p85 binding to PTEN and increases 
PIP3 levels and AKT phosphorylation [114]. Microtubule-
associated Ser/Thr kinase 2 (MAST2) also binds to the 
PDZ binding motif of PTEN and negatively regulates 
neuronal survival pathways through increasing PTEN 
phosphorylation and changing its intracellular transfer-
ence [115, 116]. Other PTEN regulators that influence its 
lipid phosphatase activity and function through forming a 
complex with PTEN including PREX2a (PIP3 dependent 
RAC exchanger factor 2a), [117] SIPL1 (Shank-interacting 
protein-like 1 also known as SHARPIN), which is a part 
of the NF-κB-stimulating linear ubiquitin chain gathering 
complex, [118] and MAN2C1 (α-mannosidase 2C1) [119].

PTEN localization

Firstly, researches revealed that PTEN localizes between 
the cytosol and the plasma membrane and negatively con-
trols intracellular levels of PIP3 and downregulates PI3K-
AKT pathway via converting PIP3 to PIP2 [120, 121]. 
But recent studies showed that PTEN can be found in 
cytoplasmic organelles, for example, the nucleus, nucleo-
lus, the mitochondria, the Mitochondria-associated mem-
branes (MAMs) and the Endoplasmic reticulum (ER) [86]. 
Recently, several studies discovered that PTEN is also able 
to exit the cell and present in the extracellular matrix and 
uptake by receiver cells [16, 17].

Plasma membrane PTEN

PTEN binds to the plasma membrane and inhibits the 
PI3K/AKT pathway signaling through phosphatase activ-
ity and converting PIP3 to PIP2. Different elements reg-
ulate PTEN association with the plasma membrane and 
PIP3 access [122, 123]. Main residues of the C2 domain 
are necessary for connecting PTEN and plasma mem-
brane [20]. Moreover, the N-terminal PIP2-binding motif 
of PTEN can recruit PTEN to the plasma membrane in 
response to PIP2 and PIP3 gradients [122, 123]. The PDZ-
binding motif of PTEN can also drive PTEN to the plasma 
membrane while various membrane-anchored PDZ pro-
teins are bound to it [124, 125]. Additionally, the C-termi-
nal tail plays an important role in the recruitment of PTEN 
to the plasma membrane as a flexible part in the opened 
conformation of PTEN [26, 126].

Nuclear PTEN

It has been demonstrated that the nucleus is another 
location of PTEN. PTEN presence in the nucleus has 
a critical role as a tumor suppressor independent of its 
phosphatase activity and loss of PTEN associated with 
tumorigenesis. PTEN entrance to the nucleus is controlled 
by NEDD4-mediated monoubiquitylation while PTEN is 
deubiquitinated and eliminated by HAUSP in the nucleus. 
HAUSP-mediated PTEN deubiquitination causes nuclear 
elimination [86, 100]. Recently, it has been reported that 
sumoylation also maintains nuclear PTEN subpopulation 
[68]. PTEN conserves genomic stability through inter-
acting with the CENP-C (Centromere-specific binding 
protein C). This interaction is necessary for the stability 
of centromere and stimulates the expression of RAD51, 
which has a critical role in DNA repair in double strand 
break (DSB) [127]. Additionally, the cell cycle progres-
sion is regulated by nuclear PTEN through interaction with 
Anaphase-promoting complex/cyclosome (APC/C), an E3 
ubiquitin ligase, which increases APC/C activity and affin-
ity to its activator CDH1 (also known as FZR1). PTEN 
helps the formation of APC/C–CDH1 complex [128, 129] 
and induces G0–G1 arrest by decreasing cyclin D1 levels 
through APC/C–CDH1-mediated protein degradation [15]. 
These functions explain that PTEN-mediated tumor sup-
pression can be independent on its phosphatase activity 
[130]. In early studies, it is observed that nuclear PTEN 
is mostly found in primary, differentiated and quiescent 
cells and decreased in the nucleus of cancer cells by rap-
idly dividing and cycling, [131, 132]. This point indicates 
that PTEN location may be dependent on the cell cycle. 
Therefore, PTEN expression level in the nucleus in G0–G1 
phase is higher than S phase [133]. This finding implies 
that nuclear PTEN deficiency can be involved in aggres-
sive cancers [132, 134, 135]. Recently, researchers have 
reported that major vault protein (MVP) as a carrier mol-
ecule is involved in PTEN entrance to the nucleus [136]. 
PTEN interaction with MVPs in a calcium-dependent 
manner resulted in PTEN entrance to the nucleus [137], 
whereas other data propose that PTEN nuclear import 
occurs through passive diffusion [138]. Additionally, the 
entry of PTEN in to the nucleus needs importins and Ran-
GTPase-dependent pathway activity [139]. The first 32 
amino acid residues of PTEN, Which are essential for 
its membrane targeting due to including PIP2-binding 
domain, also include a functional nuclear localization 
signal [139, 140]. PTEN, despite the existence of pools 
of PIP3 and activated PI3K in the nucleus, PTEN is not 
involved in PI3K/AKT pathway, suggesting PTEN func-
tions mainly beyond its lipid phosphatase activity [134, 
141].



2876	 Molecular Biology Reports (2018) 45:2869–2881

1 3

Cytoplasmic organelles PTEN

In recent years, an alternate translation of PTEN was discov-
ered, named PTEN-α or PTEN-Long or PTEN-L, which is 
translated from different initiation sites at a CUG site in the 
5′ untranslated region (5′ UTR) of PTEN mRNA. This alter-
native CUG start codon adds 173 additional amino-terminal 
amino acids and generates an N-terminally extended form of 
PTEN, which is membrane-permeable and is able to asso-
ciate with intracellular membrane-containing organelles. 
PTEN-L localizes to the cytoplasm and the mitochondria 
[142]. Mitochondrial localization of PTEN is important to 
the conservation of mitochondrial structure and cooper-
ates with canonical PTEN to regulate mitochondrial bio-
energetic functions [95]. Additionally, the accumulation 
of PTEN in the mitochondria can contribute to apoptosis 
through sustaining ROS production. Increased PTEN level 
in mitochondria is detected in primary rat hippocampal neu-
rons in response to using staurosporine which is an apop-
tosis inducer [95, 143]. Also, studies revealed that ER and 
MAMs are other PTEN localized cytoplasmic organelles 
[95]. Calcium (Ca2+) released from the ER is controlled by 
PTEN [144–146]. Ca2+ entrance to the intracellular space 
occurs through two ways: Ca2+ influx from the extracellu-
lar space and Ca2+ release from the ER. Ca2+ concentra-
tion in intracellular space has a critical role in metabolism, 
proliferation, differentiation, and apoptosis [95, 145, 146]. 
Accumulation of PTEN at the ER increases the release 
of Ca2+ and subsequently leads to enhance mitochondrial 
Ca2+ overload and (Ca2+)-dependent apoptosis induction. It 
is shown that PTEN can control the Ca2+ release from ER 
by interaction with Inositol-1,4,5-trisphosphate receptors 
(IP3Rs) and dephosphorylates it in a protein phosphatase-
dependent manner [95]. Indeed, PTEN counteracts Akt-
mediated phosphorylation of IP3R3 [147–150]. ER Ca2+ 
release is impaired in PTEN silencing that leads to decrease 
in Ca2+ accumulation in the cytosol and mitochondria, thus 
Ca2+-mediated apoptotic induction is lessened [95].

Nucleolus PTEN

More recently, researchers identified another isoform of 
PTEN, which confers an additional 146 N-terminal amino 
acids to the canonical PTEN and is named PTEN-b. This 
translational variant of PTEN initiates to translate from an 
AUU codon, 438 bp upstream of the AUG starting site of 
canonical PTEN translation. This different translation type 
of PTEN (PTEN-b) is predominantly found in the nucleolus 
and prevents pre-rRNA production and affects cellular pro-
liferation by nucleolin dephosphorylation. Taken together, it 
seems likely that other PTEN isoforms may exist and more 
studies are needed to completely understand the function of 
them [151].

Extracellular PTEN and paracrine roles of it in tumor 
microenvironment

Recently, researchers have reported that in addition to intra-
cellular localization of PTEN-L, it is able to exit the cell. 
This longer form of PTEN is secreted in exosomes and 
microvesicles of endosomal origin and exists outside the 
cell [17]. NEDD4-1, an adaptor protein for the ubiquitin 
ligases, controls PTEN secretion in the exosomes. In addi-
tion, alternately translated region (ATR) of PTEN-L due to 
having a signal sequence with an accepted cleavage site per-
mits secretion of PTEN-L [16] which is detected in human 
serum and plasma [152]. On the other hand, tumors change 
their own environment with production oncogenic growth 
factors which increase cancer cells growth. Adjacent cell to 
tumor initiating cell may also trigger a response to prevent 
the aberrant proliferation of tumor cells. PTEN secretion 
is a way that neighboring cells can respond to the aber-
rant proliferation of tumor cells through it. Enhancement 
of PTEN-L protein in histiocytes adjacent to tumor cells 
supports this hypothesis [17]. The secretion of intercellu-
lar factors by adjacent cells may be one of the first defense 
responses against tumor growth and could be helpful as 
diagnostic biomarkers of tumor initiation, although some 
tumors might be resistant to this type of response [153]. 
PTEN-L is membrane permeable and can be transferred to 
adjacent cells [17]. Consistent with this, the presence of a 
polyarginine motif in the PTEN-L ATR, which is similar to 
polybasic residues in permeable peptides, helps to PTEN-L 
entrance in to the cell [16].

It was shown that uptake of this PTEN variant in neigh-
boring cells as a therapeutic agent helps tumor regression 
which could decrease AKT phosphorylation through antago-
nizing PI3K/AKT signaling pathway and reduce cell prolif-
eration and induce apoptosis in tumor cells in in vitro and 
in vivo [154, 155]. Therefore, this type of PTEN may be 
generated in the cell for the purpose of exiting and activation 
in another cell as a modulating exogenous agent. Functional 
PTEN in the tumor microenvironment may effect on active 
PTEN level in tumor cells and may have a tumor-suppressive 
role which is observed in macrophage-like cells in the tumor 
microenvironment [156]. It has also been shown that PTEN 
reduction in the tumor microenvironment promotes tumor 
development in tumor cells with wild type PTEN [157, 
158]. Further investigations are needed for a more precise 
understanding of PTEN-L activity and function comparing 
with canonical PTEN to improve novel therapeutic applica-
tions through manipulation of tumor microenvironments and 
intercellular regulation to tumor-suppressive status.
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