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Abstract
The centromere is a functional locus of the chromosome responsible for chromatid cohesion and segregation in cell divi-
sion. Usually, the centromeres can be distinguished from the remaining chromosomal regions either in structure, as they 
are heterochromatic constrictions that divide the chromosome in two arms, or in molecular constitution, as they have an 
exclusive H3 histone variant and specific DNA sequences. Besides being essential for genetic stability of eukaryotes, 
centromere is particularly interesting since it plays conserved roles but show high variability on organization and DNA 
composition. Centromeres are usually composed by satellite repeats and retrotransposons and the sequences can differ even 
among closely related species. Some unusual configurations containing single copy DNA were also described, including 
even some transcribed genes. In this review, we discuss molecular constitution, epigenetics and different types of centromere, 
with emphasis on plant centromeres. We also present recent advances about evolutionary processes involved in origin and 
differentiation of centromeres.
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Introduction

The functional centromeres of eukaryotic chromosomes, 
cytologically recognized as primary constrictions, are 
responsible for cohesion of sister chromatids and regular 
segregation during cell division, which are essential for 
genetic stability and development of all organisms [1, 2]. 
The role of centromeres in segregation lies in the fact that 
they are the site for kinetochore organization, a proteina-
ceous structure deposited on centromere surface for spindle 
fibers binding to promote chromatid or chromosome move-
ments [3].

The centromeres can be simple, also known as point 
centromere, occupying a region corresponding to one 
nucleosome, or complex, spanning several megabases of 
the chromosome [4]. In Saccharomyces cerevisiae, the 
point centromere is a 125 bp region of constriction where 
a small kinetochore is organized (Fig. 1a) [5]. The com-
plex centromeres can be arranged in two different forms in 

eukaryotic chromosomes: located or dispersed [6]. Chromo-
somes with dispersed centromere, known as holocentrics or 
holokinetics, do not show constriction and their kinetochore 
is organized throughout the chromosome (Fig. 1b) [7]. If the 
chromosome has a located centromere, in most cases this 
is concentrated in one region where there is a constriction, 
featuring monocentric chromosomes (Fig. 1c). Eventually, 
chromosomes with two or more centromeres can be found, 
presenting, therefore, two or more constrictions [6]. A third 
type is the meta-polycentric, with three to five well-spaced 
centromeric sites behaving as a single centromere (Fig. 1d). 
All of them are located on only one constriction, however 
elongated and significantly bigger than those observed in 
monocentric chromosomes [8].

The centromere region activity is determined by an epi-
genetic modification, the replacement of canonical histone 
H3 by a specific modified histone H3, called CenH3 (or 
CENP-A in humans). The centromeric H3 aminoacidic 
composition is not conserved among species, especially in 
its tail, but still is a conserved epigenetic mark, unlike the 
centromeric DNA, which can vary considerably and pre-
sent a complex organization [reviewed in 1, 9]. The centro-
meric DNA evolves rapidly and has little similarity among 
species [10], an unusual feature for structures that perform 
conserved functions. Efforts have been made to explain why 
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these variations happen and to better understand the epige-
netic aspects involved in centromere function. We present 
here a review of centromeres, focused on elucidation of plant 
centromere genetics, epigenetics and evolution.

Epigenetics of centromeres

The centromere identity and inheritance are associated with 
chromatin organization, that differs from other chromosomal 
domains by the presence of a histone H3 variant called 
CenH3 or CENP-A. The difference between the canonical 
histone H3 and CenH3 is the presence in the latter of an 
N-terminal tail that is highly divergent with respect to the 
length and composition, even among closely related organ-
isms, been species-specific in some cases [revised in 1]. 
Otherwise the C-terminal portion of CenH3 is similar in all 
eukaryotes and has significant similarity to the canonical H3 
[11]. The divergence between the canonical H3 and CenH3 
goes beyond the amino acids differences, since the last one 
also undergoes different types of epigenetic modifications, 
such as phosphorylation, methylation and acetylation, which 
contribute to the recruitment of proteins which creates the 
centromere–kinetochore interface in humans [12]. Recently 
a new epigenetic modification, the phosphorylation of threo-
nine 120 of histone H2A, was found to be a universal marker 
for centromeres, working from humans to plants monocen-
tric and polycentric chromosomes [13].

Located exclusively in the centromeres of all studied 
eukaryotes, the CenH3 is a mark of functionality of this 
region [revised in 1, 9, 14]. Its associated chromatin is a 
constituent part of the kinetochore plate which interacts with 
numerous other proteins to promote segregation [2]. Despite 
showing a variant specific H3, the centromeric chromatin 
usually also have H3 nucleosomes interspersed with CenH3 
nucleosomes (Fig. 1c) [15].

In addition to the constant presence of CenH3 in active 
centromeres [16], several other evidences support that this 
variant histone is the determinant of centromeric function 
[revised in 14]. Incorporation of centromeric sequences in 
rice genome by transformation was not enough to induce the 
formation of active centromeres [17].

Cytogenetic analyses have shown that centromeres even-
tually adopt new positions in the chromosomes, an event 
called repositioning. The centromere in this new location 
is referred as evolutionary new centromeres or neocen-
tromeres [18]. In human chromosomes, chromatin of new 
centromeres has CenH3 but its DNA is not distinguishable 
from the rest of the genomic DNA, indicating that there is 
no requirement in terms of DNA composition for centromere 
formation and function [19]. Furthermore, CenH3 mutants 
showed disturbed centromeric chromatin structure and kine-
tochore assembly, resulting in severe defects in chromosome 
segregation in Saccharomyces cerevisiae, Caenorhabditis 
elegans, Schizosaccharomyces pombe, Drosophila mela-
nogaster and humans [revised in 2]. Another singularity 
of the centromeric H3 histone in humans (CENP-A) is the 
interaction with a chaperone protein to facilitate its assembly 
into nucleosomes. CENP-A associates to Holliday junction 
recognition protein (HJURP) that acts as a specific chap-
erone for CENPA and is required for the incorporation of 
newly synthesized CENP-A molecules into nucleosomes at 
replicated centromeres [12, 20 revised in 12].

Logsdon et al. [21] used H3 chimeras containing differ-
ent parts of CenH3 to study if the regions of this histone 
required for maintaining a functional centromere are the 
same required to the establishment of a new centromere. 
They found out that the regions of CenH3 required for those 
situations are actually different and that different proteins are 
recruited for new centromere formation [21].

Studies with dicentric chromosomes brought important 
information about how dynamic the CenH3 deposition can 

Fig. 1   Graphical representation of centromeric structure and distribu-
tion of CenH3 in different types of eukaryotic centromeres: a point 
centromere, b holocentromere, c monocentromere, d metapolicen-

tromere. Elements in blue represent the chromatids, in red the sites 
with CenH3, in pink the sites with canonical H3, and in gray hori-
zontally and vertically the kinetochore and microtubules, respectively
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be and about its fundamental role in centromeric activity. 
In maize, inactive centromeres in dicentric chromosomes, 
although composed of the characteristic centromeric DNA 
for the species (CentC and CRM), showed no constriction 
and no evidence of association with CenH3 [22]. These same 
inactive centromeres, when separated from their dicentric 
condition by intrachromosomal recombination, recovered 
their function in some cells and were stably transmitted to 
the next generation, due to de novo CenH3 deposition with-
out centromeric DNA changes [23].

A peculiar case for CenH3 organization was described 
in leguminous species [24]. The authors identified in some 
species of the group two paralogous genes for CenH3 called 
CenH3-1 and CenH3-2, which share 75% similarity. Both 
genes produced functional CenH3 proteins that colocal-
ized in immunofluorescence analysis. Probably, these 
genes derived from a duplication in the common ancestor 
of Fabaceae species. One of them was lost or silenced in 
some genera and both were maintained in Pisum L. and in 
Lathyrus L. In species of these two genera meta-polycentric 
chromosomes were described, with several CenH3 sites 
located in just one elongated primary constriction. The 
authors attribute to the gene duplication this unique cen-
tromere organization in these genera.

It is unknown why the replacement of canonical H3 by 
CenH3 turns the centromere into such a distinguishable site 
of the chromosome, but some studies started showing some 
insights. A comparison of the active and inactive centro-
meric chromatin in Candida albicans showed that nucle-
ossomic periodicity, which is highly consistent in not cen-
tromeric nucleosomes, is suspended in active centromeres 
[25]. Thermodynamic analyzes performed in Kluyveromyces 
lactis showed that CenH3 nucleosomes are more stable and 
have more mobility than the canonical ones [26]. Chromato-
graphic studies of CenH3 nucleosomes also showed that they 
are more compact than the H3 nucleosomes [11]. There-
fore, CenH3 nucleosomes have unique physical properties, 
but it is not clear how this can help in the recruitment of 
kinetochore components and in determining the centromeric 
function [2].

CenH3 plays a key role in centromere organization but 
numerous other factors are involved in the epigenetic regula-
tion of centromeric chromatin [2], like transcription factors 
[27], remodeling factors that promote histones deacetylation 
and act to repress and to silence the transcription [28], the 
chaperone proteins that facilitate transcription in specific 
situations [29] and cofactors that promote chromatin open-
ing by processing histone acetyltransferases [30]. These fac-
tors are certainly also involved in controlling some existing 
genes in the centromeric region, as described in rice [31] and 
potato [15]. In rice, active genes were found in several cen-
tromeres, however they were located in sub-domains consti-
tuted by canonical H3. In potato, although there are cases of 
genes in the same condition as described in rice, an actively 
transcribed gene is associated with CenH3 nucleosomes.

The centromeric DNA

The centromeres of higher eukaryotes have conserved kine-
tochore proteins [32], play a conserved function, but their 
DNA sequences are highly divergent in model organisms 
and in most of other studied species (Fig. 2) [10, 33]. Its 
main constituents are satellite DNAs and retrotransposons 
(Fig. 2a–c) [2]. In Arabidopsis thaliana (L.) Heynh, for 
example, centromeres of all chromosomes have the same 
main component, a long DNA satellite array of mono-
mers with 178 bp [34]. In humans, similar size monomers 
(171 bp), known as α-satellite, are likewise found in all cen-
tromeres [35], but their composition in base pairs is totally 
different from repetitive DNA present in A. thaliana cen-
tromeres. Satellite DNA sequences that compose the cen-
tromeres can be highly divergent even among closely related 
species, as in rice. Centromeres of Oryza sativa L. have a 
155 bp satellite DNA repeats that do not share any homol-
ogy with the 154 bp repeat found in Oryza brachyantha A. 
Chev. & Roehr., a species of wild rice close to O. sativa 
[36]. One aspect that can be considered common to most 
of studied species is the high similarity of repetitive DNA 
sequences among the centromeres of the same chromosome 

Fig. 2   Schematic representa-
tions of different types of DNA 
sequences and their combina-
tions identified in eukaryotic 
centromeres. Centromeres 
composed of a satellite DNA, 
b retrotransposons, c single 
copy DNA, d satellite DNA and 
retrotransposons and e satellite 
DNA and single copy DNA
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complement, as in A. thaliana [34], O. sativa [37], O. brach-
yantha [36], humans [35], among others. This is not the case 
of Solanum L. species. In S. tuberosum L. (cultivated potato) 
each of the 12 centromeres have a different genetic composi-
tion from the other ones. Six of them are composed by repet-
itive DNA, five by single copy DNA (Fig. 2d) and the last 
centromere presents the two types of DNA (Fig. 2e) [15]. 
For Solanum verrucosum Schltdl., a wild species already 
proposed as an ancestral of potato, were also described cen-
tromeres composed of either single copy or satellite DNA 
[38]. Comparison of the two genomes (S. tuberosum and S. 
verrucosum) showed common satellites located in differ-
ent chromosomes and divergent satellites, indicating rapid 
evolution of centromeric sequences in the genus [38]. Other 
plant species which also have multiple repeats associated 
with different centromeres are pea (Pisum sativum L.) [8] 
and bean (Phaseolus vulgaris L.) [39]. In pea centromeres, 
repetitive DNA sequences belonging to 13 different fami-
lies were described unevenly distributed among chromo-
somes. They differ extensively in nucleotides composition, 
in genomic abundance and monomers length, ranging from 
50 to 2094 bases [8]. In beans, two satellite repeats were 
described, CentPv1 and CentPv2, predominantly located in 
subsets of eight and three centromeres, respectively. The 
arrangements of both suffered chromosome-specific homog-
enization processes and are found mixed in the genome [39].

Regarding to the size of centromeric repeats, in most of 
the studied plant species, they are around 150–180 bp long. 
This is probably the most common size to be ideal for the 
monomer to a full turn around a single nucleosome [40]. 
This hypothesis was supported by an experiment with rice 
centromeres, composed of Cent-O satellite repeats 155 bp 
long. When the chromatin was digested with micrococcal 
nuclease, an enzyme which preferably digests DNA linkers 
keeping intact the DNA involving nucleosomes, a fragment 
of 90–100 bp from the satellite repeat was always protected 
by CenH3 nucleosomes. The authors found, therefore, a 
matching frequency for the distribution of repeat units and 
nucleosomes [41]. This relation has been described only in 
the satellite repeats present in rice and in human centromeres 
so far [42]. On the other hand, in potato, discrepant data 
about this size trend were described, with centromeric mon-
omers longer than 390 bp in S. verrucosum [38] and ranging 
from 979 bp to 5.4 kb in S. tuberosum [15].

In addition to this structural feature, satellite repeats may 
contain sequences that trigger interaction between centro-
meric chromatin and external factors for centromere func-
tion. A strong indication of this is the presence of a 17 bp 
motif called CENP-B box, found in human alpha satellite 
monomers. This motif binds to CEN-B protein, probably 
as an important event for kinetochore formation, since this 
protein plays a key role in microtubules organization [43]. 
Similar motifs to CENP-B box were observed in several 

satellite DNA families, but it is not known yet about their 
functional significance [44].

Beyond the satellite repeats, long terminal repeats (LTR) 
retrotransposons accumulate quite often in centromeres and 
pericentromeres in plants and animals [revised in 1, 33]. 
There are evidences that the transpositional activity of cen-
tromeric LTR elements influence the evolutionary dynamics 
of centromere, as well as its structure and function, by the 
generation of new insertions that can later go through ille-
gitimate or unequal homologous recombination processes 
[33]. Furthermore, it is common to find similarity between 
retrotransposons and satellite DNA, indicating that they can 
be a source of new repeats, as reported in potato [15]. Retro-
transposons are also found in new centromeres, where they 
dilute the gene contents over time, contribute to centromere 
size maintaining and increase the repeat content of new cen-
tromeres that lack the tandem repeats [45]. In Rynchospora 
(Cyperaceae), the holocentromeres are composed of mul-
tiple centromeric units interspersing euchromatin regions 
and are highly enriched by a specific satellite family (Tyba) 
and by centromeric retrotransposons (CRRh). This is the 
first description of centromeric specific DNA sequences 
in holokinetic centromeres, showing existence of different 
types of holocentromeres regarding DNA composition [46].

The success in constructing artificial human chromo-
somes, obtained only after repetitive DNA was used to 
compose the centromeres [47], suggested that DNA may 
play an important but unknown role for centromere func-
tion. Experiments showed that plant centromeric DNA do 
not produce functional centromeres when reintroduced into 
plant cells [17] and new centromeres are functional even if 
located in loci with non-centromeric DNA [19], indicating 
that the DNA, although it may be important, it is not essen-
tial for centromeric function.

Origin and evolution

The centromere is a very interesting structure from an evo-
lutionary point of view as it has conserved functions and 
highly variable DNA. Even CenH3, whose presence is con-
sistent in the studied centromeres, has either conserved or 
variable domains, especially in their C-terminal tail [10], 
whereas canonical histone H3 is identic in many eukaryotes 
[48]. There are evidences that this interesting structure of 
CenH3, with conserved and not conserved domains, is the 
result of convergent evolution. In this case, different his-
tones have independently converged to a common centro-
meric function [49]. On the other hand, there are evidence of 
divergent evolution originating CenH3 in Brassicaceae [48] 
and in Drosophila [50]. The authors believe that the diver-
gence of CenH3 is an adjustment to the rapidly changing 
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centromeric DNA. Apparently the CenH3 has suffered both, 
convergent and divergent evolution [revised in 2].

All existing variation in centromeres has increased the 
interest of the scientific community to find out why these 
variations exist and what their evolutionary meaning is. 
Besides this, the formation of new centromeres has been 
targeted by many studies. New centromeres have been 
described extensively in human chromosomes [reviewed in 
51] and in some plant species like barley [52], maize [22, 
53, 54] and rice [55].

The emergence of new centromeres was also observed in 
hybrid conditions, such as hybrids between maize and oat. 
Nine maize chromosomes had their centromeric domains 
dramatically expanded in the hybrid condition, probably 
to better compete for spindle fibers with oat chromosomes, 
which have bigger centromeres. However, in two chromo-
somes the pericentromeric region had active genes and the 
expansion would probably harm theirs expression. In these 
cases, functional centromeres appeared in another chromo-
somal locus to allow its expansion without damage to tran-
scription [54].

The repositioning cases show that the establishment of a 
new centromere does not require specific DNA composition 
in the target loci [1, 10]. Most new centromeres have no sat-
ellite DNA [56]. On the other hand, most of studied mature 
centromeres are massively composed by repetitive DNA, 
especially satellite DNA [1, 10]. One hypothesis to explain 
this apparent contradiction is that new centromeres appear in 
single copy DNA regions and acquire long arrays of repeti-
tive DNA, especially satellites, during its evolution. Accord-
ing to this theory, a new satellite repeat or one already pre-
sent in other centromeres may invade and occupy the CenH3 
domain of the new centromere. The existence of centromeres 
with an intermediate configuration containing both single-
copy DNA and satellite DNA, observed in rice [31] and 
potato [15] is an evidence for this evolutionary pathway of 
satellite DNA acquisition [57]. The satellite DNA invasion 
mechanism is still unknown and the retrotransposons would 
be the main source for the origin of new repeats [15].

Conclusion

The observed variations in size, CenH3 and DNA compo-
sition of centromeres are intriguing considering their con-
served function and reflect the high dynamism of this chro-
mosomal site. CenH3 is required for centromeric function, 
while the DNA appears not to be, although play an impor-
tant role in the centromeres maintenance and evolution. The 
plant centromeres, as in other eukaryotes, are highly com-
plex and dynamic structures. The control of its operation 
and its heritage involves epigenetic phenomena that seem to 
be quite distinct from the control of any other chromosomal 

region, which increases the interest and the difficulties in 
centromere studies. The recent technologies of next gen-
eration sequencing, chromatin immunoprecipitation, protein 
immunolocalization and fluorescence in situ hybridization 
have enabled significant advances in understanding the cen-
tromere origin, structure and evolution. Given the diversity 
found so far, it is very important to increase the number of 
studied species, especially those with sequenced genomes, 
so it will be possible to have a more elucidatory picture of 
this intriguing structure essential to the maintenance of life.
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