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Abstract
Cystinuria is an autosomal recessive defect in reabsorptive transport of cystine and the dibasic amino acids ornithine, argi-
nine, and lysine from renal tubule and small intestine. Mutations in two genes: SLC3A1, encoding the heavy chain rbAT of 
the renal cystine transport system and SLC7A9, the gene of its light chain b0, + AT have a crucial role in the diseases. In our 
previous studies from Iranian populations with Cystinuria totally six and eleven novel mutations respectively identified in 
SLC3A1 and SLC7A9 genes. In this study, we conducted an in silico functional analysis to explore the possible association 
between these genetic mutations and Cystinuria. MutationTaster, PolyPhen-2, PANTHER, FATHMM. PhDSNP and MutPred 
was applied to predict the degree of pathogenicity for the missense mutations. Furthermore, Residue Interaction Network 
(RIN) and Intron variant analyses was performed using Cytoscape and Human Slicing Finder softwares. These genetic vari-
ants can provide a better understanding of genotype–phenotype relationships in patients with Cystinuria. In the future, the 
findings may also facilitate the development of new molecular diagnostic markers for the diseases.
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Introduction

Transporters are embedded proteins within membranes that 
control the uptake of different solutes [1]. They are divided 
into solute carrier (SLC) and ATP-binding cassette (ABC) 
transporters [2]. The SLC transporters control the uptake of 
endogenous compounds essential for cell survival, includ-
ing sugars, amino acids, digested peptides, nucleotides, and 
inorganic ions [3–5].

The solute carrier (SLC) transporter superfamily with 55 
families are encoded by a total of at least 362 putatively 
functional protein coding genes [6]. Because of key physi-
ological roles of SLC transporters, defects in functionally 
specific SLC transporters can cause many Mendelian dis-
eases or monogenic disorders [7]. More than 80 SLC genes 
have been involved in monogenic disorders. For example, 
mutations in SLC25A19 and SLC5A2 respectively was lead 
to Amish lethal microcephaly and familial renal glucosuria 
[8–10]. Cystinuria is another disease due to pathogenic vari-
ants in the SLC3A1 or SLC7A9 genes [11, 12].

Here, we focus on the Cystinuria, which is an inherited 
autosomal recessive disorder of renal reabsorption of cys-
tine, arginine, lysine, and ornithine [13]. The protein prod-
ucts of SLC3A1 (rBAT) and SLC7A9 (b0, + AT) form the 
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heterodimeric amino-acid transporter system b0, +, which is 
responsible for the uptake of cystine and dibasic amino acids 
in the renal tubular and intestinal epithelial cells [14, 15]. In 
Cystinuria, mutation in the two genes resulted to increased 
urinary excretion of cystine and finally formation of kidney 
stones [16]. Patients with two SLC3A1 mutations are classi-
fied as type I Cystinuria, whereas patients with two SLC7A9 
mutations are classified as non-type I Cystinuria [17, 18]. 
Over 100 SLC3A1 mutations have been recognized, and all, 
except one (dupE5–E9), were limited to patients with type I 
Cystinuria [17, 19, 20]. At least 66 SLC7A9 mutations were 
identified and these mutations were found in both type I and 
type non-I patients [21]. From our previous studies in Iranian 
patients with Cystinuria, we identified four missense muta-
tions, one intron variant and one polymorphism in SLC3A1 
as well as three missense mutations, one frame shift, four 
intron variant and three polymorphisms in SLC7A9 [22–26].

Bioinformatics prediction tools can be applied in a cost 
efficient manner to calculate effects of specific mutations on 
the protein structure and function for selecting SNPs likely 
contribute to an individual’s disease susceptibility. Recently, 
several computational methods have been developed to 
screen functional SNPs out of large pools of disease-sen-
sitive SNPs related to the BRCA1, ATM, PON1, ADIPOR1 
and SLC genes [27–29].

In the current study, we used different softwares and pub-
licly available bioinformatics tools to comprehensively ana-
lyze various mutation identified in the SLC3A1 and SLC7A9 
genes of Iranian populations with Cystinuria from our previ-
ous studies [22–26]. Since missense mutations of the genes 
are associated with more abnormalities, we aimed to study 
the effect of mutations on protein stability. Moreover, the 
pathogenic effects of the intron variants using bioinformatics 
tools were predicted. Subsequently, the 3D modeled protein 
structures of the mutants were compared with the native 
protein to evaluate structural deviations and topological 
similarities.

Methods

Bioinformatic pathogenicity predictions

The degree of pathogenicity for the missense mutations 
identified in SLC3A1 and SLC7A9 genes was predicted using 
the MutationTaster (http://www.mutat​ionta​ster.org/) [30], 
Polymorphism Phenotyping v2 (PolyPhen-2) (http://genet​
ics.bwh.harva​rd.edu/pph2) [31], Protein Analysis Through 
Evolutionary Relationships (PANTHER) (http://www.panth​
erdb.org) [32], and Functional Analysis Through Hidden 
Markov Models (FATHMM) (http://fathm​m.bioco​mpute​
.org.uk/index​.html) [33]. The Mutation Prediction Predic-
tor of Human Deleterious Single Nucleotide Polymorphisms 

(PhDSNP) (http://snps.biofo​ld.org/phd-snp/phd-snp.html) 
[34] and (MutPred) (http://mutpr​ed.mutdb​.org) [35] were 
applied to estimate its functional effects.

3D structure preparation

The 3D modelled structure of the SLC3A1 and SLC7A9 
proteins for wild and mutant type prepared using Homology 
modeling in SWISS-MODEL webserver (https​://swiss​model​
.expas​y.org/) [36–39] were applied for structural analysis.

Exploration of residue interaction networks

Cytoscape with two plugins StructureViz [40] and RIN-
alyzer [41] was used for analysis of residue network inter-
action of wild type and mutated structures [42].

Sequence alignment

Sequence alignment and visualization of conserved amino 
acids were prepared using the cobalt constraint-based mul-
tiple protein alignment tool (https​://www.ncbi.nlm.nih.gov/
tools​/cobal​t/re_cobal​t.cgi) [43] and the universal protein 
resource (UniProt) (http://www.unipr​ot.org/align​/) [44] with 
default parameters.

Intron variant analysis

To in silico evaluate the possible effects of the identified 
intron variants on gene splicing, Human Splicing Finder 
(http://www.umd.be/HSF/, Marseille, France) softwares 
were used [45]. In this tool, analysis of intron sequences 
for putative branch points and calculation of the breakage 
of exonic splicing enhancers (ESE) or creation of exonic 
splicing silencers (ESS) was performed.

Results and discussion

In previous studies from these authors [22–26], some vari-
ants were identified in SLC3A1 and SLC7A9 genes includ-
ing missense, polymorphism, and intron variants summa-
rized in Table 1. Totally, six and eleven novel mutations 
respectively identified in SLC3A1 and SLC7A9 genes. Wass 
et al found 57 different mutations in UK population [46]. 
Similarly, they used computational methods to discover 
the functional and structural consequences of the nsSNPs 
[29]. In the current research work, the novel variants that 
have not been reported so far including c.1136+2/3delT in 
SLC3A1 and c.177G/A, c.478+14insA, c.272−273insA, 
c.478+10T/C, c.604+66A/G, c.993G/A in SLC7A9 were 
identified. As shown in Table 1, c.177G>A, c.411T>C 
and c.993G>A mutations in SLC7A9 as well as c.114A/C 
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mutation in SLC3A1 lead to polymorphism/synonymous 
for Thr 59, Cys 137, Ala 331 and Gly 38 residues, respec-
tively. The c.235+22T/G, c.478+14insA, c.478+10T>C, 
c.604+66C>G mutations in SLC7A9 and c.1136+2/3delT 
mutation in SLC3A1 were in the intronic region or Untrans-
lated/No coding region.

Intron variant mutations

Intron variant analysis indicated that only c.478+10T/C 
mutation was not created/changed a significant splic-
ing motif in SLC7A9 and probably no impact on splicing 
(Table 2). Furthermore, c.235+22T/G and c.478+14insA 
intron variants in SLC7A9 had not any effect on splicing but 
they can created and also changed ESS and ESE motif sites 
in the intronic regions (Int3 for c.235+22T/G and Int4 for 
c.478+14insA). However, both of variants c.1136+2/3delT 
and c.604+66C>G mutations in SLC3A1 and SLC7A9 

genes most probably affected splicing respectively through 
alteration in WT donor sites and exonic ESE sites (Table 2). 
These molecular events probably make an alternative splic-
ing process.

Missense mutations

Only the missense mutations change the amino acid 
sequence of the SLC transporter proteins. The protein pre-
diction analysis for the pathogenic effects of these missense 
mutations on SLC3A1 and SLC7A9 proteins were calcu-
lated using six bioinformatics programs that use different 
prediction algorithms: PolyPhen-2, PANTHER, FATHMM, 
PhD-SNP, MutPred and MutationTaster (Tables  3, 4). 
All of these programs predicted the variants p.R362C, 
p.M67K/T, p.T216M in SLC3A1 and p.G105R, p.R333W 
in SLC7A9 to be damaging/deleterious/disease causing. 

Table 1   Description of 
mutations identified in the 
SLC3A1 and the SLC7A9 genes

Gene Ex/Int Nucleotide change Amino acid change Type of mutation

SLC3A1 Ex 1 c.114A/C G38G Polymorphism
Ex 3 c.647C/T T216M Missense
In 6 c.1136+2/3delT No coding Intron variant
Ex 6 c.1084C/T R362C Missense
Ex 8 c.1400T/C M467T Missense
Ex 8 c.1400T/A M467K Missense

SLC7A9 Ex 3 c.177G/A T59T Synonymous
In 3 c.235+22T/G No coding Intron variant
In 4 c.478+14insA No coding Intron variant
Ex 4 c.272−273insA K92Qfs*30 Frame shift
Ex 4 c.425T/C V142A Missense
Ex 4 c.313G/A G105R Missense
In 4 c.478+10T/C No coding Intron variant
Ex 4 c.411T/C C137C Synonymous
In 5 c.604+66C>G No coding Intron variant
Ex 10 c.993G>A A331A Synonymous
Ex 10 c.997C/T R333W Missense

Table 2   Intron variant analysis 
for mutations identified in 
SLC3A1 and SLC7A9 genes

ESE site exonic splicing enhancer, ESS site exonic splicing silencer

Intron variant mutation Splice-site analysis tools (Human Splicing Finder software)

In 6 SLC3A1
c.1136+2/3delT

Alteration of the WT donor site
Most probably affecting splicing

Int 3 SLC7A9
c.235+22T/G

Creation of an intronic ESE site
Probably no impact on splicing

Int 4 SLC7A9
c.478+14insA

(1) Alteration of an intronic ESS site. Probably no impact on splicing
(2) Creation of an intronic ESE site. Probably no impact on splicing

Int 4 SLC7A9
c.478+10T/C

No significant splicing motif alteration detected
This mutation has probably no impact on splicing

Int 5 SLC7A9
c.604+66C>G

Alteration of an exonic ESE site
Potential alteration of splicing
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While the p.V142A variant in SLC7A9 were benign/Neutral 
Polymorphism/Polymorphism.

The residue interaction analysis for these mutations 
were presented in Figs. 1 and 2. In SLC7A9 protein, Gly 
105 in the wild type had contacts with Met 101, Ileu 107, 
Pro 108, and Ala 109 but Arg 105 is in the connection with 
these residues as well as Tyr 104. Trp 333 in the mutant 
type of the protein, lost its contact to Ser 342 and Ala 331, 
while Arg in wild type connected to them as well as Tyr 
329, Gly 325 and Val 330. Moreover, Val 142 which was in 
the connection with Cys 144, Lys 145 and Ala 142, in the 
mutant type, had contacts with the same residues plus Cys 
137. In SLC3A1 protein, Arg 362 from the mutant type 

had residue interaction network similar to wild type as 
well as additional connection to Glu 404 and Gln 403. In 
M467T mutation from the mentioned protein, the mutant 
type had lost its connection to residues Gly645, Asp 628 
and obtained connection to Leu 597. In the same way, 
M467K missense mutation, the mutated protein had lost 
its contacts to residues Leu 468, Leu 555, Gly 645, Asp 
628 and expanded its network connection to other residues 
such as Asn 466, Leu 469 and Phe 470. In the last muta-
tion T216M, the mutant type of the SLC3A1 protein had 
contacts with residues as the same as wild type and also 
Leu 285, His 215 and Phe 280.

Table 3   The protein prediction analysis for missense mutations identified in the SLC3A1 gene

Protein predic-
tion algorithm

c.1084C/T
p. R362C

c.1400T/C
p. M467T

c.647C/T
p. T216M

c.1400T/A
p. M467K

MutationTaster Disease causing/probably 
deleterious

Disease causing/probably 
deleterious

Disease causing/probably 
deleterious

Disease causing/probably 
deleterious

PolyPhen-2 Probably damaging Benign Probably damaging Possibly damaging
PANTHER Deleterious Deleterious Deleterious Not-scored
FATHMM Damaging

Lysosomal and lipid storage 
disease

Damaging
Lysosomal and lipid storage 

disease

Damaging
Lysosomal and lipid storage 

disease

Damaging
Lysosomal and lipid storage 

disease
PhD-SNP Disease Disease Disease Disease
MutPred Loss of MoRF binding

Loss of solvent accessibility
Loss of disorder
Loss of helix
Gain of loop

Loss of stability
Gain of catalytic residue at 

M467
Loss of MoRF binding
Gain of phosphorylation at 

T471
Loss of helix

Loss of catalytic residue at 
T216

Loss of sheet
Loss of ubiquitination at 

K219
Gain of methylation at K219
Loss of phosphorylation at 

T216

Loss of stability
Gain of MoRF binding
Gain of ubiquitination at M467
Gain of phosphorylation at 

T471
Gain of catalytic residue at 

M465

Table 4   The protein prediction analysis for missense and frameshift mutations identified in the SLC7A9 gene

Protein prediction 
algorithm

c.272−273insA c.997C/T
p.R333W

c.425T/C
p.V142A

c.313G/A
p.G105R

MutationTaster Disease
NMD (from 487 to 

120 aa)
Frameshift 

(K92Qfs*30)

Disease causing/probably deleterious Polymorphism Disease causing/probably deleterious

PolyPhen-2 – Probably damaging Benign Probably damaging
PANTHER – Deleterious Probably benign Deleterious
FATHMM – Damaging Damaging Damaging
PhD-SNP – Disease Neutral Disease
MutPred – Loss of methylation at R333

Gain of catalytic residue at R333
Gain of loop
Gain of helix
Loss of MoRF binding

Loss of ubiquitina-
tion at K145

Loss of stability
Gain of catalytic 

residue at V142
Gain of helix
Gain of loop

Gain of solvent accessibility
Gain of methylation at G105
Gain of relative solvent accessibility
Loss of catalytic residue at I107
Loss of helix
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Fig. 1   The residue interac-
tion analysis for a p.G105R, 
b p.R333W and c p.V142A 
missense mutations in SLC7A9 
protein
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Fig. 2   The residue interaction 
analysis for a p.R362C, b, c 
p.M467T/K and d p.T216M 
missense mutations in the 
SLC3A1 gene
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Point mutations

In point mutation, c.272−273insA, the SLC7A9 pro-
tein changed through Nonsense mediated mRNA Decay 
(NMD). The length of SLC7A9 protein sequence was 
decreased from 478 amino acid to 120. In this mutation, 
insertion “A” between nucleotide C272 and C273, lead 
to frame shift mutation and changing Lys 92 to Gln in 
the protein structure. The residue interaction analysis 
indicated the residues that were interacted to the mutant 
and wild type protein is also changed (Fig. 3). Lys 92 of 
SLC7A9 protein interacts with seven amino acids in the 
same chain including Ileu 90, Ser 93, Gly 94, Gly 95, Pro 
98, Glu 102 and Thr 242. While Gln 92 had contact with 
only four residues of the protein: Ileu 90, Arg 94, Gly 95 
and Ser 98. Therefore the major changes in the length of 
protein and contact network will be definitely pathogenic. 
The MutationTaster determined that c.272−273insA 
mutation was “disease causing”.

Sequence alignment

The multiple sequence alignment obtained by cobalt con-
straint based multiple protein alignment tool indicated that 
Arg 362, Met 467, Thr 216 in SLC3A1 protein and Gly 105 
and Arg 333 in SLC7A9 protein, are in a highly conserved 
region, whereas Val 142 in SLC7A9 protein is not conserved 
(Fig. 4). The other alignments were not shown. The substitu-
tion of the conserved residues which mainly contribute to the 
protein structure and function, confirm the deleterious effect 
of the mentioned mutations in SLC3A1 and SLC7A9 genes 
and also the benign effect of p.V142A in SLC7A9 predicted 
previously using different bioinformatics programs.

Conclusion

The present study offers that various computational tools 
were able to distinguish disease-causing mutations from 
benign polymorphisms. Four deleterious mutation (R362C, 
T216M, M467K/T) in the coding region of SLC3A1 were 
identified. Only missense mutation V142A had a benign 

Fig. 3   The residue 92 inter-
action network in wild type 
and mutated SLC7A9 protein 
structures. a Lys 92 has contacts 
with Ileu 90, Ser 93, Gly 94, 
Gly 95, Pro 98, Glu 102 and Thr 
242. b Gln 92 is in connec-
tion with Ileu 90, Arg 94, Gly 
95 and Ser 98. The residues 
93–120 was colored blue for 
showing the frameshift muta-
tion. (Color figure online)



1172	 Molecular Biology Reports (2018) 45:1165–1173

1 3

effect on the protein structure and function of SLC7A9. The 
intron variants c.604+66C>G and c.1136+2/3delT respec-
tively in SLC7A9 and SLC3A1 genes probably affected the 
splicing process. Overall, the present computational study 
will provide an insight into the genetic association of some 
novel deleterious mutations in SLC3A1 and SLC7A9 genes 
with Cystinuria.
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