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Abstract Fatty acid binding protein 3 (FABP3) is a

member of the FABP family which bind fatty acids and

have an important role in fatty acid metabolism. A large

number of studies have shown that the genetic polymor-

phisms of FABP3 are positively correlated with intramus-

cular fat (IMF) content in domestic animals, however, the

function and transcriptional characteristics of FABP3 in

cattle remain unclear. Real-time PCR analysis revealed that

bovine FABP3 was highly expressed in cardiac tissue. The

50-regulatory region of bovine FABP3 was cloned and its

transcription initiation sites were identified. Sequence

analysis showed that many transcriptional factor binding

sites including TATA-box and CCAAT-box were present

on the 50-flanking region of bovine FABP3, and four CpG

islands were found on nucleotides from -891 to ?118.

Seven serial deletion constructs of the 50-regulatory region

evaluated in dual-luciferase reporter assay indicated that its

core promoter was 384 base pairs upstream from the

transcription initiation site. The transcriptional factor

binding sites RXRa, KLF15, CREB and Sp1 were con-

served in the core promoter of cattle, sheep, pigs and dogs.

These results provide further understanding of the function

and regulation mechanism of bovine FABP3.

Keywords Cattle � FABP3 � 50-RACE � Promoter � Dual-
luciferase reporter

Introduction

Fatty acid binding proteins (FABPs) belong to a small

molecular weight (14–15 kDa) and highly conserved

cytoplasmic protein family that bind fatty acids with high

affinity [1]. They have a crucial role in intracellular fatty

acid transport and metabolism [2]. In mammals, there are at

least nine members in the FABP family which consists of

FABP1 to FABP9 [3, 4].

Fatty acid binding protein 3 (FABP3), also known as H-

FABP, mainly expresses in mature cardiomyocytes and

skeletal muscle, but also exists in other tissues [5]. FABP3

plays a role in fatty acid transport and utilization in cardiac

or skeletal muscle [6]. In addition, FABP3 is essential for

cold tolerance and efficient fatty acid oxidation in the

brown adipose tissue of mice [7]. Over-expression of the

FABP3 gene can promote adipogenesis in 3T3-L1 pre-

adipocytes [8]. Recently, FABP3 has been considered as a
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candidate gene associated with intramuscular fat (IMF)

content in domestic animals.

A large number of studies have shown that the genetic

polymorphism of FABP3 is positively correlated with IMF

content in pigs [9–16]. In goats, the expression level of

FABP3 is significantly correlated with IMF content [17].

Furthermore, the expression level of FABP3 is significantly

different between low- and high-marbled groups in Korean

cattle [18]. It is therefore important to explore the tran-

scriptional regulation mechanism of FABP3, which helps

to improve IMF content in domestic animals.

To date, there are many reports about the expression

regulation of FABP3 [19–22]. However, the information

about transcriptional regulation of FABP3 in cattle is

limited. To better understand the function and the tran-

scriptional characteristics of bovine FABP3, we analyzed

the spatial expression pattern and identified the transcrip-

tion initiation sites of the bovine FABP3. In addition, the

50-regulatory region of bovine FABP3 was cloned and

investigated in skeletal muscle cells and adipocytes.

Materials and methods

Ethics statement

All animal procedures were performed according to the

guidelines of the China Council on Animal Care and the

protocols were approved by the Experimental Animal

Management Committee (EAMC) of Northwest A&F

University.

Molecular cloning and sequence analysis

GenomicDNAwas extracted fromQinchuan cattle blood, as

described previously [23]. To obtain the 50-regulatory
region, the FABP3 gene was searched in the UCSC genome

database (http://genome.ucsc.edu/cgi-bin/hgGateway). The

primers (FABP3-PF/R, Supplemental Table 1) were

designed based on the bovine genomic sequence (bos-

Tau8_refGene_NM_174313 range = chr2:122719225-

122783830) to amplify approximately 2 kb of 50-regulatory
sequence. The PCR product was purified from an agarose gel

and subsequently cloned into the pGEM-T-Easy vector

(Promega Corp.) prior to sequencing. The 50-regulatory
region was analyzed for potential transcription factor bind-

ing sites using the TESS (http://www.cbil.upenn.edu/cgi-

bin/tess), Genomatix suite (http://www.genomatix.de/) and

TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.

html). CpG islands were predicted usingMethPrimer (http://

www.urogene.org/methprimer/).

The 4 kb 50-regulatory region of FABP3 from eight

species (Supplemental Table 2) were obtained from the

genome database at the National Center for Biotechnology

Information (NCBI). Multi-alignments of 50-regulatory
region among the eight species were performed using

ClustalX 2.0 [24].

50-Rapid amplification of cDNA ends (50-RACE)

To identify the transcription initiation sites, 50-RACE from

total RNA of longissimus dorsi muscle of adult Qinchuan

cattle was performed according to the manufacturer’s

protocol using the SMARTTM RACE Kit (Clontech Inc,

Palo Alto, CA, USA). The PCR primers (FABP3-GSP1 and

FABP3-GSP2, Supplemental Table 1) were adopted to

acquire the 50-end of the FABP3 gene. Reaction conditions

were performed in the first PCR as described previously

[25, 26]. The second PCR template was a 20-fold dilution

of the first PCR products.

Real-time PCR analysis of spatial expression pattern

Sixteen tissues (longissimus dorsi muscle, kidney, heart,

biceps femorismuscle, liver, subcutaneous fat, spleen, lung,

cecum, rumen, reticulum, omasum, abomasum, testis fat,

large intestine and small intestine) were obtained from three

adult Qinchuan cattle. Total RNA was extracted from the

samples using the Trizol reagent (Invitrogen, Carlsbad, CA,

USA) and treated with RNase-free DNase I (MBI Fermen-

tas, St. Leon-Rot, Germany). RNA quality was assessed with

agarose gel electrophoresis and a ND-1000 Spectropho-

tometer (NanoDrop Technologies, USA). If the 260/280

ratio of the RNA was outside the range 1.8–2.1, the sample

was discarded. The RNA was then reverse-transcribed into

cDNA using M-MLV reverse transcriptase (Promega Corp.,

Madison, WI, USA). Glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) was selected as the endogenous refer-

ence. The primers of FABP3-RT-F/R and GAPDH-F/R

(Supplemental Table 1) [27] were used for this assay. The

cycling conditions were a single cycle of 95 �C for 10 s, 50

cycles of 95 �C for 3 s, 60 �C for 25 s, then a single cycle of

95 �C for 15 s, 60 �C for 60 s and 95 �C for 15 s. Other steps

were followed with SYBR Premix Ex TaqTMII (TaKaRa,

Biotechnology Co. Ltd, Dalian, P.R.C.) using the ABI 7500

RT-PCR system (Applied Biosystems, Foster City, Calif,

USA). The results were analyzed using the 2�DDCt method.

Cell culture, transfection and dual-luciferase

reporter assay

Mouse myoblasts of the C2C12 and 3T3-L1 cell lines were

cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10 % fetal bovine serum (FBS) (Gibco-

Invitrogen, Carlsbad, CA, USA) under humidified air
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containing 5 % CO2 at 37 �C. Seven serial deletion sub-

clones were amplified with 50-nested PCR primers

(FABP3-F1 * F7, Supplemental Table 1) and a common

30 primer (FABP3-R, Supplemental Table 1), which were

cloned into the SacI-XhoI sites of pGL3-basic vector

(Promega Corp., Madison, WI, USA). After sequencing

verification, the plasmids were extracted with an Endo-free

Plasmid Mini Kit (Omega Biotek, Norcross, GA, USA).

The plasmids (0.8 lg) and the lipofectamine 2000 (2 ll)
were co-transfected into C2C12 or 3T3-L1 cells grown in

24-well plates. To normalize the transfection efficiency, the

cells were co-transfected with 10 ng of Renilla luciferase

reporter plasmids (pRL-TK vector, Promega Corp.). The

pGL3-basic vector was used as the external control. At 5 h

after transfection, the media was replaced by DMEM with

2 % horse serum (HS) (Gibco-Invitrogen, Carlsbad, CA,

USA) to induce differentiation of C2C12 myoblasts to

myotubes for 40 h. At 45 h after transfection, the cells

were lysed and analysed with a dual-luciferase reporter

assay according to the manufacturer’s instructions [25, 26].

Statistical analysis

All values are expressed as the mean ± standard deviation

(SD). Differences between groups (gene expression levels

of real-time PCR between tissues, relative luciferase

activities between different constructs) were tested with the

Student’s T test (two-tailed). The result was considered

significant when the p-value was less than 0.05. The result

was considered highly significant when the p-value was

less than 0.01.

Results and discussion

Spatial expression pattern of bovine FABP3 gene

The results of real-time PCR analysis showed the highest

expression of bovine FABP3 in heart, followed by biceps

femoris muscle, longissimus dorsi muscle, large intestine,

small intestine, subcutaneous fat, cecum, rumen, lung,

reticulum, omasum, liver and abomasum (Fig. 1). Fluo-

rescence signals were not detected in spleen, kidney or

testis fat. The expression level of FABP3 in heart was

highly significantly different from others. The results were

generally consistent with that of FABP3 in rats [28].

Transcription initiation sites of the bovine FABP3

gene

To date, there are no published reports about transcription

initiation sites in the bovine FABP3 gene. In the present

study, 524 and 402 bp fragments were amplified in the first

and second PCR, respectively (Fig. 2). Three different 50

ends were discovered in the first exon based on sequencing

results of 13 positive clones. There were four, three and six

positive clones extended to the 62, 60 and 59 bp respec-

tively upstream from the translational start site (Fig. 4).

The guanine residue (G) in the 50-flanking sequence, 62 bp

upstream from the translational start site, was designated as

?1. After comparison with the Bos Taurus Assembly

(BTA) reference AC_000159.1 (range from 122723225 to

122783830) and NC_007300.5 (range from 127602177 to

127609785), the identified transcription initiation site (?1)

extended 16 bp to 50-end (50- GCTGGTCCCAGAGTCC-
30).

Characterization of the bovine FABP3 gene 50-
regulatory region

A 1998 bp fragment of the bovine FABP3 gene 50-regu-
latory region spanning nucleotides from -1822 to ?176

was cloned and submitted to GenBank database (GenBank

No. KJ649748). Several transcription factor binding sites

were recognized by sequence analysis of 50-flanking
sequences (Fig. 3). FABP3 mRNA was expressed most

highly in heart, consistent with the hypothesis that pro-

moters of tissue-specific expression genes usually contain a

TATA-box [29]. In addition, four CpG islands were pre-

dicted in the bovine FABP3 gene promoter using Meth-

Primer (Fig. 4), which indicated that the transcription

activity might be dependent on the CpG islands methyla-

tion level. In human, the methylation status of FABP3 is

associated with phenotypes of cardiovascular disease [30].

Compared with the 50-regulatory sequence (GenBank

No. KJ649748) of bovine FABP3, the 50-flanking sequen-

ces of cattle, sheep, pigs and dogs shared 99.95, 91.73,

77.11 and 29.58 % sequence similarity. However, the 50-
flanking sequences of human, rats, mice and chickens did

not show significant sequence similarity with that of bovine

FABP3. The result indicates that the function and tran-

scription mechanism of bovine FABP3 might be similar to

that of sheep.

Transcriptional activity of the bovine FABP3 gene

promoter

To identify the transcriptional activity of the bovine

FABP3 gene 50-regulatory region, seven serial deletion

constructs in pGL3-basic containing -1822/? 176,

-1584/? 176, -1284/? 176, -984/? 176, -684/? 176,

-384/? 176 and -84/? 176 were generated. The tran-

scriptional activities of the different plasmids constructs

were determined by transfecting them into C2C12 cells.

The results of dual-luciferase reporter assay indicated that

transcriptional activity of the construct -384/? 176 was
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approximately ten-fold greater than pGL3-basic without

promoter (Fig. 5a). The activities of the other constructs

were lower than that of the construct -384/? 176 and

higher than that of pGL3-basic. When the C2C12 cells

were induced by HS after transfection, the transcriptional

activity of the construct -384/? 176 was significantly

increased and highest in the seven constructs (Fig. 5a).

While the construct plasmids were transfected into 3T3-L1

cells, the transcriptional activity of the construct -384/

? 176 was also highest in the seven constructs (Fig. 5b).

These results indicated that a core functional promoter was

present in the upstream region of 384 bp from the tran-

scription initiation site (?1), consistent with previous

findings that the core promoter was generally near the

transcription initiation site [31, 32].

To identify positive regulatory elements among the eight

species, the region from nucleotides -384 to ?64 was

analyzed by transcription factor binding sites prediction

software. The result of multi-alignments showed that reti-

noid X receptor alpha (RXRa), Kruppel-like factor 15

(KLF15), specificity protein 1 (Sp1), cAMP responsive

element-binding protein (CREB), translation elongation

factor EF-1 alpha (TEF-2), TATA-box and CCAAT-box

sites were conservative in domestic animals including

cattle, sheep, pigs and dogs in this region (Fig. 6). RXRa is

a nuclear receptor that can form a heterodimer with PPARs

to regulate the transcription of genes involved in fatty acid

storage and glucose metabolism [33]. It is also reported

that peroxisome proliferator activated receptor alpha

(PPARa) is required but not sufficient for transcriptional

activation of FABP3 in the muscles of mice [20]. In the

present study, three PPARa transcription factor binding

sites were found on the 50-flanking sequences of the bovine

FABP3 gene.

KLF15 is a member of the Kruppel-like factors

(KLFs) family that regulate diverse arrays of biological

processes including cell stemness, proliferation, differ-

entiation, apoptosis and energy metabolism [34].

KLF15, as a critical regulator, cooperates with PPARa
to regulate cardiomyocyte lipid gene expression [35]

Fig. 1 Tissue distribution

analysis of bovine Fatty acid

binding protein 3 (FABP3)

mRNA. The values of FABP3

mRNA were normalized to

housekeeping glyceraldehyde-3-

phosphate dehydrogenase

(GAPDH) mRNA. Error bars

indicate the SD (n = 3). The

significance levels of T tests in

comparison to the expression

level of heart are indicated with

**P\ 0.01

Fig. 2 The results of 50-Rapid amplification of cDNA ends (50-
RACE) analysis. Lane 1 and 2 represent the first and second PCR

products, respectively. Lane M represents the marker of DL2000
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and plays an important role through regulating the

expression of PPARc in transcriptional regulation of

adipogenesis [36].

Sp1 is a zinc finger transcription factor that binds to GC-

rich motifs of many promoters; it is involved in multiple

cellular processes such as cell differentiation, cell growth

and apoptosis [37, 38].

CREB is a member of the leucine zipper family of DNA

binding proteins, which can form both homo- and hetero-

dimers with related factors to regulate the transcription of

adipocyte-specific genes for C/EBPb, FABP4, and ADI-

POQ in 3T3-L1 cells [39–41].

In addition, it is reported that Sirt1 can also regulate the

expression of FABP3 gene partly through the PPARc in pig

Fig. 3 Nucleotide sequences of the 50-regulatory region of the bovine

Fatty acid binding protein 3 (FABP3) gene. Arrows indicate the

transcription initiation sites. The guanine residue (G) is designated as

?1, other nucleotides are numbered relative to it. The transcription

factor binding sites are indicated with boxes. The PCR primers are

underlined. Four CpG islands are indicated in red. (Color figure online)

Fig. 4 The methylation level

analysis of the 50-regulatory
region of the bovine Fatty acid

binding protein 3 (FABP3)

gene. Four CpG islands are

indicated in blue. (Color

figure online)
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adipocytes [21]. Taken together, we speculate that RXRa
cooperated with PPARa to regulate the expression of

FABP3 in muscle, while KLF15 and CREB interact with

PPARa or PPARc to regulate the expression of FABP3

in adipocytes.

Conclusions

In summary, this study provided important information

about the expression and regulation of bovine FABP3. The

promoter sequence of bovine FABP3 gene was highly

Fig. 5 Analysis of bovine Fatty

acid binding protein 3 (FABP3)

gene promoter activities.

7-serial deletion constructs in

pGL3-basic were transfected

into C2C12 myoblasts or

myotubes (a) and 3T3-L1 cells

(b). Error bars indicate the SD

(n = 3). The significance levels

of T-tests in comparison to the

construct -384/? 176 are

indicated with *P\ 0.05 or

**P\ 0.01

Fig. 6 Multi-alignments sequence analysis of core functional pro-

moter of Fatty acid binding protein 3 (FABP3) in mammals. The

transcription factor binding sites are indicated with boxes. Nucleotide

sequences are numbered in 50-regulatory sequence of the bovine

FABP3 gene (GenBank No. KJ649748)
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similar to the homologs of sheep. It was highly expressed

in heart and muscles. Its core promoter was located on the

sequence from ?384 to ?1, where transcription factor

binding sites RXRa, KLF15, CREB and Sp1 were con-

servative among cattle, sheep, pigs and dogs. These results

provide further understanding of the function and tran-

scriptional regulation mechanism of the FABP3 gene.
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