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Abstract The human tissue-type plasminogen activator

(tPA) is a key kinase of fibrinolysis that plays an important

role in dissolving fibrin clots to promote thrombolysis. The

recombinant human plasminogen activator (rhPA) has

more thrombolytic advantages than the wild type tPA. To

increase the half-life and thrombolytic activity of tPA, a

mutant containing only the essential K2 fibrin-binding and

P activating plasminogen domains of the wild type tPA was

cloned. This fragment was then inserted into goat b-casein
regulatory sequences. Then, a mammary gland-specific

expression vector, PCL25/rhPA, was constructed, and the

transgenic rabbits were generated. In this study, 18 live

transgenic founders (12$, 6#) were generated using

pronuclear microinjection. Six transgenic rabbits were

obtained, and the expression levels of rhPA in the milk had

a range of 15.2–630 lg/ml. A fibrin agarose plate assay of

rhPA showed that it had strong thrombolytic bioactivity

in vitro, and the highest specific activity was [360 (360

times more than that of alteplase). The results indicated

that the rhPA containing only the K2 and P domains is

efficiently expressed with higher thrombolytic bioactivity

in the milk of transgenic rabbits. Our study also demon-

strated a new method for the large-scale production of

clinically relevant recombinant pharmaceutical proteins in

the mammary glands of transgenic rabbits.
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Introduction

The human tissue-type plasminogen activator (tPA) is a

thrombolytic serine protease synthesized and secreted by

vascular endothelial cells that plays a significant role in

dissolving fibrin clots through fibrinolysis and transforming

plasminogen into plasmin in the blood vessels to promote

thrombolysis [1–3]. Mature tPA is a single-chain glyco-

protein with a MW of 70,000 that consists of 527 amino

acids and 17 disulfide bonds [4] and can be divided into the

following five regions: the finger domain (F, residues 1–50)

with a fibrin-binding site, the epidermal growth factor

domain (E or EGF, residues 51–87) with a liver cell

membrane receptor-binding site, the kringle1 domain (K1,

residues 87–176) with a glycosylation site (Asn117), the

kringle2 domain (K2, residues 177–275) with another fib-

rin-binding site, and the serine protease domain (P, resi-

dues 276–527) with the enzyme catalytic site [5, 6]. Each

domain has its own specific function. The F and K2

domains can mediate specific interactions with fibrins, and

the F domain is the most important in determining the half-

life of tPA in vivo. The E and K1 domains are predomi-

nantly associated with the elimination of tPA in vivo [7].

The serine protease P domain converts plasminogen into

active plasmin, which also plays an important role in

thrombolysis [8]. Therefore, the absence of the F domain

can decrease the fibrin-binding specificity, inhibiting sys-

temic bleeding. Previous studies found that because there is

no F domain, only the K2 domain, thrombolytics have a

low affinity for fibrin (only 20 % of the wild type tPA
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affinity) and will not bind to the surface of the blood clot

during thrombolysis, which results in rapid and efficient

thrombolysis. Thus, the thrombolytics can better suppress

the hemorrhagic side effects [9]. The absence of the E

domain can prevent degradation of tPA by liver cells and

thus prolong the half-life of tPA in vivo. The loss of the K1

domain can maintain the stability of tPA [10]. Hence,

recombinant human plasminogen activator (rhPA) with a

deletion in these three domains (F, E, and K1) is expected

to have stronger thrombolytic activity than tPA [11–13].

Previous evidence revealed that the K1 and E domains

mediate an interaction between tPA and the surface

receptor of a liver cell and then accelerate the plasma

clearance of tPA [14, 15]. The high mannose oligosac-

charide chains in the K1 structural domain are also corre-

lated with clearance [16]. Thus, the elimination of the K1

and E domains can play an important role in reducing the

clearance and lengthening the half-life, which enhances the

thrombolytic activity [17]. As described above, the F

domain had a higher affinity for fibrin, and thus, the

absence of the F domain can decrease the hemorrhagic side

effects [14]. Reteplase is a third-generation thrombolytic

agent consisting of the K2 and the protease domains, but it

lacks the K1, F and E domains of tPA [18]. A previous

study demonstrated that one of the most important advan-

tages of reteplase is that it has a prolonged half-life, but the

clinical advantage of tPA is that it is most effective when

administered in an accelerated regimen of an initial bolus

and two timed infusions, and it is the benchmark to which

all new thrombolytic agents are compared [19]. Thus, we

focused on tPA in our study.

To date, many proteins have been expressed in the

mammary glands of transgenic animals [20]. There are

many advantages of this system, including higher pro-

ductivity, lower costs, post-translational modification, and

higher bioactivity using mammary gland bioreactors to

produce tPA and rhPA compared to other expression

systems [21–23]. Currently, many mammary gland

bioreactors have been reported in China and other

countries [21, 24, 25]. The first studies on transgenic

rabbits were conducted in 1985 by Brem and Hammer

et al. [26, 27]. Later, transgenic rabbits became one of

the most widely used and effective animals for the pro-

duction of recombinant proteins in milk. Compared to

goats, rabbits have a larger litter size (8–12 bunnies),

have a shorter gestation period (30–32 days) [28], are

polyestrous animals, have a higher rate of ovulation,

have a clearly defined genetic background and are easier

to manage and feed. Compared to mice, rabbits are

phylogenetically closer to humans [29] and have a higher

milk yield (100–300 ml/lactation). Due to these advan-

tages and similarities, rabbits are preferentially used in

mammary gland bioreactor studies.

In this study, to increase the half-life and improve the

thrombolytic effect of tPA, the mammary gland bioreactor

of transgenic rabbits was chosen to produce a mutant rhPA

with deletions of the F, E and K1 domains. Then, the

modified cDNA and the regulatory sequence of goat b-
casein were cloned into the mammary gland-specific

expression vector PCL25 [30]. The rhPA without the F, E,

and K1 domains was successfully expressed in the milk of

the transgenic rabbits, and its expression levels and

bioactivity in vitro were analyzed. The aim of this study

was to evaluate the practicability of producing novel highly

efficient thrombolytic drugs using transgenic rabbit mam-

mary gland bioreactors.

Materials and methods

Materials

The PCL25 plasmid [30] was previously generated and

cloned by the Engineering Research Center for Transgenic

Animal Pharmaceutics, Yangzhou University, Jiangsu

Province, China. The structure of the rhPA expression

construct is shown in Fig. 1. This PCL25/rhPA vector

contains the 50 and 30 regions of the goat b-casein regulator

gene, cmv, and rhPA (only the coding sequences of the K2

and P domains) (Fig. 1). The experiment was carried out

using Chinese albino rabbits (female) weighing 2.5–3.0 kg

that were provided by the Yangzhou Medical Laboratory

Animal Center. The rabbits were housed with 12 h

(7:00–19:00) daylight at 20 �C. All chemicals were pur-

chased from Sigma Chemical Co. (St. Louis, MO) and

China, unless otherwise specified.

This study was approved by the Institutional Animal

Care and Use Committee of Yangzhou University. All

animals were maintained and processed in accordance with

the Developing Guidelines on the Care and Use of Animals

[31]. All surgeries were performed under atropine sulfate

and zoletil-50 anesthesia, and all efforts were made to

minimize any suffering.

Fig. 1 Combined diagram of the PCL25/rhPA vector containing the

hybrid casein/CMV promoter and rhPA for producing transgenic

rabbits. CMV cytomegalovirus, rhPA recombinant human plasmino-

gen activator
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Methods

Generation of transgenic rabbits

A 17 kb DNA fragment was obtained by digesting the

PCL25/rhPA vector with SalI and NotI, purifying the DNA

using agarose gel electrophoresis and diluting it to 5 ng/ll.
The purified DNA was microinjected into the fertilized

eggs of the superovulated female rabbits [24]. Sexually

mature female rabbits (6–12 months old) were superovu-

lated using a standard regimen described in previous

studies [28, 32]. The protocols for the surgery and embryo

transfer were described earlier [33, 34]. The average

pregnancy lasted 30–32 days. Transgenic founder rabbits

were identified with PCR analysis of the extracted genomic

DNA. The PCR was performed using CMV enhancer-rPA-

specific primers designed by Primer 5.0, Oligo (CMV/rhPA

set; the primer sequences were as follows: F1: 50-CGT
GGATAGCGGTTT GA-30; R1: 50-GAGCCCTCCTTTGA
TGC-30).

Enzyme-linked immunosorbent assay

The whey samples from the transgenic rabbits were cen-

trifuged at 10,0009g for 30 min, and the fat in the upper

layer with a lower turbidity was dislodged to gather the

whey. Gel filtration chromatography was used to separate

and purify the whey. Additionally, the sodium dodecyl sul-

fate (SDS) polyacrylamide gel method and reversed-phase

high-performance liquid chromatography were used to test

the proteins. Then, the purified rhPA protein was collected

and used to coat a microplate to construct a solid-phase

antibody. rhPA was successively added to the microplate

coated with a monoclonal antibody, and this was then

combinedwith the rhPA labeledwith horseradish peroxidase

(HRP) to form an antibody-antigen enzyme-labeled anti-

body complex. After thorough washing, the complex was

mixed with the chromogenic substrate tetramethylbenzidine

(TMB). Following catalysis of HRP, TMB turned blue, and

with the acid, it finally turned yellow. The intensity of the

color and the rhPA in samples were positively correlated.

Absorbance (optical density, OD) was tested via enzyme-

linked immunosorbent assay (ELISA) at 450 nm, and the

concentrations of rhPA in the samples were calculated using

a standard curve. The alteplase, whey from normal non-

transgenic rabbits, and phosphate-buffered saline (PBS)/

ddH2O were used as the positive control, negative control,

and blank control, respectively. Meanwhile, the saliva and

blood of transgenic rabbits were used for specific detection.

All samples were added at 100 ll per well in a 1:1 volume of

0.1 M carbonate/bicarbonate buffer (pH 9.6) into 96-well

microplates and incubated overnight at 4 �C. Detailed pro-

cedures can be found in other studies [28, 32].

Western blot analysis

Skim milk samples obtained from all the transgenic rabbits

were diluted for analysis with 100 volumes of Tris-buffered

saline (125 mM NaCl, 25 mM Tris, pH 7.4, 5 mM KCl,

2 mM phenylmethylsulfonyl fluoride), and then, these

samples were diluted 1:1 with a 29 sodium dodecyl sul-

fate-polyacrylamide gel electrophoresis (SDS-PAGE)

sample buffer (100 mM tris-Cl, pH 6.8, 200 mM 1,4-

dithiothreitol, 4 % (w/v) SDS, 0.2 % bromophenol blue,

20 % glycerol). These samples were denatured in boiling

water (100 �C) for 5 min, and 15 lg of each sample was

separated with 12 % (w/v) SDS-PAGE using a Bio-Rad

1.5 mM spacers (denaturing PAGE; Mini-Protean II Elec-

trophoresis Cell; Bio-Rad Laboratories, Hercules, CA).

Separated unstained proteins were transferred onto

polyvinylidene fluoride membranes (0.45 lM; BioTrace,

Pall Co., assembled in Mexico; Lot T215932) using

transfer buffer (1.93 g/l tris, 9 g/l glycine) and 1 mA/cm2

for 180 min. The membranes were blocked at 37 �C for 2 h

in 20 mM Tris, 137 mM NaCl (pH 7.6), 0.1 % Tween-20,

and 10 % fetal bovine serum and then incubated at 4 �C
overnight with an anti-rPA primary antibody (1:2000

dilution, against human tPA, mouse monoclonal IgG, sc-

59721; Santa Cruz Biotechnology, Santa Cruz, CA). After

four washes with the washing buffer (20 mM tris, 137 mM

NaCl, 1 % Tween-20, pH 7.6), the membranes were

incubated with an HRP-conjugated goat secondary anti-

body (1:2000 dilution, goat anti-mouse IgG-HRP, sc-2005;

Santa Cruz Biotechnology) for 3 h at 37 �C. Finally, the
membranes were incubated in the colorimetric solution

(100 ml volumes with 50 mg DAB, 0.05 M TB, 30 ll
30 % H2O2, pH 7.6) for 20 min at room temperature after

washing thoroughly four times.

Activity analysis (fibrin agarose plate assay, FAPA)

The whey samples were diluted for analysis using 200

volumes of tris-buffered saline. The fibrinogen-thrombin-

agarose gel plate was prepared and consisted of 1.0 % (w/

v) agarose, 10 mg/ml fibrinogen containing a small amount

of plasminogen, and 1 U/ml thrombin in PBS (137 mM

NaCl, 10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, pH

7.4) [35].

The agarose gel was boiled and melted completely, and

it was then placed in a 15 ml centrifuge tube. When the

temperature of the gel dropped to 55–60 �C, 1 ml fibrino-

gen pre-incubated at 37 �C and 1 ml thrombin pre-incu-

bated at 42 �C were added, mixed rapidly, and then poured

onto a 9 cm diameter transparent plexiglass plate. After the

cells were equilibrated to room temperature, wells were

drilled, and covers were placed on top. Finally, a 20 ll
sample was loaded in each well and incubated at 37 �C
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overnight or longer. To measure fibrinolytic activity of

rhPA, the diameters of the thrombolytic transparent circles

were observed and measured.

Results and analysis

Generation of transgenic rabbits

In total, 326 microinjected embryos were transferred to 15

rabbits, and 11 became pregnant. This resulted in 12 female

and 6 male transgenic founders from 57 overall offspring,

which were analyzed by PCR and sequencing screening.

Then, agarose gel electrophoresis was subsequently con-

ducted, and the 566 bp PCR product was identified. The

PCR product is shown in Fig. 2. The efficiency of preg-

nancy, embryo survival, and transgene integration was

73.3 % (11/15), 17.5 % (57/326), and 31.6 % (18/57),

respectively.

Expression of rhPA in the milk of transgenic rabbits

To characterize the expression of rhPA, milk was collected

from the 12 female transgenic animals during lactation.

The expression level of rhPA in milk was determined using

an ELISA; the standard curve was generated with the

OD450 as the horizontal axis and the content of rhPA

protein in whey as the longitudinal axis (Fig. 3). The

results showed that six rabbits from the 12 female founders

expressed rhPA, an expression rate of 50 % (6/12). Six

corresponding transgenic rabbit lines were generated, and

the expression levels of rhPA in the milk were

15.2–630 lg/ml (Table 1). The results in Fig. 3 and

Table 1 were obtained after the sample was diluted 500

times.

To assess possible ectopic expression of rhPA in the

transgenic rabbits, rhPA levels in the saliva and blood of

lactating rabbits were measured using ELISA. There was

no indication of rhPA in the saliva or blood from the

transgenic rabbits.

Compared to the non-transgenic wild type rabbits, the

six transgenic rabbits expressed a 39 kDa target-specific

protein in the milk as shown in the western blot analysis.

The detailed results of the western blot analysis are pro-

vided in Fig. 4.

Specific activity assay of rhPA in the milk

of transgenic rabbits

tPA is a serine protease that converts plasminogen into

active plasmin, which digests fibrin and dissolves fibrin

clots. Here, the activity of rhPA (specific activity) in the

milk was quantified using FAPA and ELISA. The

fibrinolytic activity of rhPA was measured using the size of

the thrombolytic transparent circle (Fig. 5a, b).

The activity analysis (FAPA) showed that the rhPA

products expressed by the six transgenic rabbits had fibri-

nolytic activity in vitro; the highest activity was equivalent

to approximately 227,600 lg/ml of the alteplase standard.

A standard curve was constructed using the logarithm of

the alteplase standard concentrations (log lg/ml) for the x-

axis and the transparent circle diameter (mM) for the y-axis

(Fig. 5c, d). Based on the standard curve, the calculated

activity of the expressed rhPA in the milk of transgenic

rabbits was approximately equivalent to the effects of

alteplase (Table 1). The FAPA of rhPA showed that the

proteins from the six transgenic rabbits had biological

activity in vitro and that the specific activity (equivalent of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M B1 B2 N1 N2 P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M N1 B P

1 2 3 4 5 6 7 8 9 10 M B1 B2 N1 N2 P

1 2 3 4 5 6 7 8 9 10 M B1 B2 N1 N2 P

A

B

C

D

566bp

566bp

566bp

566bp

19 N2

Fig. 2 The agarose gel was stained with ethidium bromide to

visualize the rhPA of transgenic rabbits. rhPA, recombinant human

plasminogen activator; (a 1–18 F0 represents the rabbit genome to be

tested, M DL2000 DNA Marker, B1, B2 double distilled water as the

blank control, N1, N2 native rabbit gene as the negative control,

P PCR amplification products of microinjection as the positive

control); (b 1–19 F0 represents the rabbit genome to be tested,

M DL2000 DNA Marker, B1, B2 double distilled water as the blank

control, N1, N2 native rabbit gene as the negative control, P PCR

amplification products of microinjection as the positive control); (c 1–
10 F1 represents the rabbit genome to be tested, M DL2000 DNA

Marker, B1, B2 double distilled water as the blank control, N1, N2

native rabbit gene as the negative control, P PCR amplification

products of microinjection as the positive control); (d 1–10 F1
represents the rabbit genome to be tested, M DL2000 DNA Marker,

B1, B2 double distilled water as the blank control, N1, N2 normal

rabbit gene as the negative control, P PCR amplification products of

microinjection as the positive control)
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biological activity/quantity expression) was 49–360 times

higher than that of alteplase (Table 1). Furthermore, in the

milk of normal non-transgenic rabbits and non-expressing

transgenic rabbits, the thrombolytic transparent circles

were not observed. The results demonstrated that the

highest specific activity of rhPA in the transgenic milk was

360 (compared with alteplase). Hence, this method could

be used to evaluate tPA and rhPA activity, although the

results may depend on individual differences and/or

uncontrolled factors.

Discussion

The aim of this study was to explore the feasibility of

producing novel highly efficient thrombolytic drugs by

constructing a mammary gland-specific expression vector

PCL25/rhPA and creating transgenic rabbits. Our results

are the first demonstration that transgenic rabbits could

efficiently express rhPA, containing only the K2 and P

domains, with higher thrombolytic bioactivity in the milk.

Moreover, the highest expression level of rhPA in the milk

was approximately 630 lg/ml, and the highest specific

activity was approximately 360 times greater than that of

alteplase.

In recent years, thrombolytic therapies have been shown

to be effective treatments that significantly improve the

conditions of patients and animals with thrombotic dis-

eases, such as myocardial infarction, cerebral thrombosis,

pulmonary embolism, and other vascular emboli. One

widely used thrombolytic drug is human tPA. As early as

1947, it was reported that the plasminogen activator could

be obtained from animal tissues and was called fibrinoki-

nase [4]. Pennica was the first to complete tPA gene

cloning and sequence analysis in 1983 [36]. Since then, the

structural-functional relationships of tPA have been studied

by many researchers in both academia and industry [1, 4,

37–40]. Kalyan et al. reported in 1988 that the F-E domain

deletion mutants showed a significantly increased half-life

in the plasma of mice [41]. Rouf et al. reported that dele-

tion of the F, E, or K domains of tPA increased in vitro

stability [42]. In addition, a variant with the above unfa-

vorable locus, deleted or mutated, liminated inhibition by

increasing the half-life in vivo, reducing systemic bleeding,

and enhancing the specific activity of thrombolysis
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Fig. 3 The concentrations of rhPA in the whey samples. rhPA,

recombinant human plasminogen activator; (the standard curve of the

concentrations of alteplase: 0.0267, 0.0433, 0.0875, 0.175, 0.350,

0.700 and 1.400 lg/ml; K17, K30, K06, K10, K34 and K29: the

detection results of the whey of transgenic rabbits after a 500 times

dilution)

Table 1 Specific activity of rhPA in the milk samples

Samples Transparent circle diameter

(mM)

FAPA of rhPA in the milk

(lg/ml)

ELISA of rhPA in the milk

(lg/ml)

Specific activity (rhPA/

alteplase, FAPA/ELISA)

K06 16.7 5964 42.2 141 (5964/42.2)

K10 20.4 14,202 42.8 332 (14,202/42.8)

K17 9.2 1028 15.2 68 (1028/15.2)

K29 27.4 227,600 630 360 (227,600/630)

K30 15.2 1592 32.6 49 (1592/32.6)

K34 20.5 13,752 276 50 (13,752/276)

ELISA enzyme-linked immunosorbent assay, FAPA fibrin agarose plate assay, rhPA recombinant human plasminogen activator

M N B K06 K10 K17 K29 K30 K34

44.3kDa

29.0kDa
39kDa

Fig. 4 Analysis of expression of rhPA in the milk of transgenic

rabbits using western blot analysis. Skim milk samples obtained from

transgenic rabbits were diluted for analysis using 100 volumes of

Tris-buffered saline and 15 ll milk per lane. Lane M molecular

weight standards, lane N negative control (whey of normal non-

transgenic rabbit), Lane B blank control (triple distilled water), Lanes

K06, K10, K17, K29, K30, and K34 whey from the transgenic founder

rabbits (arrow indicates rhPA as a 39 kDa band). rhPA recombinant

human plasminogen activator
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[43, 44]. These studies suggested the potential for

increasing the tPA half-life and thrombolytic effects

in vivo. Indeed, the recombinant mutant tPA (rhPA) with

deletions of the F, E, and K1 domains maintained the K2

domain and the P domain in our study. To demonstrate that

this mutant can be normally expressed as the target

recombinant protein, we demonstrated expression of the

protein, and the highest expression of rhPA in the milk was

630 lg/ml, and the highest biological activity was

approximately 360-fold greater than that of alteplase.

Currently, tPA and its recombinant mutants have pre-

dominantly been expressed in Escherichia coli [45, 46], the

seaweed Laminaria japonica [47], Chinese hamster ovary

cells [48], and the insect cell expression systems [6, 49–

51]. There are, however, a few reports on the expression of

tPA or rhPA in the mammary glands of mammals [38, 39,

52, 53]. Sha et al. [53] and Zhou et al. [39] reported that

when the protein was expressed in mouse milk, the milk

yield decreased. Another study conducted by Ebert et al.

[38] in goats reported a lower level of expression and found

that the lactation periods of the transgenic goats with high

levels of tPA in the milk were shortened (only by

30–60 days) [52]. However, there has been no study on the

expression of the rhPA in the mammary gland of rabbits.

Considering the merits and demerits of the previous studies

that successfully expressed recombinant human tPA and
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Fig. 5 FAPA of milk from transgenic rabbits. Milk samples were

diluted for analysis using 200 volumes of Tris-buffered saline.aWells

1–10 alteplase standard concentrations were 2880, 1440, 720, 360,

180, 90, 45, 22.5, 11.25, and 0 lg/ml, respectively); wells 11–16 milk

samples of transgenic founders K30, K24, K31, K34, K29, and K40,

respectively; well 17 milk samples of normal non-transgenic rabbit;

well 18 PBS. The diameters of the fibrinolysis transparent circle

(12 h, 1–18 wells) were 30.9, 27.5, 24.8, 23.5, 23.0, 22.5, 20.8, 18.6,

14.2, 0, 15.1, 0, 0, 20.5, 27.1, 0, 0 and 0 mM, respectively. bWells 1–

8 alteplase standard concentrations are 288, 144, 72, 36, 18, 9, 4.5,

and 0 lg/ml, respectively; wells 9–14 milk samples of transgenic

founders K06, K07, K17, K10, K15, and K08, respectively; well 17

milk samples of normal non-transgenic rabbit. The diameters of the

fibrinolysis transparent circle (24 h, 1–15 wells) are 25.2, 22.4, 20.6,

18.5, 16.0, 12.8, 9.3, 0, 16.7, 0, 9.2, 20.4, 0, 0 and 0 mm, respectively.

c A standard curve was constructed using the logarithm of the

standard concentrations (log lg/ml) (3.46, 3.16, 2.86, 2.56, 2.26, 1.95,

1.65, 1.35, 1.05) for the x-axis and the transparent circle diameter

(30.9, 27.5, 24.8, 23.5, 23.0, 22.5, 20.8, 18.6, 14.2 mM) for the y-axis.

d A standard curve was constructed with the logarithm of the standard

concentrations (log lg/ml) (2.46, 2.16, 1.86, 1.56, 1.26, 0.95, 0.65, 0)

for the x-axis and the transparent circle diameter (25.2, 22.4, 20.6,

18.5, 16.0, 12.8, 9.3, 0 mM) for the y-axis

780 Mol Biol Rep (2016) 43:775–783

123



wild type tPA, there is a gap in the research, and thus, we

assessed the practicability of expressing rhPA in the

mammary glands of transgenic rabbits. The thrombolytic

activity of the rhPA, a mutant protein with the E, F, and K1

domains removed, was evaluated in this study.

Cheng et al. [30] reported that the expression level of

recombinant human lactoferrin (rhLF), carried by the

mammary gland-specific expression vector of PCL25

containing goat b-casein regulatory sequences and a CMV

hybrid promoter/enhancer, showed a mean concentration of

3.25 mg/ml in transgenic mice. Hence, a PCL25/rhPA

vector, in which the rhLF coding sequence was replaced

with the 1.1 kb rhPA coding sequence, was constructed.

The successful expression of rhPA in the milk of six

independent transgenic founder rabbits was evaluated in

the present study, and the expression levels showed a range

of 15.2–630 lg/ml. This variation may be due to the

presence of different recombinant proteins, integration

sites, or inherent factors in the different species and dif-

ferent rabbits. The highest activity of rhPA obtained from

the milk of the six transgenic independent founder rabbits

was equivalent to approximately 227.6 mg/ml of the alte-

plase standard, as determined by the standard curve (K29).

The expression of rhPA was confirmed by western blot

analysis, which showed a band of approximately 39 kDa.

The FIFA showed that the highest biological activity of the

six transgenic rabbits expressing rhPA was 360 times more

than that of alteplase, which indicates that the thrombolytic

activity of the rhPA obtained from the milk of transgenic

rabbits greatly exceeded the activity of alteplase. There-

fore, we successfully demonstrated that the PCL25/rhPA

expression construct was a reasonable and effective

method for expressing rhPA in the milk of transgenic

rabbits.

In conclusion, our results indicated that the first system

expressing rhPA, which contains only the K2 and P

domains, from transgenic rabbits showed efficient pro-

duction of rhPA with higher thrombolytic bioactivity in the

milk. Simultaneously, a new method has been developed

for the large-scale production of clinically relevant

recombinant pharmaceutical proteins in the mammary

glands of transgenic rabbits.
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