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Abstract Caspases have been demonstrated to possess

important functions in apoptosis and immune system in

vertebrate. But there is less information reported on the

oyster larval development. In the present work, two full-

length molluscan caspase genes, named Cacaspase-2 and

Cacaspase-3, were characterized for the first time from

Fujian oyster, Crassostrea angulata. Which respectively

encode two predicted proteins both containing two cas-

pase domains of p20 and p10 including the cysteine

active site pentapeptide ‘‘QACRG’’ and the histidine

active site signature. Otherwise Cacaspase-2 also contains

a caspase recruitment domain. Homology and phyloge-

netic analysis showed that Cacaspase-2 shared high

similarity with initiator caspase-2 groups, but Cacaspase-

3 clustered together with executioner caspase-3 groups.

Cacaspase-2 and Cacaspase-3 mRNA were both highly

expressed in gills and labial palp and were significantly

expressed highly in larvae during settlement and meta-

morphosis. Through the whole mount in situ hybridiza-

tion, the location of Cacaspase-2 is in the foot of the

oyster larvae and the location of Cacaspase-3 is in both

the foot and velum tissues. These results implied that

Cacaspase-2 and Cacaspase-3 genes play a key role in

the loss of foot and Cacaspase-3 gene has an important

function in the loss of velum during larvae metamorphosis

in C. angulata.
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Introduction

The Fujian oyster, Crassostrea angulata, is an edible,

cupped oyster of high commercial importance and wide

distribution. During the oyster life cycle, the organism has

a biphasic life cycle including pelagic larvae, and a benthic

life that is morphologically distinct from planktonic larval

forms [1]. C. angulata larvae typically metamorphose into

juveniles simultaneously with or directly after settlement.

Larval settlement and metamorphoses are among the most

critical life periods, determining larval livability and the

adult oyster environment. In the larval settlement and

metamorphosis of oyster, dramatic change in morphology,

physiology and habitat occur [2] and these changes are

essential for the larva-to-adult transition, during which two

of the most important morphological change are loss of the

velum and the reorientation of the foot.

Apoptosis, programmed cell death characterized by a

series of distinct morphological and biochemical altera-

tions [3, 4], is a highly regulated and conserved active
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cellular process essential for successful embryonic

development and the maintenance of normal cellular and

tissue homeostasis [5]. This is especially true for

organisms which undergo metamorphosis-stage apoptosis.

In amphibians, larvae both have marine and terrestrial

habitats, during the amphibian life cycle cell apoptosis is

critical for larval development like as the loss of tail [6,

7] and also cell apoptosis play an important role in

regulation of insect larval metamorphosis [8, 9]. More-

over apoptosis has also been reported to occur during

larval metamorphosis in marine invertebrates. During

larval metamorphosis in Ciona intestinalis tail loss is

regulated by apoptotic genes and apoptosis-related fac-

tors [10, 11], suggesting the necessity of apoptosis for

larval metamorphosis. Even so, little has been reported

about the relationship between apoptosis and oyster

metamorphosis.

Caspases are critical for many apoptotic process stages

[12, 13]. The cysteinyl aspartate proteases named casp-

ases cleave substrates after aspartic acid residues which

lead to protein degradation, finally running to cell death.

Caspase proteins constitute the core of the apoptotic

machinery [14], and as such have two main functions:

death signal transduction and cellular protein cleavage,

whereby they activate/inactivate many biochemical and

morphological changes associated with apoptosis [15].

Depending on function, caspase proteins are categorized

into two groups: apoptotic or inflammatory caspases.

Then, apoptotic caspases can be further categorized as

initiator apoptotic caspases and effector apoptotic casp-

ases according to their functional site within the apoptotic

cascade [16]. The initiator apoptotic caspases have long

prodomains containing specific motifs such as death

effector domains (DEDs) or caspase recruitment domains

(CARDs) which are located up-stream in the caspase

cascade and mediate apoptotic signals, cleaving and

activating downstream effector caspases [17]. Effector

caspases cleave various cellular substrates, leading to cell

death [18, 19].

Here, we report that we cloned and characterized two

novel caspase genes of initiator and executioner caspases

from the Fujian oyster C. angulatan, a bivalve mollusk

with high economical value and worldwide distribution.

We also measured caspase gene expression in different

tissues and larval developmental stages, and inspected

caspase spatial location during early larval metamorphosis.

We found that each type of caspase genes is selectively

expressed in different tissues of the oyster larvae. These

data will establish a foundation for studying the molecular

mechanisms of mollusks larval metamorphosis and enable

us to understand how the foot and velum retrogress during

larval development.

Materials and methods

Samples collection and larva culture

Adult C. angulata were collected from the Xiamen coast

and dissected to obtain different tissues including gills,

visceral masses, female and male gonads, hemolymph,

mantle, adductor muscles and labial palps. Samples were

washed with 1 9 PBS, frozen in liquid nitrogen and stored

at -80 �C until processed. Larval culture of C. angulata

was conducted as previously described [20]. Larval sam-

ples were collected during the following stages: trocho-

phore; D-veliger; umbo-veliger; larvae before settlement;

larvae in metamorphosis (6 h after settlement); juveniles

(2 days after settlement). Samples were washed with

1 9 PBS (0.01 M), frozen directly in liquid nitrogen and

stored at -80 �C until processing. For whole-mount in situ

hybridization (WMISH), larvae after 6 h of epinephrine

treatment were collected and then fixed directly in 4 %

paraformaldehyde overnight at 4 �C, but larvae were first

anesthetized with gradual addition of MgCl2 solution to the

seawater in which the oysters were collected, and then

tissues were collected for fixation. The trochophore and

larvae were dehydrated across a methanol gradient and

stored in 100 % methanol at -20 �C.

RNA extraction and the first-strand synthesis

Total RNA of each sample was extracted with the RNAzol

RNA isolation kit (Biotecx, Houston TX, USA) according

to the manufacturer’s instructions. The integrity and

quantity of RNA was measured and total RNA was reverse-

transcribed into cDNA as described previously [20]. First

strand cDNA was synthesized and used as a template for

further PCR analysis.

Molecular cloning of two caspase genes and sequence

analysis

Cloning of full sequence caspase genes, 50-RACE and 30-
RACE, were conducted separately using the Takara 50-full

RACE and 30-full RACE cDNA Amplification Kit (Takara,

Dalian, China) according to the manufacturer’s instructions

and the publication of Yang and coworkers [21] with the

exception of the primers (primers for 50-RACE and 30-RACE

are depicted in Table 1). In this study, the caspase-coding

genes from C. angulata were designated as caspase-2 and

caspase-3. The two full caspase sequences were submitted to

Genbank (accession no. JX890390 and JX890391).

To confirm sequencing accuracy of the caspase genes

through RACE, two pairs of gene-specific primers

(Table 1) were used for amplifying caspase cDNAs with
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polymerase Ex Taq (Takara, China) according to the fol-

lowing conditions: denaturation at 94 �C for 5 min, fol-

lowed by 31 cycles at 94 �C for 30 s, 53 �C for 30 s, and

72 �C for 90 s. A final extension step was conducted at

72 �C for 10 min. The purified PCR products were cloned

into a pMD-19T vector and transmitted into DH5a com-

petent cells, plated on LB-agar flats, and eight independent

clones were sequenced in both directions.

The entire nucleotide sequence was analyzed using

BLAST from the National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/). DNAMAN

(DNAMAN Lynnon Biosoft, Santa Clara, USA) was used

to identify its encoding protein. Prosite Server (http://

expasy.org/prosite/) was used to predict the functional

alleles of the gene. Amino acid sequences were aligned

using the ClustalX (http://www.clustal.org/), and a phylo-

genetic tree was constructed using the Mega 4.1 program

and the neighbor-joining method of clustering based on a

PAM Matrix. The bootstrap value was computed over

1,000 replications.

Caspase expression analysis

Real-time qPCR was used to quantify changes in gene

expression within different tissues and larvae samples during

the development stages from trocophore to juvenile. The

reverse transcription and real-time qPCR details are previ-

ously described [21]. The RT-qPCR reactions were con-

ducted on ABI7500FAST. All samples were run in parallel

with the housekeeping gene 18S rRNA. Primers for real-time

qPCR are in Table 1. Data represent the means of three

biological replicates, respectively. Data from competitive

real-time PCR analysis subjected to one-way analysis of

variance (ANOVA) followed by multiple comparison test

with the LSD-t test was used to determine the differences in

means with SPSS software. The P value for significance was

set at P B 0.05.

Whole-mount in situ hybridization

Antisense and sense digoxigenin-labeled cRNA probes

were synthesized with a DIG-RNA labeling Kit (Roche,

USA). A PCR fragment related to Ca-chit was inserted to

the PGEM-T EASY vector (Promega, USA), and then the

ligation mixture was transformed into DH5a competent

cells followed by sequencing. Plasmids were used as the

template to amplify the DAcga cDNA fragment which was

subjected to in vitro transcription. Riboprobes were syn-

thesized by transcription with T7 and SP6 RNA polymer-

ase and digoxigenin-11-UTP (Roche). Whole-mount in situ

hybridization (WISH) was used for spatial expression

analysis based on the protocol used in ascidiacea [22] with

some modifications. WISH details have been described

previously [20]. Images were taken with a digital camera

(Olympus DP71) under a fluorescent light microscope

(Olympus BX51). Digital photographs were imported into

Adobe Photoshop CS, where they were cropped and the

brightness and contrast were optimized.

Table 1 List of primers

sequences used in this study
Name Experiment Sequence (50–30)

caCaspase2YZ-F1 Confirm-PCR TTTTGGTAACAGATGGAAGG

caCaspase2YZ-R1 Confirm-PCR GTCAGACTGCGTAGGAAGC

caCaspase2-F1 RACE GTGGTGTTCCCTTCCTTGA

caCaspase2-F2 RACE GGTGTTCCCTTCCTTGATG

caCaspase2-R1 RACE AAGGGAACACCACTGTCTAATG

caCaspase2-R1 RACE TCCTTCCATCTGTTACCAAAA

caCaspase3YZ-F1 Confirm-PCR ACATCGTGTCCTATTTCAA

caCaspase3YZ-R1 Confirm-PCR ATCTATCAGCATATCCTCAA

caCaspase3-F1 RACE CGTGGGTCGTCTCCTCAG

caCaspase3-F2 RACE CTTATGATGAAGAGTGGCAGAC

caCaspase3-R1 RACE CCTTCATTTGTCTGCCACTC

caCaspase3-R2 RACE CTCTCTTTCACATCTATCAGCAT

18S-F qRT-PCR CGGGG AGGTA GTGACGAA

18S-R qRT-PCR ACCAG ACTTG CCCTC CAA

caCaspase2-F qRT-PCR ACCAGGCAGTTCTACGTCAC

caCaspase2-R qRT-PCR GAGTCAGCAGCAAACATTTC

caCaspase3-F qRT-PCR TTATGATGAAGAGTGGCAGAC

caCaspase3-R qRT-PCR AAACATTCGCGTGAGTTATG
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Results

Sequence analysis of two caspase genes

In the present study, two molluscan caspase genes, Ca-

caspase-2 and Cacaspase-3, were cloned for the first time

from C. angulata. The full-length of caspase-2 cDNA

sequence was 2,528 bp, with a 1,923 bp open reading

frame encoding a 641-amino acid protein (Fig. 1) that was

*72.1 kDa (estimated pI = 6.66). The full-length of cas-

pase-3 cDNA sequence was 1,381 bp, with a 1,215 bp

open reading frame encoding a 404-amino acid protein

(Fig. 2) of *46.1 kDa (estimated pI = 5.4). Another

caspase-3 gene named Cgcaspase-3 from C. gigas, a sister

subspecies of C. angulata also consists of an 1215 bp of

open reading frame encoding a protein of 404 amino acids

[23], the protein sequences of Cacaspase-3 showed

96.78 % identity with the Cgcaspase-3 and also have the

similar domains including p20 and p10 domains. Caspase-

3 is an executioner caspases and ScanProsite analysis of the

deduced amino acid sequence revealed that caspase-2 and

caspase-3 both contained two domains of p20 and p10

which were conserved in the caspase family, including the

cysteine-active site pentapeptide ‘‘QACRG’’ and the his-

tidine-active site signature (Fig. 3). Caspase-2 had one

large N-terminal prodomain containing a CARD which is a

70-residue long structural motif and the caspase family

histidine signature HTVYDCVVVIFLTHG was located

between 466 and 480 amino acid residues (Fig. 1). These

structures demonstrated typical caspase family

characteristics.

b Fig. 1 The cDNA and deduced amino acid sequences (Genbank

accession No. JX890390) of Caspase-2 from C. angulata. The CARD

domains is underlined in red and the stop codon is indicated by

‘‘asterisk’’. The large P20 subunit and small P10 subunit are

respectively underlined in black and green. The caspase family

histidine active site and the pentapeptide in the cysteine active site are

respectively indicated in red and blue boxes. (Color figure online)

Fig. 2 The cDNA and deduced amino acid sequences (Genbank

accession No. JX890391) of Caspase-3 from C. angulata. The large

P20 subunit and small P10 subunit are respectively underlined in

black and green and the stop codon is indicated by ‘‘asterisk’’. The

pentapeptide in the cysteine active site is indicated in blue box. (Color

figure online)
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Based on BLASTp results, caspase-2 and caspase-3

had maximal identity of 43.1 % with the marine worm

Capitella teleta and 34 % identity with lancelet Bran-

chiostoma lanceolatum. Phylogenetic analysis of the

amino acid sequences between these and other caspases

indicated that initiator caspases were divided into two

main groups (Fig. 4): one branch included caspase-2 and

the second included caspase-8, -9, and -10. Caspase-2

was placed into the caspase-2 main branch, close to

invertebrate sequences from groups such as lancelets and

ascidiacea. Within the initiator caspases tree, all caspase-

8, -9, and -10 sequences as well as that of caspase-2 from

different species were almost clustered into different

groups. Based on homology analyses of other caspases

including caspase-3, -7, -1, -4 and -5 (Fig. 5), we found

that all selected caspases were divided into two distinct

clades in the phylogenetic tree, One clade (caspase-3 and

-7) belong to the executioner caspase superfamily.

Another (caspase-1,-4 and -5) group comprises the

inflammatory caspases. Cacaspase-3 was clustered toge-

ther with an executioner caspase.

Tissues distribution of two caspases

Tissue-specific expression of caspase was analyzed using

qRT-PCR in the various tissues of the normal oyster C.

crassostrea. As shown in Fig. 6a, b, two caspase mRNA

transcripts were expressed in all tissues but transcript

abundance in each tissue varied. The most transcripts were

detected in the labial palp and the gill followed by the

mantle and visceral mass. Caspase gene transcripts

revealed a relatively low expression in hemocytes, adduc-

tor muscles, and gonads.

Caspases expression in different developmental larval

stages

Transcripts of mRNA from both caspases from the

trochophore to the juvenile stage were also measured

(Fig. 7a, b) and caspase gene expression increased pro-

gressively over development, from D-shaped veliger larvae

to metamorphosing larvae where it peaked. Expression of

caspase-2 in the trochophore was higher than in D-shaped

veliger larvae.

Spatial–temporal expression of two caspases in larvae

during metamorphosis

Through in situ hybridization (Fig. 8), caspase-2 mRNA is

located in the foot of the oyster larvae and caspase-3 is

found in the foot and velum tissues during larval

metamorphosis.

Discussion

Many reports about caspases families suggest that they are

critical for cell apoptosis or tissue, suggesting that caspases

have central protease functions in apoptosis that cleave

target proteins at specific sites with typical aspartic acid

residues [24]. In Mytilus galloprovincialis and the gastro-

pod H. diversicolor, some caspase genes were recently

reported to be involved in immune defenses [25]. Few

reports describe caspase genes in tissue loss during larval

development in marine invertebrates. To address this def-

icit, we characterized two caspase genes in C. angulata and

investigated their roles in the loss of the larval foot and

velum.

Based on BLAST results and the prediction of structural

domains, the two caspases sequence obtained had the

caspase family signature and the conserved cysteine active

site pentapeptide as well as the typical p20 and p10

domains of the caspase family. In addition, through phy-

logenetic analyses, the two caspases were classified as

initiator and executioner caspases. One caspase had high

identity to caspase-2, whereas the other caspase had high

identity to caspase-3. Caspase-2 and -3 have high sequence

similarity with those sequences found in other animal

models [26, 27] and could be homologues to the Capitella

teleta and Branchiostoma lanceolatum caspase genes,

respectively.

The most important structural characteristic of initiator

caspases was the presence of the CARD in caspase-2,

which was similar to most other caspase-2 proteins

described in vertebrates [28]. And also the domains was

similar to another caspase-2 named as Cgcaspase-2 from

the oyster Crassostrea gigas, including CARD, P20 and

P10 domains [29], but the protein sequences of two cas-

pase-2 was completely different, The Cacaspase-2 showed

only 12.14 % identity with the Cgcaspase2. The Cacas-

pase-2 has the active-site pentapeptide QACRG (Fig. 1)

and the typical p20 domain consistent with the full-length

b Fig. 3 Multiple alignment of amino acid sequences of caCaspase-2,-

3 and other caspase-2 s and -3 s. The caspase family histidine active

site and the pentapeptide in the cysteine active site are respectively

indicated by blue and red boxes. The amino acid boxed in black

indicates conservation of identical residues in all sequences. The

amino acid boxed in pink indicates conservation of residues with

above 75 % consistency. Amino acid residues are numbered to the

right of each sequence and dots represent indels. Caspase amino acid

sequences are obtained from GenBank as follows: Homo sapiens-

cas2, NP_116764.2; Danio rerio-cas2, NP_001036160.1; Ciona

intestinalis-cas2, XP_002122917.1; Branchiostoma floridae-cas2,

XP_002586743.1; Homo sapiens-cas3, CAC88866.1; Branchiostoma

floridae-cas3, AAN45849.1; Danio rerio-cas3, CAX14649.1; Mytilus

galloprovincialis-cas3, ADZ24781.1. (Color figure online)
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functional caspase-2 in humans [30]. This differs from the

caspase-2 in the mussel, which may be a splice variant of a

full-length caspase-2 [31]. Sokolova suggested that the

death receptor-mediated apoptosis pathway may not be

functional in nonchordate invertebrates [32], but the pre-

sence of the initiator domain CARD in oyster caspase-2

and the CARD domain in caspase-2 has been reported to

associate with death receptors [33], and previously reported

descriptions exist regarding several proteins containing

death domains from other invertebrates [34, 35]. These

data suggest the possibility of a death receptor mediated

pathway in invertebrates. One of our caspases belong to the

caspase-3 subtype which is a main executioner gene in

apoptosis, responsible either partially or totally for

Fig. 4 Phylogenetic analysis of

initiator caspases. Neighbor-

joining (NJ) phylogenetic tree

for initiator caspase proteins

using MEGA 4.0. Caspase2

from Crassostrea angulata is

indicated by red ellipse.

Numbers next to the branches

indicate bootstrap value of each

internal branch in the

phylogenetic tree nodes from

1,000 replicates. (Color figure

online)
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proteolytic cleavage of many key proteins, such as nuclear

enzyme polymerases, which are cleaved in many different

systems during apoptosis. Caspase-3 contains short

prodomains and both the conserved cysteine active site

pentapeptide and the typical p20 and P10 domain structure

are well described in mammals [36]. In addition, the crit-

ical amino acid residues of the executioner caspases

involved in catalysis were well conserved among different

species [37]. Caspase-3 specifically degrades chromosomal

DNA within the nuclei via activating of the endonuclease

CAD and causes chromatin condensation [38]. Caspase-3

also induces cytoskeletal reorganization and cell disinte-

gration into apoptotic bodies.

Caspases are reported to be widely distributed in various

tissues of invertebrates and vertebrates [19, 39, 40]. In our

study, both caspase-2 and -3 mRNA were widely distrib-

uted in various tissues, indicating constitutive expression in

the adult oyster and a putative importance in eliminating

undesired or injured cells, thereby fulfilling organismal

development and homeostasis maintenance via regulating

apoptosis [41]. Interestingly, caspase mRNA was expres-

sed highly in the gill and labial palp which is consistent

with Cgcaspase-1 and Cgcaspase-3 from C.gigas [23],

indicating that caspases are probably involved in immune

or metabolic processes in oyster, because gills and labial

palp are the main tissues type involved in food and energy

exchange, and the gills also is the chief tissues for respi-

ration. Thus, injury to these tissues could be lethal; and,

high caspase expression here might be protective. In

addition, caspase-3 expression was detected in hemocytes

and lymphoid organs of white shrimp Litopenaeus vanna-

mei [42], but in C. angulata we found that caspase-3

expression was lower in hemocytes-a finding that is con-

sistent with reports regarding the colored abalone [25]. In

Fig. 5 Phylogenetic analysis of

executioner caspases. Neighbor-

joining (NJ) phylogenetic tree

for executioner caspase proteins

using MEGA 4.0. Caspase3

from Crassostrea angulata is

indicated by red ellipse.

Numbers next to the branches

indicate bootstrap value of each

internal branch in the

phylogenetic tree nodes from

1,000 replicates. (Color figure

online)
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M. galloprovincialis, adductor muscle tissue had the lowest

expression of most caspase genes [31], and these data were

confirmed by our studies (Fig. 6). In addition, we also

investigated caspase expression during larval develop-

mental stages. The mRNA expression of Cacaspase-2 in

trocophore was higher than D-shaped larvae but the mRNA

expression of Cacaspase-3 did not increase, indicating that

the initiator Cacaspase-2 did not regulated the Cacaspase-

3 expression in the mRNA level through cascade reation in

the Trocophore. The mRNA expression of Cacaspase-3

were stable in Trocophore and the D-shaped larvae

(Fig. 7), indicating that Cacaspase-3 retained constitutive

expression to maintain cellular homeostasis which is con-

sistent with Cgcaspase [23]. We also noted that Cacas-

pase-2 mRNA expression increased at an earlier time point

than Cacaspase-3, meanwhile in larvae in settlement Ca-

caspase-3 expression increased sharply comparing the

Cacaspase-2, finally the two Cacaspase achieved its peak

in larvae of metamorphosis, which also conform to the

expresssion description of the executioner caspase in

C.gigas. These results implied that the initiator Cacaspase-

2 actavated at an earlier time point than the executioner

Cacaspase-3 in larvae of settlement and metamorphosis

and both of Cacaspases play an important role in larval

settlement and metamorphosis from C. angulata.

Caspase play a central role in apoptosis signals pathway.

There are two major pathways for initiating apoptosis:

an extrinsic pathway and intrinsic pathway, These two

pathways activate the caspase cascade responsible for

carrying out the orderly cell death programme. Caspase-2

is an initiator caspase which can induce cytochrome-c

release [43–45] and subsequent formation of an active

complex of cytochrome-c with other apoptotic proteases

[46], further activating caspase-3 and causing cell death

Fig. 6 Distribution of

caCaspase-2 (a) and caCaspase-

3 (b) mRNA transcripts in

different tissues of adult

variously oyster analyzed using

quantitative real-time PCR.

Each bar represents the

mean ± SD of three replicates.

The reference sample is one of

the parallel samples of visceral

mass (a) and gill (b). Data with

significant difference between

each other at P \ 0.05 are

indicated by different letters.

Above the bars
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[47]. As shown in Fig. 8, using whole-mount in situ

hybridization, both caspase-2 and -3 mRNA was expressed

in the foot during the early stage of larval metamorphosis

in C. angulata, suggesting that a caspase-2/caspase-3

pathway is involved in foot loss.

Early studies suggested that caspase-2 was involved in

nervous system apoptosis [48, 49], and the oyster foot

contains the ganglion [50, 51]. Thus, this may explain high

expression of caspases-2 during metamorphosis. Our in situ

hybridization data suggest that caspases-3 mRNA located

both in the foot and velum may be explained by apoptosis

signals pathway coming together at the same point, causing

cell death by activation of caspase-3/7 [52]. Caspase-2

mRNA was not highly expressed in the velum, suggesting

that caspase-2/caspase-3 was not involved in loss of this

tissue. Therefore, caspase genes play an important role in the

loss of the foot and velum and the caspase-2/caspase-3

pathway is involved in foot loss.

In conclusion, two oyster caspase genes, Cacaspase-2

and Cacaspase-3 were characterized for the first time in C.

angulata. One was an initiator caspases and the other was

an executioner caspase. Caspase-2 and -3 mRNA were

both expressed in various oyster tissues and were signifi-

cantly expressed in larvae prior to metamorphosis. Through

the whole in situ hybridization the results indicated that

caCaspase genes play an important role in the loss of foot

and velum and furthermore the caspase-2/caspase-3 path-

way was involved in the loss of foot.

Fig. 7 Relative expression levels of caCaspase-2 (a) and caCaspase-

3 (b) during larval development in C. angulata. Each bar represents

the mean ± SD of three replicates. 1 Trocophore, 2 D-veliger, 3

umbo-veliger, 4 larvae in settlement, 5 larvae in metamorphosis (6 h

after settlement), 6 juveniles (2 days after settlement)

Fig. 8 caCaspase-2 and

caCaspase-3 mRNA expression

profiles in the larvae in 6 h after

epinephrine treatment by in situ

hybridization with sense

riboprobe (b) and antisense

riboprobes (c, d), normal larva

before metamorphosis (a)
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