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Abstract Marine pelagic fishes are usually characterized

by subtle but complex patterns of genetic differentiation,

which are influenced by both historical process and con-

temporary gene flow. Genetic population differentiation of

chub mackerel, Scomber japonicus, was examined across

most of its range in the Northwestern Pacific by screening

variation of eight microsatellite loci. Our genetic analysis

detected a weak but significant genetic structure of chub

mackerel, which was characterized by areas of gene flow

and isolation by distance. Consistent with previous esti-

mates of stock structure, we found genetic discontinuity

between Japan and China samples. Local-scale pattern of

genetic differentiation was observed between samples from

the Bohai Sea and North Yellow Sea and those from the

East China Sea, which we ascribed to differences in

spawning time and migratory behavior. Furthermore, the

observed homogeneity among collections of chub mackerel

from the East and South China Seas could be the result of

an interaction between biological characteristics and mar-

ine currents. The present study underlies the importance of

understanding the biological significance of genetic dif-

ferentiation to establish management strategies for

exploited fish populations.

Keywords Scomber japonicus � Gene flow � Population

structure � Microsatellite DNA � Northwestern Pacific

Introduction

Marine pelagic fishes generally exhibit large effective

population sizes, high dispersal capability, prolific fecun-

dity as well as long planktonic larval phases that are subject

to passive transport by marine currents. The biological

peculiarities of these fishes combined with the apparent

lack of physical barriers in the marine realm, are thought to

facilitate extensive gene flow and low genetic differentia-

tion among populations [1–4]. However, this long held-

view was challenged by recent studies that cryptic popu-

lation structuring has been increasingly detected in highly

abundant and widely distributed migratory marine fishes

[5–9]. The complicated interaction between marine envi-

ronment and biological characteristics of marine fishes

could sufficiently account for the differentiation process-

ing. Specifically, these complicated factors include histor-

ical vicariance events [10, 11], ocean fronts and currents

[12], environmental gradients (e.g., salinity and tempera-

ture) in water bodies [13, 14], larval retention [15], natural

homing as well as local habitat dependence [16, 17].

Hence, to understand the complex population structuring

and dynamics of marine migratory fish requires discerning

the relative significance of different mechanisms in shaping

and maintaining the pattern of population structure.

Considering the complexity of the physical peculiarities

of the marine environment and life history traits of marine
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pelagic fishes, it is difficult to detect distinct populations in

marine ecosystems. Lack of detectable differentiation

could be attributed to extensive gene flow, and it does not

necessarily imply the absence of structuring [18, 19].

Information on population structure is essential for the

development of rational and effective management strate-

gies for vulnerable fishery resources [20, 21]. Failure to

detect population units could lead to local overexploitation

and subsequently to resource declines [22]. An effective

way to obtain further insights to the factors that form and

maintain genetic divergence is to combine genetic data

with information on the physical characteristics of habitats

as well as biological peculiarities of marine fishes, to study

how these factors impact population structure patterns [7,

13, 16, 23].

Chub mackerel, Scomber japonicus (Houttuyn 1782) is a

broadly exploited pelagic fish species and has a cosmo-

politan distribution along warm and temperate waters of

Indo-Pacific Ocean [24–26]. In the Northwestern Pacific, it

is distributed from Japan along the Chinese coast south to

the Malay Archipelago [27], and it is commercially

exploited in waters of the East China Sea from Japan to

northern Taiwan as important fishery resources for China,

Korea, and Japan. However, increasing fishing effort has

led to a reduction in abundance of S. japonicus, and col-

lapse of chub mackerel fisheries was reported in the East

China Sea [28, 29]. The need to establish appropriate

management strategy for chub mackerel has led to several

genetic studies using a range of molecular markers. A

preliminary mitochondrial DNA study conducted by Tzeng

et al. [30] suggested that chub mackerel off Taiwan

belonged to a single gene pool. Shao and Chen [31]

undertook further studies on genetic variations of chub

mackerel based on random amplified polymorphic DNA

(RAPD) in the Yellow Sea and East China Sea. Their

results revealed the existence of two stocks of chub

mackerel in the Yellow Sea and East China Sea. Zhang

et al. [32] employed amplified fragment length polymor-

phism (AFLP) analysis on collection of chub mackerel

from the Taiwan Strait and its adjacent waters, and found

no significant genetic heterogeneity among samples. A

more recent microsatellite analysis detected the presence of

population structure in the East and South China Seas [33].

These studies have resulted in different conclusions

regarding the genetic structure and population identities of

chub mackerel at fine geographical scales. There has been

no comprehensive study on the Northwestern Pacific-wide

population structure of chub mackerel.

Microsatellite DNA has proven to be a useful marker in

uncovering population structure that was not apparent

using less variable markers [13, 34–36]. We estimated

genetic variation and population structure of chub mackerel

in the Northwestern Pacific using eight microsatellite loci

with the purpose to infer the relative role of biological

characteristics and environmental factors involved in

shaping contemporary population genetic structure of this

species.

Materials and methods

Sample collection

A total of 213 individuals were collected at 10 localities

along Chinese and Japanese coastal waters during

2008–2009 (Table 1; Fig. 1). Taxonomic status of the

fishes was identified morphologically [37]. A piece of

skeletal muscle was excised from each individual and

preserved in 95 % ethanol for DNA extraction.

Microsatellite genotyping

Genomic DNA was isolated from the muscle tissue by

proteinase K digestion followed by the standard phenol/

chloroform method [38]. Eight microsatellite loci were

PCR amplified using primers Sja3, Sja4, Sja5, Sja6, Sja8,

Sja9 developed from chub mackerel [39] and Sa2599,

Sa2770 from its congener, spotted mackerel Scomber

australasicus [40]. PCR reactions were carried out in 25 ll

reaction mixture containing 20 ng template DNA, 1.5 mM

MgCl2, 0.2 mM of each dNTPs, 0.5 lm of each primer, 1U

Taq polymerase (Takara). All PCRs were performed in an

Eppendorf thermal cycler following optimized reaction

conditions [39, 40]. PCR products were separated on 8 %

non-denaturing vertical polyacrylamide gel electrophoresis

and visualized with silver staining as described by Bassam

et al. [41]. A sizing standard (100–300 base pairs) was run

in the center and at both ends of each gel to calibrate allele

size. Furthermore, a reference sample was run on each gel

to ensure consistency in genotype scoring across runs.

Statistical analysis

Microsatellite genetic diversity was quantified as number

of alleles (A), observed heterozygosity (HO) and expected

heterozygosity (HE) for each locus and sample site using

POPGENE 1.32 [42]. Polymorphism information content

(PIC) was calculated using allele frequencies according to

the formula given by Botstein et al. [43]. The allelic

richness (RS), which is a standardized index of the mean

number of alleles per locus irrespective of sample size, was

calculated by Fstat 2.9.3 [44]. Deviations from Hardy–

Weinberg equilibrium (HWE) expectation and linkage

disequilibrium were tested for each site at each locus using

GENEPOP 3.4 [45] with 10,000 burn-in steps, and 500

batches of 5,000 Monte Carlo Markov Chain (MCMC)
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Table 1 Summary statistics for microsatellite DNA variability in chub mackerel

Location Abbr. Longitude/

latitude

Number Locus Average

Parameters Sa2599 Sa2770 Sja3 Sja4 Sja5 Sja6 Sja8 Sja9

Hachinohe HA 40.47�N 141.41�E 24 A 7 9 11 10 12 12 8 4 9.1

RS 5.1 6.1 4.5 6.5 7.1 6.0 4.1 2.5 5.2

HO 0.739 0.435 0.583 0.250 0.87 0.667 0.333 0.292 0.521

HE 0.829 0.876 0.65 0.897 0.921 0.859 0.665 0.334 0.754

PIC 0.784 0.842 0.620 0.862 0.892 0.824 0.617 0.311 0.719

Middle of the

North Pacific

MNP 35�N 171�E 15 A 8 7 8 5 10 11 8 4 7.6

RS 4.8 5.1 5.4 4.3 6.6 6.8 4.3 2.0 4.9

HO 0.714 0.357 0.733 0.200 0.733 0.467 0.533 0.200 0.492

HE 0.773 0.828 0.818 0.779 0.899 0.91 0.683 0.193 0.735

PIC 0.710 0.770 0.767 0.697 0.856 0.868 0.627 0.181 0.684

Dandong DD 39.47�N 124.23�E 10 A 9 5 6 4 9 7 4 3 5.9

RS 6.4 3.3 4.5 4.0 5.5 5.1 2.8 2.4 4.2

HO 0.800 0.200 0.400 0.600 0.500 0.778 0.400 0.111 0.474

HE 0.895 0.442 0.779 0.711 0.8 0.817 0.363 0.307 0.639

PIC 0.833 0.400 0.697 0.581 0.732 0.739 0.326 0.269 0.572

Rongcheng RC 37.03�N 122.57�E 24 A 18 13 10 10 14 11 9 4 11.1

RS 7.6 6.9 4.9 5.3 7.2 6.2 4.4 2.7 5.7

HO 0.667 0.81 0.522 0.350 0.682 0.75 0.5 0.167 0.556

HE 0.934 0.913 0.728 0.786 0.922 0.876 0.72 0.395 0.784

PIC 0.908 0.881 0.692 0.745 0.893 0.843 0.667 0.363 0.749

Rushan RS 36.83�N 121.52�E 24 A 9 9 6 8 12 12 8 4 8.5

RS 5.5 5.3 2.8 5.5 6.8 6.4 4.0 2.3 4.8

HO 0.571 0.556 0.211 0.368 0.632 0.524 0.500 0.273 0.454

HE 0.839 0.821 0.376 0.848 0.9 0.891 0.651 0.349 0.709

PIC 0.797 0.775 0.352 0.804 0.865 0.857 0.584 0.308 0.668

Yancheng YC 34�N 124�E 24 A 14 10 7 9 11 10 7 5 9.1

RS 6.7 5.7 3.3 5.8 6.8 6.1 4.4 2.7 5.2

HO 0.619 0.762 0.182 0.368 0.625 0.889 0.400 0.273 0.515

HE 0.901 0.844 0.498 0.868 0.907 0.879 0.710 0.396 0.750

PIC 0.869 0.804 0.469 0.826 0.867 0.838 0.662 0.369 0.713

Ningbo NB 29�N 123.45�E 24 A 13 8 6 8 11 4 4 5 7.4

RS 6.3 4.7 2.8 5.7 6.4 3.0 2.1 2.7 4.2

HO 0.773 0.409 0.217 0.250 0.682 0.429 0.095 0.095 0.369

HE 0.878 0.737 0.352 0.866 0.891 0.479 0.224 0.340 0.596

PIC 0.844 0.694 0.332 0.808 0.858 0.433 0.211 0.316 0.562

Wenzhou WZ 27.97�N 121.37�E 24 A 13 11 8 8 13 9 6 5 9.1

RS 6.2 5.8 2.9 5.1 6.4 5.4 3.2 2.5 4.7

HO 0.739 0.714 0.304 0.150 0.739 0.500 0.400 0.227 0.472

HE 0.862 0.848 0.386 0.803 0.882 0.786 0.497 0.327 0.674

PIC 0.828 0.808 0.364 0.757 0.850 0.742 0.460 0.304 0.639

Xiamen XM 24.45�N 119.45�E 20 A 12 8 7 7 16 9 7 3 8.6

RS 6.5 5.4 3.3 4.8 7.8 5.0 3.7 1.8 4.8

HO 0.579 0.4 0.5 0.250 0.800 0.526 0.400 0.177 0.454

HE 0.896 0.851 0.437 0.797 0.944 0.765 0.537 0.169 0.675

PIC 0.860 0.807 0.413 0.729 0.914 0.721 0.505 0.157 0.638

Shanwei SW 22.12�N 116.43�E 24 A 13 9 4 9 13 9 7 4 8.5

RS 6.5 6.1 2.7 6.2 6.7 5.0 4.0 1.7 4.9

HO 0.696 0.813 0.292 0.438 0.565 0.500 0.542 0.091 0.492

HE 0.892 0.879 0.395 0.889 0.901 0.801 0.665 0.133 0.694

PIC 0.860 0.835 0.363 0.846 0.871 0.756 0.617 0.127 0.659

A Allelic number, RS allelic richness, HO observed heterozygosity, HE expected heterozygosity, PIC polymorphism information content
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steps per batch. Critical significance levels for multiple

simultaneous tests were adjusted using the sequential

Bonferroni correction [46].

To test whether mutation or genetic drift contributed to

genetic differentiation of chub mackerel populations, we

performed the allele size permutation test to compare allele

identity-based statistic FST (IAM) [47] and allele size-

based statistic RST (SMM) [48]. The procedure was

implemented in the program SPAGeDi 1.3 [49]. RST were

calculated for each locus and compared with the distribu-

tion of qRST values generated by 1000 permutations. A

significant one-side test establishes the alternative

hypothesis that genetic differentiation is caused mainly by

SMM-like mutation (RST [ qRST), otherwise no contribu-

tion of SMM to genetic differentiation. In this study, a non-

significant result showed that stepwise mutations were not

informative (P = 0.0866). Therefore, FST rather than RST

estimates were used for the subsequent genetic analysis, as

estimated by the program Fstat 2.9.3 [44] and significance

assessed with permutation tests (1,000 replicates). To test

for isolation by distance in chub mackerel, correlation

between genetic differentiation and geographical distance

between sampling sites was assessed using a Mantel pro-

cedure. The logarithm of geographical distance in kilo-

meters was regressed against FST/(1 - FST) as computed

in IBDWS (http://ibdws.sdsu.edu/*ibdws/) [50, 51]. Sig-

nificance of the regression slopes was tested with 1,000

permutations.

Three dimensional factorial correspondence analysis

(3D-FCA) was performed in GENETIX 4.05 [52] to

explore population divisions and relationships of chub

mackerel, independent from a prior knowledge of their

relationships. A model-based Bayesian clustering algo-

rithm was undertaken using STRUCTURE 2.1 [53] to

determine the number of genetic discrete populations

(K) with the highest posterior probability. The simulated

K values ranged from 1 to 10 (total sites). Ten independent

runs were implemented for each specific K-value in order

to verify the consistency of the results. The simulations

were conducted assuming an admixture model with cor-

related allele frequencies, which is considered as the

superior model for detecting structure among closely

related populations [54]. MCMC consisted of 100,000

burn-in iterations followed by 1,000,000 iterations. Finally,

we conducted a hierarchical analysis of molecular variance

(AMOVA) in ARLEQUIN 2.000 [55] to test population

structure across the entire geographic sample range and

among putative regional grouping of samples. For all cal-

culations, significance was assessed by 1,000 random

permutations and P values from multiple comparisons were

Bonferroni adjusted [46].

Results

Genetic variability

Genotyping of 213 individuals of chub mackerel from 10

locations enabled scoring of 113 alleles at eight microsat-

ellite loci. The amount of genetic variability in terms of

average number of alleles, observed and expected hetero-

zygosities was similar among sampling sites for the same

microsatellite locus (Table 1). However, large difference

was detected among microsatellite loci. The average

number of alleles per locus (A) over samples ranged from

4.1 alleles for Sja9 to 12.1 for Sja5 and the average number

of alleles per population ranged from 5.9 (DD) to 11.1

(RC). The allelic richness varied between 4.2 (DD) and 5.7

(RC). The observed and expected heterozygosities ranged

from 0.369 to 0.556 and 0.596 to 0.784 per population,

Fig. 1 Map showing sample

locations of chub mackerel,

samples are marked by

abbreviations that correspond to

Table 1. Ocean currents are

shown: 1 Kuroshio Current; 2

Taiwan Warm Current; 3

Tsushima Current; 4 Yellow

Sea Warm Current; 5 Oyashio

Current; 6 China Coastal

Current
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respectively. The population with the highest polymor-

phism information content (0.749) was the population NB,

whereas that with the lowest value (0.562) was the popu-

lation RC.

Thirty of 80 locus-by-population tests exhibited signif-

icant departure from HWE with heterozygote excess, but

none of which remained significant after correction for

multiple tests. Significant linkage disequilibrium was

detected between Sja3 and Sja9 over all populations. In

addition, such case was also found between Sja3 and

Sa2770 in the population RC and NB. Thus, locus Sja3 was

excluded from subsequent analyses.

Population genetic differentiation

The allele size permutation test did not detect any RST

value significantly [qRST (Table 2), suggesting that FST

should be preferred over RST for the measurement of

genetic differentiation between chub mackerel populations.

The global test for genetic differentiation (FST = 0.049,

P \ 0.05, 95 % C.I. 0.029–0.068) over all loci suggested

population structuring of the analyzed samples. Pairwise

FST values between 10 populations ranged from 0.0109 to

0.161, and most of them were significant after sequential

Bonferroni correction except 7 comparisons (Table 3). FST

estimates between population pairs that included RS sam-

ples were significant, whereas many non-significant out-

comes were observed among samples collected from the

East and South China Seas. The MNP population was

significantly differentiated from other samples with pair-

wise FST values ranging from 0.0457 to 0.161, except from

the geographically closest HA samples.

According to the Mantel test, a significant correlation

(r = 0.549, R2 = 0.301, P \ 0.05) was observed between

genetic distance determined as FST/(1 - FST) and geo-

graphical distance based on all loci, indicating isolation by

distance among chub mackerel populations (Fig. 2). The

linear regression explained 30.1 % of the variation in

genetic differentiation of chub mackerel populations. Three

dimensional factorial correspondence analysis (3D-FCA)

explaining 47.25 % of the overall variation, separated the

three Bohai Sea and North Yellow Sea populations (DD,

RC and RS) from the five populations (YC, NB, WZ, XM

and SW), with the remaining two Japan populations (MNP

and HA) in the top (Fig. 3). The Bayesian algorithm

implemented in the program STRUCTURE indicated that

all individuals could be assigned to four main genetic

clusters (Fig. 4a). The four clusters showed continuous

distributions, with neighboring populations assigning to the

same cluster. As shown in Fig. 4b, most individuals from

four populations (NB, WZ, XM and SW) were assigned

into the first cluster regardless of geographic origin,

whereas most individuals from three populations (DD, RC

and RS) collected from the Bohai Sea and North Yellow

Sea were assigned to the second cluster. Most individuals

from the remaining two populations (HA and MNP) were

assigned to a single cluster, respectively. The hypothetical

grouping of populations was further explored by an ana-

lysis of molecular variance (AMOVA) tests (Table 4).

Most of the total genetic variance was found within pop-

ulations. Potential geographic structuring (organized as

China versus Japan samples) was supported by the AM-

OVA (P = 0.029). The hierarchical AMOVA conducted

with populations clustered according to the 3D-FCA ana-

lysis revealed that 1.37 % of genetic variance was dis-

tributed among groups (P = 0.012), whereas 4.48 % was

partitioned among populations within group. An alternative

AMOVA model, with populations clustered according to

the Bayesian clustering analysis, showed comparatively

more suitable variance partitioning with higher percentage

of variance (1.89 %) among groups (P = 0.038). When the

AMOVA was performed without considering population

disjunction, 5.43 % of the genetic variability was appor-

tioned among populations, and 94.57 % was detected

among individuals within the population (P = 0.000).

Discussion

The eight microsatellite loci used in this study showed

relatively moderate level of polymorphism in chub mack-

erel compared to other marine pelagic fishes [36, 56, 57].

No geographical trend appeared in the levels of microsat-

ellite diversity. FST and RST are two commonly used esti-

mators to assess the amount of genetic differentiation

among populations. Comparisons of FST with RST values

on microsatellite data have been suggested for checking the

relative contribution of mutation versus migration rates to

population differentiation [58, 59]. The allele size permu-

tation test did not reveal any significant contribution of

stepwise mutations to genetic differentiation of chub

Table 2 Summary statistics of the allele size permutation test for

each locus and the 95 % confidence for permuted RST values

Locus name FST qRST (95 % C.I.) RST

Sa2559 0.0586 0.0597 (-0.0088 to 0.01969) 0.0799

Sa2770 0.0418 0.0403 (-0.0121 to 0.1144) 0.1329

Sja4 0.0205 0.0201 (-0.0339 to 0.1003) 0.0185

Sja5 0.0271 0.0275 (-0.0143 to 0.0916) 0.1052

Sja6 0.0719 0.0692 (-0.0058 to 0.1841) 0.0779

Sja8 0.0984 0.0826 (0.0023 to 0.1872) 0.0926

Sja9 -0.0068 -0.0597 (-0.0088 to 0.01969) -0.0177

Multilocus 0.0477 0.0506 (0.0146 to 0.1012) 0.0866

Bold RST values indicate a significant test (RST [qRST) after 1,000

random permutation
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mackerel populations, indicating that migration rates and

drift become important relative to mutation in contributing

to population differentiation of chub mackerel.

Overall FST detected weak but significant genetic dif-

ferentiation of chub mackerel populations. Further evi-

dence for population structuring was obtained by plotting

pairwise estimates of FST/(1 - FST) against geographic

distances. The Mantel test demonstrated that chub mack-

erel exhibited a clear isolation-by-distance pattern, which

implied restricted gene flow among chub mackerel from

different sampled locations. It should be taken into account

that when long-distance samplings have been made, a

significant IBD model can be obtained even if geographic

distance is not the main factor causing the genetic

differences [60, 61]. Thus, the present geographical pat-

tern of genetic differentiation was further tested using 3D-

FCA and Bayesian clustering analysis. Both tests sug-

gested a grouping of samples according to geographical

positions, with the Bohai Sea and North Yellow Sea

populations (DD, RC and RS) forming one group, and the

East and South China Seas populations (NB, WZ, XM

and SW) forming another group, with the remaining two

Japan populations (HA and MNP) being distinct from

these collected from China coastal waters. This pattern

was further confirmed by the hierarchical AMOVA ana-

lysis. What was unexpected was the assignment of indi-

viduals from the South Yellow Sea population (YC),

indicating a complicated genetic composition of this

population. However, inclusion of mitochondrial DNA

analysis and more comprehensive sampling in the South

Yellow Sea and East China Sea is essential to investigate

this problem further in the future.

Marine pelagic fishes generally exhibit low levels of

genetic subdivision, eventually leading to panmictic popu-

lations [62]. Nevertheless, numerically small but significant

genetic differentiation has been detected in many marine

pelagic fishes despite high dispersal capabilities and large

effective population sizes [5, 6, 9, 63]. In this study, multiple

analyses showed that a weak but significant genetic structure

existed in chub mackerel populations. The pertinent features

of species biology and marine environment, coupled with

their interactions, need be considered to explain the genetic

patterns observed in chub mackerel. According to differ-

ences in the patterns of seasonal migration and spawning

grounds, chub mackerel in Japan is managed as two separate

stocks: the Pacific stock and the Tsushima Current stock

[64]. The Tsushima Current stock of chub mackerel is dis-

tributed from the southern East China Sea to the northern

Japan Sea, the Yellow Sea and Bohai Gulf. Multiple anal-

yses showed genetic discontinuity between Japan and China

samples of S. japonicus in our study, adding additional

evidence for supporting this management policy. In the case

Fig. 2 Genetic isolation by distance in chub mackerel populations

inferred from pairwise estimates of FST/(1 - FST) based on seven

microsatellite loci and geographic distance (r = 0.549, R2 = 0.301,

P = 0.020)

Table 3 Matrix of pairwise FST

values between ten chub

mackerel populations based on

seven microsatellite loci

Significant FST values after

Bonferroni correction for

multiple tests are in bold. Refer

to Table 1 for abbreviations of

sampling sites

Populations HA MNP DD RC RS YC NB WZ XM SW

HA

MNP 0.046

DD 0.064 0.131

RC 0.032 0.046 0.050

RS 0.037 0.061 0.081 0.037

YC 0.015 0.068 0.053 0.022 0.034

NB 0.063 0.161 0.070 0.088 0.091 0.049

WZ 0.045 0.109 0.060 0.035 0.065 0.031 0.015

XM 0.035 0.099 0.083 0.056 0.049 0.020 0.028 0.036

SW 0.033 0.083 0.074 0.022 0.037 0.015 0.048 0.034 0.011

378 Mol Biol Rep (2015) 42:373–382

123



of chub mackerel off Japan’s Pacific coast, genetic differ-

entiation between the two Japan populations (MNP and HA)

was detected from the Bayesian clustering analysis

(Fig. 4b). Ocean currents are expected to be the predominant

environmental factor influencing contemporary levels of

gene flow between populations, especially in species with

pelagic eggs or larvae, or in species with highly migratory

adults [12, 65, 66]. There are two main ocean currents off the

eastern coast of Japan, the Kuroshio-extension current and

the Oyashio-extension current (Fig. 1). The former origi-

nates in the tropics further south and warm (25–27 �C at the

surface layer in summer), while the latter originates in the

boreal seas to the north and cold (6–10 �C in summer). Such

currents might have the potential to facilitate larval retention

relatively close to spawning ground [67]. Accordingly,

genetic differentiation may arise, at least partly, by the

combined adaptation of eggs and early larval stages to local

environmental conditions on the spawning and nursery

grounds due to hydrological features. However, a more

refined insight into this assumption requires additional

evidence.

For chub mackerel off China coast, all tests based on

microsatellites, including pairwise FST, 3D-FCA and

Bayesian clustering analysis, illustrated that samples from

the Bohai Sea and North Yellow Sea (DD, RC and RS) were

divergent from those from the East China Sea, a pattern

consistent with previous estimates of population structure

derived from RAPD analysis [31]. Chub mackerel in Bohai

Sea and Yellow Sea are generally from the wintering

grounds off the waters of western Kyushu. There is a geo-

graphic variation in the spawning season, with chub mack-

erel in the southern East China Sea spawning approximately

4 months earlier than those in the western Japan Sea [68].

This difference in spawning time and natal homing to dif-

ferent spawning grounds might be responsible for the

observed genetic differentiation between theses areas.

Fig. 3 Three dimensional

factorial correspondence

analysis (3D-FCA) showing

relationships among chub

mackerel populations based on

seven microsatellite loci. Refer

to Table 1 for abbreviations of

sampling sites

Fig. 4 a Number of chub mackerel populations with the highest

posterior probability expressed as the mean likelihood Ln P(D) for

each assumed population (K); b Graphical results of the STRUC-

TURE analysis of seven microsatellite loci in chub mackerel

populations. Vertical lines are proportional to the probability of

individual membership in simulated cluster. Refer to Table 1 for

abbreviations of sampling sites. (Color figure online)
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Previous analysis of tagging data indicated that chub

mackerel in Fujian offshore waters should be divided into

two stocks, the East China Sea stock and South Fujian-East

Guangdong stock [69]. However, our genetic analysis was

inconsistent with this view. Samples collected from the

East and South China Seas appeared to constitute a

genetically homogenous group. This agreed with the

absence of genetic structure reported for chub mackerel

sampled around Taiwan waters inferred from AFLP ana-

lysis [32]. The similar genetic pattern was also assessed by

Zeng et al. [33]. They observed that S. japonicus individ-

uals were strongly admixed between the populations from

the East China Sea extending to the eastern coast of Hainan

Island in the South China Sea. However, the population off

the southern coast of Hainan Island in the central South

China Sea was genetically different from the other popu-

lations. Further sampling in the central South China Sea

will be necessary to clarify the population structure of chub

mackerel in these areas.

Like many marine pelagic fishes, chub mackerel

exhibits highly migratory behavior, large population size

and long high potential for dispersal during early life stage

(about 29 days-period passive larval stage). Major currents

along the China coast are the Kuroshio and the coastal

currents (Fig. 1). The warm and highly saline Kuroshio

current, originating from east of Philippine Islands, flows

northward along the east coast of Taiwan and reaches the

steep east–west continental shelf break of the East China

Sea. Then, it splits into two branches, the major one

flowing northeast towards the southern coast of Kyushu,

and the minor one flowing northward as a shallow surface

current [70]. The path of the Kuroshio northeast of Taiwan

shows large seasonal variations. It moves seaward in spring

and summers and shoreward in fall and winter [71]. The

cold and low-saline China Coastal Current flows south-

wards along the Chinese coast from the Bohai Sea to the

Taiwan Strait [72]. At the mercy of these currents, indi-

viduals of chub mackerel from the East China Sea may

migrate southward along the Taiwan coast to the northern

South China Sea. Furthermore, pelagic larvae from the

South China Sea could follow the northwards current to the

East China Sea for recruitment into the local population

[32]. The importance of ocean currents in shaping the

genetic structure of spotted mackerel S. australasicus

populations has recently been demonstrated [65]. It is

likely that the same hydrographic features have shaped the

genetic patterns in these two closely related species, which

have similar biological characteristics. Consequently, the

interaction between biological characteristics and marine

currents likely facilitates genetic homogeneity of chub

mackerel populations of the East and South China Seas.

In conclusion, microsatellite marker is proven to be an

effective method to delineate genetic diversity and struc-

ture of highly migratory fish species. The results of the

present study provided evidence that the biological char-

acteristics of chub mackerel and the oceanographic prop-

erties of the Northwestern Pacific could be responsible for

the observed population differentiation of chub mackerel. It

is noteworthy that the investigation of temporal genetic

differentiation in the analyzed locations is needed to test

whether the observed population genetic patterns in chub

mackerel are stable on a temporal scale. Although sample

sizes for microsatellites are small, these sample sizes were

still large enough and the microsatellite marker polymor-

phic enough to provide power to detect population struc-

ture of chub mackerel in the studied areas. However, the

combined use of nuclear and mitochondrial markers, more

comprehensive sampling integrated with local ecological

investigations could help to shed more light on the exact

ecological process in shaping genetic population structure

of chub mackerel.
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Table 4 Results of analysis of molecular variance (AMOVA) for

different hierarchical analyses of chub mackerel populations

Structure tested Observed partition P

Variance %

total

F statistics

One gene pool

Among populations 0.134 5.43 FST = 0.054 0.000

Within populations 2.337 94.57

Two gene pools (HA, MNP) (DD, RC, RS, YC, NB, WZ, XM, SW)

Among groups 0.009 0.36 FCT = 0.004 0.029

Among populations/

within groups

0.132 5.31 FSC = 0.053 0.000

Within populations 2.337 94.33 FST = 0.057 0.000

Three gene pools (HA, MNP) (DD, RS, RC) (YC, NB, WZ, XM, SW)

Among groups 0.034 1.37 FCT = 0.014 0.012

Among populations/

within groups

0.111 4.48 FSC = 0.045 0.000

Within populations 2.337 94.15 FST = 0.059 0.000

Four gene pools (HA) (MNP) (DD, RS, RC) (YC, NB, WZ, XM, SW)

Among groups 0.047 1.89 FCT = 0.019 0.038

Among populations/

within groups

0.102 4.09 FSC = 0.042 0.000

Within populations 2.337 94.02 FST = 0.060 0.000

Bold P numbers are significant values. Refer to Table 1 for abbre-

viations of sampling sites
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