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Abstract Warfarin is an anticoagulant that is difficult to

administer because of the wide variation in dose require-

ments to achieve a therapeutic effect. CYP2C9, VKROC1,

and CYP4F2 play important roles in warfarin metabolism,

and their genetic polymorphisms are related to the vari-

ability in dose determination. In this study we describe a

new multiplex pyrosequencing method to identify

CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and

CYP4F2*3 (rs2108661) simultaneously. A multiplex py-

rosequencing method to simultaneously detect CYP2C9*3,

VKORC1*2, and CYP4F2*3 alleles was designed. We

assessed the allele frequencies of the polymorphisms in

250 Korean subjects using the multiplex pyrosequencing

method. The results showed 100 % concordance between

single and multiplex pyrosequencing methods, and the

polymorphisms identified by pyrosequencing were also

validated with the direct sequencing method. The allele

frequencies of these polymorphisms in this population were

as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2,

and 0.416 for CYP4F2*3. Although the allele frequencies

of the CYP2C9*3 and VKROC1*2 were comparable to

those in Japanese and Chinese populations, their frequen-

cies in this Korean population differed from those in other

ethnic groups; the CYP4F2*3 frequency was the highest

among other ethnic populations including Chinese and

Japanese populations. The pyrosequencing methods

developed were rapid and reliable for detecting CYP2C9*3,

VKORC1*2, and CYP4F2*3. Large ethnic differences in

the frequency of these genetic polymorphisms were noted

among ethnic groups. CYP4F2*3 exhibited its highest

allele frequency among other ethnic populations compared

to that in a Korean population.
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Introduction

Warfarin is the most widely used anticoagulant drug for

preventing cardiovascular diseases after ischemic stroke

and thromboembolism related to atrial fibrillation, deep

vein thrombosis, and pulmonary embolism [1].

However, determining the warfarin dosage is a chal-

lenge to clinicians because of its narrow therapeutic range

and intersubject variability in the internationalized normal

ratios obtained [2, 3].

An increasing number of genetic variations affecting

warfarin pharmacokinetics and/or pharmacodynamics have

a major impact on dosage requirements such as polymor-

phisms in the CYP2C9, VKORC1, and CYP4F2 genes [3, 4].

Warfarin is metabolized by CYP2C9, a drug metabo-

lizing enzyme, and the warfarin response is related to

CYP2C9 genetic polymorphisms. Several variants in the

CYP2C9 gene have been reported, but the most prevalent

and most studied are the CYP2C9*2 and CYP2C9*3

polymorphisms. The CYP2C9*2 allele is the result of a

C[T transition at position 430 of the CYP2C9 gene,

leading to an Arg-to-Cys substitution at residue 144 in the

CYP2C9 molecule. The CYP2C9*3 allele is the result of an

A[T transition at position 1075 in the CYP2C9 gene,

leading to an Ile-to-Leu substitution at residue 359 in the
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CYP2C9 gene. Both alleles lead to a significant reduction

in CYP2C9 enzymatic activity, representing the major

cause of decreased CYP2C9 enzymatic activity, but

CYP2C9*2 is not found in the Asian population including

Koreans [1, 5–8].

Vitamin K epoxide reductase complex unit 1

(VKORC1) is an enzyme that recycles vitamin K 2,3-

epoxide, reducing the amount of vitamin K-dependent

clotting factors (factor II, VII, IX and X). VKORC1 is one

of the most important genetic determinants for warfarin

dosing [9–11], and polymorphisms in this gene may

explain 20–30 % of the variation in warfarin dosing [1, 12,

13]. Among its polymorphisms, the functional promoter

polymorphism G[A at position –1639 (in complete dis-

equilibrium linkage with the intronic polymorphism

1173C[T) influences the warfarin dose requirement [9,

10].

CYP4F2 is primarily responsible for metabolizing ara-

chidonic acid to 20-hydroxyeicosatetraenoic acid (20-

HETE). Because 20-HETE is a potent cerebral artery

vasoconstrictor, many studies have revealed that CYP4F2

gene polymorphisms are associated with ischemic stroke

[14, 15]. CYP4F2 is involved in the metabolism of vitamin

K in addition to vitamin K reductase [16]. Additionally, a

V433 M polymorphism (CYP4F2*3, rs2108622) is asso-

ciated with variations in vitamin K metabolic activity

in vitro.

The distribution of the CYP2C9*3, VKORC*3, and

CYP4F2*3 polymorphisms has been extensively assessed

in many populations alone and together. Recent studies

have revealed that pharmacogenetic models using these

polymorphisms and clinical factors facilitate more accurate

predictions of warfarin dose in various populations [1, 12,

17–19]. However, literature reviews showed that previous

genetic analyses of these polymorphisms were conducted

either by polymerase chain reaction-restriction fragment

length polymorphism (PCR–RFLP), real-time PCR, or

direct sequencing analyses. However, these methods are

time-consuming or cost-ineffective [20, 21]. Therefore, we

developed a method to identify CYP2C9*3, VKORC1*2,

and CYP4F2*3 using a pyrosequencing method. The rela-

tively low cost and rapid results of a pyrosequencing

analysis are an advantage when genotyping population

data.

Pyrosequencing is a non-electrophoretic, real-time DNA

sequencing technology. It involves hybridization of a pri-

mer to a single-stranded PCR template and initiating the

sequencing analysis by adding nucleotides [22]. It is con-

sistent, easy to use, economically viable, and generates a

high throughput analysis with a very high success rate [22].

Generally, one PCR fragment is produced for each

sequencing reaction in the genotyping assay. Recently, a

new single-tube multiplex pyrosequencing method for

several polymorphisms in a single pyrosequencing reaction

was developed [21, 23].

In this study, we developed a multiplex pyrosequencing

method that can clinically detect the CYP2C9*3,

VKORC1*2, and CYP4F2*3 polymorphisms simulta-

neously. To validate this method and to compare these allele

frequencies among ethnic populations, we investigated the

allelic frequencies of CYP2C9*3, VKORC1*2, and

CYP4F2*3 in a Korean population, and compared them to

those in other ethnic groups.

Materials and methods

Subjects and methods

Genomic DNA samples were obtained from 250 unrelated

Korean subjects, and written and informed consent was

obtained. This study protocol was approved by the ethics

committee of Anam Hospital, Seoul, Korea.

Pyrosequencing method for detecting the CYP2C9*3,

VKORC1*2, and CYP4F2*3 polymorphisms

Genomic DNA was isolated from peripheral leukocytes, as

described previously [21]. We developed a pyrosequencing

method to identify the following single nucleotide poly-

morphisms (SNPs): CYP2C9*3 c.1075A[T (rs1057910),

VKORC1*2 (i-1639G[A) (rs9923231), and CYP4F2*3

c.1347C[T (rs2108622). The primers used for the PCR

reaction and pyrosequencing are described in Table 1. PCR

reactions were carried out to amplify sequences and iden-

tify each SNP using newly developed primer sets after

attaching biotin to the 50 end of each forward (or reverse)

primer using PSQ Assay Design software (Pyrosequencing

AB, Uppsala, Sweden). The DNA fragments containing

polymorphic sites were amplified using newly developed

primer sets after attaching biotin to the 50 end of each

forward (or reverse) primer using PSQ Assay Design

software (Pyrosequencing AB). PCR was performed in a

reaction volume of 30 ll containing genomic DNA

(30 ng), 10 9 PCR buffer, dNTPs (2.5 mM), 10 pmol

primers (1 ll each) and 5 U Taq polymerase (iNtRON,

Seongnam, Korea). PCR reactions were carried out with an

initial denaturation step of 94 �C for 3 min, followed by 40

cycles of denaturation at 94 �C for 30 s, annealing at 60 �C

for 30 s and extension at 72 �C for 30 s. A final termina-

tion step was performed at 72 �C for 5 min.

For the pyrosequencing reactions, 60 ll of the PCR

template in a single well was immobilized by incubation

(with shaking at 1400 rpm, 10 min, room temperature)

with a mixture of 5 ll streptavidin beads (Streptavidin

Sepharose High Performance, GE Healthcare Bio-Science
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AB, Uppsala, Sweden) and 70 ll binding buffer. A 50 ll

aliquot of annealing buffer containing each 0.1 lM

sequencing primer was incorporated into each well for

primer annealing. All liquid was removed by a Vacuum

Prep Workstation (Pyrosequencing AB) for strand separa-

tion. The beads captured on probes were incubated in 70 %

ethanol, and the solution was flushed through filters for 5 s.

The beads were then treated with a denaturing solution

(0.2 M NaOH) that was flushed through filters for 5 s. A

wash buffer (10 mM Tris–acetate, pH 7.6) was used to

rinse the beads for 5 s. All liquid was completely drained

from the probes, and the beads were released into a PSQ 96

Plate Low (Pyrosequencing AB) containing the sequencing

primer. The PSQ 96 Plate Low was heated at 85 �C for

2 min, and the reactions were allowed to cool to room

temperature. The resulting mixture was analyzed on a PSQ

96MA Pyrosequencer (Pyrosequencing AB). The accuracy

of pyrosequencing was validated by direct DNA sequenc-

ing for the randomly selected samples using the same

genomic DNA.

Statistical analysis

Genetic equilibrium and linkage disequilibrium were

assessed according to the Hardy–Weinberg equilibrium

using SNPalyzer ver 7.0.1 (Dynacom Co., Ltd, Yokohama,

Japan).

Results

We developed a multiplex pyrosequencing method to

identify each SNP for CYP2C9*3, VKORC1*2, and

CYP4F2*3 simultaneously. Representative predicted his-

togram patterns for each genotype are presented in Fig. 1.

The assay was designed to generate a specific sequence for

each SNP by setting a suitable nucleotide addition order.

Nucleotide sequences and pyrograms obtained to identify

respective SNPs were consistent with the predicted histo-

grams (Fig. 2). The SNPs and their sequencing data

obtained from the pyrosequencing method were validated

Table 1 Oligonucleotide

primers used for polymerase

chain reaction and

pyrosequencing to detect the

CYP2C9*3, VKORC1*2, and

CYP4F2*3 polymorphisms

B, biotinylated at the 50-end of

the primer; SNP, single

nucleotide polymorphism

SNP Sequence size

CYP2C9*3 Forward 50-B-CAC GAG GTC CAG AGA TAC-30 179

Reverse 50-CGG TGA TGG TAG AGG TTT A-30

Sequencing 50-TGG GGA GAA GGT CAA-30

CYP4F2*3 Forward 50-TTATCTGCCTCATCAGTGT-30 185

Reverse 50-B-CTTGGAGAGACAGACAGTT-30

Sequencing 50-CCCATCACAACCCAG-30

VKORC1*2 Forward 50-ACCTGGGCTATCCTCTGTT-30 166

Reverse 50-B-ATGAAAAGCAGGGCCTAC-30

Sequencing 50-TCCCATCCTAGTCCA-30

Fig. 1 Multiplex

pyrosequencing histogram for

CYP2C9*3, VKORC1*2, and

CYP4F2*3 as predicted by

pyrosequencing software.

CYP2C9*3 (c.1075A [ C),

VKORC1*2 (–1639G [ A), and

CYP4F2*3 (c.1374C [ T) are

shown as blue, red, and green

bars, respectively. (Color figure

online)
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by comparisons with the direct DNA sequencing of SNPs

for randomly selected samples, and the results showed

100 % concordance with the present pyrosequencing

results, indicating 100 % specificity and sensitivity for the

method.

When we analyzed the SNPs for CYP2C9*3,

VKORC1*2, and CYP4F2*3 with the newly developed

method in 250 unrelated Korean subjects, the observed

allele frequencies of CYP2C9*3, VKORC1*2, and

CYP4F2*3 polymorphisms were as follows: 0.040 for

CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for

CYP4F2*3 (Table 2). All allele frequencies of CYP2C9*3,

VKORC1*2, and CYP4F2*3 met Hardy–Weinberg equi-

librium (v2 = 0.0271, P = 0.870 for CYP2C9*3;

v2 = 0.0231, P = 0.879 for VKORC1*2; v2 = 0.1035,

P = 0.748 for CYP4F2*3).

Fig. 2 Representative pyrosequencing pyrograms for the CYP2C9*3, VKORC1*2, and CYP4F2*3 genotypes
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When we compared the allele frequencies of these

polymorphisms against data reported previously in other

ethnic groups, the frequencies of the CYP2C9*3,

VKORC1*2, and CYP4F2*3 showed large differences

between the various ethnic groups (Table 3).

Discussion

We developed a rapid and robust pyrosequencing method

to detect the CYP2C9*3, VKORC1*2, and CYP4F2*3

polymorphisms simultaneously and applied this method to

identify these SNPs in a Korean population. The results

showed substantial differences in allele frequencies of the

CYP2C9*3, VKORC1*2, and CYP4F2*3 genotypes

between our Korean sample and other ethnic groups.

A literature review revealed that CYP2C9*3,

VKORC1*2, and CYP4F2*3 polymorphisms have been

detected individually using PCR–RFLP, real-time PCR, or

direct sequencing. However, this is the first study to

identify these polymorphisms simultaneously using a py-

rosequencing method.

S-Warfarin, the more potent enantiomer of racemic

warfarin, is almost exclusively metabolized to 7-hydroxy-

warfarin by CYP2C9 [2]. Most warfarin studies have

focused on CYP2C9*2 and CYP2C9*3 polymorphisms.

Compared with subjects homozygous for CYP2C9*1,

homozygous CYP2C9*2 reduces CYP2C9 enzyme activity

to 12 %, whereas homozygous CYP2C9*3 reduces enzyme

activity to 5 % [2, 24]. In accordance with this, a system-

atic review established that CYP2C9*2 and CYP2C9*3

alleles lead to 17 and 37 % reduction in the daily warfarin

dose, respectively [25]. In the present study, the allele

frequency of CYP2C9*3 was 0.040. This finding was

comparable to that of other Asian populations including

Japanese and Chinese [6–8]. However, we did not assess

the CYP2C9*2 polymorphism because it is not found in

Asian populations including Koreans [6–8]. Unlike East

Asian populations, a higher frequency of CYP2C9*3 is

found in Romanian, Turkish, and British populations [26,

27].

The VKORC1 genotype predicts 20–30 % of inter-

patient variability in warfarin dose in white and Asian

populations [1, 28]. In particular, a functional promoter

polymorphism G[A at position -1639 is in complete

linkage disequilibrium with the intronic i-1173C[T and

influences warfarin dose requirement [9, 10]. The allele

frequency of VKORC1*2 was 0.918 in this population,

suggesting that the variant for the VKORC1*2 genotype is

a dominant allele in Koreans. This finding was similar to

East Asian populations including Chinese and Japanese

[29]. However, we also found that it is a far higher

Table 2 Genotyping and allele frequencies of the CYP2C9*3,

VKORC1*2, and CYP4F2*3 polymorphisms in this study

SNP Genotype No. Frequencies Allele Frequencies

CYP2C9*3 T/T 230 0.920 T 0.960

T/G 20 0.080 G 0.040

G/G 0 0.000

VKORC1*2 G/G 2 0.008 G 0.082

G/A 38 0.148 A 0.918

A/A 210 0.844

CYP4F2*3 C/C 86 0.348 C 0.584

C/T 119 0.472 T 0.416

T/T 45 0.180

Table 3 Comparisons of CYP2C9*3, VKORC1*2, and CYP4F2*3

allele frequencies with those in other ethnic groups

SNP Population Frequency Reference

CYP2C9*3 Korean (present

study)

0.040 Present study

(rs1057910) Han-Chinese 0.028 Lee et al. [8]

Japanese 0.021 Nasu et al. [6]

Taiwanese 0.027 Chern et al. [7]

Indonesian 0.037 Suriapranta et al. [31]

Turkish 0.100 Aynacioglu et al. [26]

British 0.085 Stubbins et al. [27]

India 0.122 Shalia et al. [41]

European American 0.060 Sullivan-Klose et al.

[42]

African American 0.005 Sullivan-Klose et al.

[42]

VKORC1*2 Korean (present

study)

0.918 Present study

(rs9923231) Han-Chinese 0.878 Lee et al. [8]

Japanese 0.900 Yoshizawa et al. [29]

Canadian 0.405 Wells et al. [32]

British 0.413 Biss et al. [43]

Indonesian 0.230 Suriapranta et al. [31]

French 0.445 Pautas et al. [19]

India 0.120 Kumar et al. [44]

European American 0.398 Kumar et al. [44]

African American 0.102 Kumar et al. [44]

CYP4F2*3 Korean (present

study)

0.416 Present study

(rs21086622) Han-Chinese 0.236 Lee et al. [8]

Japan 0.277 Fu et al. [45]

Canadian 0.297 Wells et al. [32]

British 0.288 Biss et al. [30]

Indonesian 0.189 Suriapranta et al. [31]

French 0.294 Pautas et al. [19]

India 0.418 Kumar et al. [44]

European American 0.232 Kumar et al. [44]

African American 0.092 Kumar et al. [44]

Mol Biol Rep (2014) 41:7305–7312 7309

123



frequency than those observed in British, Canadian,

French, and Indonesian populations [19, 30–32]. Many

studies have shown that patients with the VKORC1*2

polymorphism have lower dose requirements for warfarin

gene-dose dependently [8, 29].

CYP4F2 is a vitamin K1 oxidase involved in the

metabolism of vitamin K1 to vitamin K1 dihydroquinone

[16]. An in vitro study showed that the CYP4F2*3 poly-

morphism, encoding a V433 M amino acid change, causes

reduced CYP4F2 protein content and enzyme activity [16].

Interestingly, CYP4F2 is the enzyme responsible for most

20-HETE in the kidney, and the CYP4F2*3 polymorphism

is associated with the development of hypertension and

other cardiovascular outcomes in different studies [33–35].

In this study, we found that the CYP4F2*3 allele frequency

was 0.416. When we reviewed the allele frequency in other

ethnic groups, we observed that the allele frequency of

most ethnic groups was \ 0.300. Intriguingly, although the

frequencies of CYP2C9*3 and VKORC1*2 in our study

were similar to the East Asian populations, the Japanese

(0.277) and Chinese (0.236) data are rather more compa-

rable to French (0.294), British (0.0.288), or Canadian

(0.297) populations [19, 31, 32, 36]. It suggests that the

minor allele frequency (MAF) of the Korean population

was relatively higher in CYP4F2*3 than those of other

populations. Consistently, other studies done with other

Korean populations also exhibited similar allele frequen-

cies with the present findings (MAF = 0.34 * 0.35;

P [ 0.05) [37, 38]. It would appear that the contribution of

this polymorphism to the stable warfarin doses could be

greater in the Korean population compared with other

ethnic populations [37].

In this study, we developed a new pyrosequencing

method to analyze three genetic polymorphisms, which

play a crucial role in warfarin dosing determination. These

polymorphisms are also associated with the dosing of other

anticoagulants, such as phenprocoumon and acenocouma-

rol [4, 39, 40]. The main advantages of a pyrosequencing

assay are the relatively lower cost and time consumption

[22, 23]. Usually, only one PCR product is used to analyze

the genotype in these polymorphisms. However, we

developed a multiplex pyrosequencing method to detect

these polymorphisms to reduce laboratory steps and to

make it more cost-effective [22, 23]. Furthermore, we

reduced the time to analyze these polymorphisms simul-

taneously using the multiplex tool. Thus, we believe this

method should be easier to apply to large population

studies and routine clinical use [21]. One limitation of

present study is that we analyzed CYP2C9*3, VKORC1*2,

and CYP4F2*3 polymorphisms only in a Korean popula-

tion. We could compare their frequencies with other pop-

ulations based on the literature but it should be better to

extend the analyses in other ethnic groups to make the

method we developed more convincing and gain a better

comparison with other previous methods.

Conclusion

The multiplex pyrosequencing method developed is a rapid

and reliable genotyping method to identify CYP2C9*3,

VKORC1*2, and CYP4F2*3 polymorphisms simulta-

neously. A large difference in CYP2C9*3, VKORC1*2, and

CYP4F2*3 polymorphisms was noted when comparing this

Korean population with other ethnic groups. In particular,

CYP4F2*3 in this Korean population showed a higher

frequency than that in the other ethnic populations.
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