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Abstract Recently the recruitment/migration of myeloid

derived suppressor cells (MDSCs) to tumor microenvi-

ronment after chemotherapy has attracted much attention.

To determine the detailed mechanism for the responses of

MDSCs to these chemotherapies, we investigated the

changes of galectin-3 and MDSCs in response to cis-

platin(0.4 mg/kg, 4 mg/kg) treatment both in vivo and

ex vivo. In the process of cisplatin, we assessed levels of

galectin-3 and MDSCs in the Lewis lung cancer (LLC)

bearing mice using immunohistochemistry, enzyme-linked

immunosorbent assay (ELISA), immunofluorence and flow

cytometry (FCM). The expression and changes of galectin-

3 in the LLC cell line were detected by western blot, im-

munofluorence and ELISA. The ligand for galectin-3 on

MDSCs and the chemotaxis of galectin-3 to MDSCs were

confirmed using FCM and transwell. Parallel increased

level of galectin-3 with the number of MDSCs in vivo was

detected after cisplatin treatment. LLC cells expressed

galectin-3 and cisplatin increased galectin-3 level in the

culture medium. Furthermore, MDSCs were detected to

express CD98, the ligand of galectin-3, and could be

recruited by galectin-3. Our results suggested that the

elevated expression of gelectin-3 in LLC tumor cells may

contribute to the migration of MDSCs to the tumor

microenvironment in response to cisplatin.
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Introduction

Chemotherapy remains the primary treatment for most

advanced and metastases cancers. However, complete

elimination of cancer cells remains a great challenge for

most current anti-tumor drugs. Tumors could develop

complex chemotherapy resistance mechanisms in vivo that

were crucially dependent on their interaction with host

factors [1]. Indeed, the microenvironment has been rec-

ognized as a major factor influencing the growth as well as

metastatic progression of cancer and impacting the out-

come of therapy [2, 3].

MDSCs are a heterogeneous population of cells that are

composed of myeloid progenitor cells and immature

myeloid cells (IMC). The expansion of MDSCs originates

from a block in the differentiation of IMCs into mature

myeloid cells under pathological conditions [4]. It is

believed that MDSCs are major contributors mediating

tumor escape from antitumor immunity. Additionally,

MDSCs accumulate in most tumor-bearing animal models.

And preclinical data have indicated that MDSC levels

appear to correlate proportionally with tumor burden [5, 6].

Given the important immunosuppressive role of MDSCs

on individuals during tumor progression, a better under-

standing of the local tumor microenvironment and the

exact mechanisms of induction and/or expansion of

MDSCs in the tumor milieu should provide opportunities

for new treatments that target these cells and alter the

balance in favor of more effective antitumour immune

responses. Most type of tumor cells can release nanovesi-

cles called exosomes which could represent versatile

T. Wang � Z. Chu � H. Lin � J. Jiang � X. Zhou � X. Liang (&)

Department of Oncology, Huashan Hospital, Fudan University,

No. 12, Wulumuqi Zhong Road, Shanghai 200040, China

e-mail: xiaohualiang2009@gmail.com

T. Wang � Z. Chu � H. Lin � J. Jiang � X. Zhou � X. Liang

Department of Oncology, Shanghai Medical College, Fudan

University, Shanghai 200040, China

123

Mol Biol Rep (2014) 41:4069–4076

DOI 10.1007/s11033-014-3276-5



functions in modulating the anti-tumor immune response

by affecting effective immune cells [7, 8].Recently

Umansky et al. [9] has reviewed that various cytokines and

chemokines accumulated in the tumor microenvironment

were demonstrated to stimulate the migration of MDSCs

towards tumor lesions.

Evidence showed that tumor derived chronic inflam-

matory factors such as granulocyte–macrophage colony

stimulating factor (GM-CSF) [10], IL-1 beta [11], IL-6

[12], vascular endothelial growth factor (VEGF) [13],

PGE2 [14] could act as a vehicle to induce the expansion of

MDSCs. In addition, Sevko et al. [15] has revealed that

low-dose cyclophosphamide therapy enhanced the pro-

duction of inflammatory mediators in melanoma lesions

associated with increased accumulation of MDSCs. How-

ever, docetaxel reduced the number of MDSCs and directly

inhibited the immunosuppressive effect of them in a

STAT3 signaling dependent manner [16]. Evidence also

showed that the accumulation of MDSCs in renal cell

carcinoma (RCC) patients could be reversed by sunitinib,

the tyrosine kinase inhibitor, without inducing the MDSC

maturation [17]. This suggested, apart from chronic

inflammatory factors, anti-tumor drugs may affect the

recruitment of MDSCs through distinct signaling pathways

in tumor lesions.

Galectin-3, a member of the b-galactoside-binding

protein family, is an intracellular and extracellular lectin

consisting of three structural domains and is showed to

interact with laminin and glycoproteins which are involved

in cell adhesion [18]. Interestingly, galectin-3 has been

found to act as a chemoattractant for monocytes and

macrophages [19]. We herein tested the possible correla-

tion between galectin-3 and MDSCs after cisplatin treat-

ment in the tumor microenvironment of a LLCs mice

model.

Materials and methods

In vivo experiment

Mice and cell line

Six- to eight-week-old C57BL/6 mice were purchased from

the Department of Laboratory Animal Science, School of

Medicine, Fudan University. Animals were housed under

specific pathogen-free conditions in a temperature and

humidity controlled environment. All animal experiments

were conducted within guidelines established by the

Institutional Animal Care and Use Committee of Fudan

University. The LLC cell line, originated spontaneously

from the lung carcinoma of the C57BL/6 mouse, was

purchased from the Cell Library of Chinese Academy of

Sciences and maintained at 37 �C in a complete med-

ium(DMEM with 10 % FBS) humidified with 5 % CO2

atmosphere.

Cisplatin intervention

A total of 33 C57BL/6 mice were involved in this study.

Among them, 18 Mice were inoculated subcutaneously in

the flank with 2 9 106 LLCs and randomly divided into

three groups with each including six mice. Then cisplatin

(QiLu Pharmaceutical, China) was injected intraperitone-

ally at a dose of 0.4 mg/kg or 4 mg/kg daily from day 14 to

day 18 after the LLCs inoculation. The control group was

given an equivalent amount of normal saline (NS).

Meanwhile, the other 15 mice without LLCs inoculation

were also divided into three groups with each having five

samples and were treated with NS, cisplatin (0.4 mg/kg)

and cisplatin (4 mg/kg) for 5 days respectively. Mice were

mercy killed 72 h after the last injection of cisplatin. And

the samples were collected and storaged according to each

procedure involved.

Estimation of Gr1?CD11b?cells by immunofluorescence

and FCM

After 5 days of cisplatin treatment, spleens and tumor tis-

sues from LLCs mice were obtained on day 21 after inoc-

ulation and dissociated to single-cell suspensions. And the

RBC was removed by lysis, as described for splenocytes

[20]. Cells were stained with mAbs to MDSC markers Gr1

and CD11b and analyzed by FCM, as described [20].

The paraffin embedded tumor sections were deparaffined

using a graded ethanol series, and endogenous peroxidase

activity was blocked by soaking in 0.3 % hydrogen peroxide.

Then they were stained with anti-mouse Abs to CD11b and

Gr-1(BD Pharmingen, USA), followed by Alexa 594- or

Alexa 488-conjugated secondary Abs (Invitrogen, USA), and

examined using an inverted 80i Nikon wide field fluorescence

microscope and photographed with a CCD SPOT RT Camera.

Cells in three high power fields were counted for quantitation.

Determination of galectin-3 by immunohistochemistry

and ELISA

Sections of formalin-fixed, paraffin embedded tumor tissues

from LLC mice were collected. A monoclonal rat anti mouse

galectin-3 (BioLegend, San Diego, USA) was used. Slides

were incubated with the primary antibody diluted 1:1000 for

1 h at room temperature. Secondary HRP conjugated goat

anti-rat IgG(H?L) (1:500) (sigma, St. Louis, USA) was

added and incubated for 1 h at 37 �C. Negative control slides

were immunostained under identical conditions, substituting

the primary antibody with buffer solution. Sections were
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assessed by standard light microscopy by three persons.

Immunoreactivity for galectin-3 was scored semiquantita-

tively in areas of tumour as previously described [21]: (i) for

strength of staining (absent = 0; weak = 1; moderate = 2;

strong = 3) and (ii) for percentage of cells staining

(absent = 0;\20 % = 1; 20–80 % = 2;[80 % = 3).

The level of galectin-3 in the plasma of mice from each

group was measured by a galectin-3 ELISA kit (R&D

Company, USA) according to the manufacturer’s protocol.

Plates were read at 420 nm on a Themo-sci 1510 micro-

plate reader and quantified using a standard curve. Data

represented the mean ± SD of triplicate wells.

Ex vivo experiment

Detection of galectin-3 in LLC cells and the conditioned

media(CM)

Immunofluorescence The localization of galectin-3 on

LLC cells was determined by immunofluorescence as

described earlier [18].

Western blot LLC cells were collected, washed with ice-

cold PBS, and lysed in 30 mmol/L HEPES (pH 7.5),

10 mmol/L NaCl, 5 mmol/L MgCl2, 25 mmol/L NaF,

1 mmol/L EGTA, 1 % Triton X-100, 10 % glycerol, and

protease and phosphatase inhibitor cocktails (Sigma). To

detect galectin-3 expression, Cell lysates were centrifuged

at 12,0009g for 5 min to remove nuclei and cell debris.

The proteins of the soluble extracts were collected. Wes-

tern blotting was done as described earlier [22]

ELISA The LLC cells were cultured with or without 2 lM

cisplatin for 48 h and the supernatants were collected for

galectin-3 detection. The levels of galectin-3 in the super-

natants of the LLC cell line were detected by a galectin-3

ELISA kit (R&D Company, USA) according to the manu-

facturer’s protocol. Plates were read at 420 nm on a Themo-

sci 1510 microplate reader and quantified using a standard

curve. Data represented the mean ± SD of triplicate wells.

Chemotaxis of galectin-3 to MDSCs

Spleens from LLCs tumor-bearing mice were obtained on

day 21 after inoculation when the tumors were about

1.5 cm in diameter and dissociated to single-cell suspen-

sions. Splenic lymphocytes were detached using lympho-

cyte separation medium (BioLegend, USA). Thereafter, red

blood cells were depleted by the RBC lysing buffer, and

MDSCs were isolated by magnetic bead sorting using

CD11b mAb and MS columns according to the directions

of the manufacturer (Miltenyi Biotec, Germany). Purified

splenic MDSCs contained more than 90 % Gr1?CD11b?

cells. CD98, one of the ligands for galectin-3, was also

tested by FCM on the surface of MDSCs.

In vitro migration of MDSCs was evaluated in 24-well

plates with transwell polycarbonate permeable supports (8.0

lm) (Costar Corning). 5 9 106 MDSCs were plated in

100 ll of serum-free IMDM in the upper compartment and

500 ul of chemoattractant [LLC cell CM ± 10 lg of Abs to

galectin-3, or IgG control Ab (BioLegend, USA)] were added

to the lower compartment. Plates were incubated at 37 �C

with 5 % CO2 for 3 h, and the number of MDSCs in the

bottom compartment was counted. For CM, supernatants

were harvested from confluent cultures of LLCs cultured in

medium IMDM containing 3 % serum. And CM was filter

sterilized and stored at -80 �C as single-use aliquots.

Statistical analysis

Data was analyzed with student’s two-tailed t test by using

SPSS16.0. Differences were considered significant if

p \ 0.05.

Results

Parallel elevated level of galectin-3 with MDSCs were

detected after cisplatin therapy in LLC mice

Figure 1a showed that cisplatin significantly increased the

expression of galectin-3 in the tumor site, and this protein

mainly localized in the cytoplasm. Meanwhile, the galectin-3

level in the plasma was increased by 125 % in the low cisplatin

(0.4 mg/kg) group and 200 % in the high cisplatin (4 mg/kg)

group as compared with the NS group. However, galectin-3 was

not affected by cisplatin in mice without LLC cell inoculation

(Fig. 1b).

The immunofluorescence result showed that compared

to the NS group, the cisplatin group of both dose had higher

number of MDSCs in the tumor site (Fig. 2a, b). Mean-

while, the Flow Cemetry results indicated that, cisplatin

increased the number of MDSCs from both tumor sites and

spleen in tumor-bearing mice (Fig. 2c, d).

Cisplatin treatment elevated the galectin-3 level in LLC

cell lines

To confirm that the elevated galectin-3 level in the LLC mice

mainly originated from LLC tumor cells, we observed the

expression of galectin-3 in the LLC cells. The results showed

that galectin-3 mainly located in the cytoplasm of LLC cells

(Fig. 3). Western blot results also showed positive expression

of galectin-3 in the LLC cells (Fig. 4c). Moreover, we

compared the galectin-3 levels in each group of cultural

supernatant of LLC cell line. All specimens tested showed
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positive expression of galectin-3. Moreover, the galectin-3

level of the culture supernatant with cisplatin treatment

(14.26 ± 2.16 ng/ml) was higher than that without cisplatin

intervention (9.23 ± 2.54 ng/ml), although not to statistical

significance (p [ 0.05).

MDSCs expressed CD98 and were recruited

by galectin-3

To further estimate the possible role that galectin-3 may play

on MDSCs. We tested the chemotactic effect of galectin-3 to

MDSCs from LLCs mice in vitro. Supernatant from LLCs

CM which had been verified to containing galectin-3 was

collected as the chemoattractant, and the migration of

MDSCs was tested in response to this CM using transwell

chambers. We observed that the number of MDSCs in the

group added with Abs of galectin-3 to the CM obviously

decreased compared to that without galectin-3 Abs or IgG

control Ab (Fig. 4b). This result suggested that galectin-3

may be one of the pivotal chemoattractants for MDSCs.

To confirm that galectin-3 could interact directly with

MDSCs, we tried to make clear whether MDSCs have

receptors for galectin-3. It is reported that more than one

ligands exist that have high affinity to galectin-3 [23, 24].

CD98, which was commonly recognized as one of the

receptors for galectin-3, was detected to be located on the

surface of isolated MDSCs (Fig. 4d).

Discussion

In the context of cisplatin, along with the increased level of

galectin-3, the number of MDSCs both in the tumor tissue

(Fig. 2a, b) as well as the spleen (Fig. 2c, d) was detected

to be increased in our test. This is in accordance with

previous observations revealing that chemotherapy could

increase the level of MDSCs in circulation [5] as well as

the tumor site [25]. Furthermore, we detected CD98, one of

the ligand for galectin-3 on the surface of MDSCs. Con-

sidering that the LLC cell line could express galectin-3

which was confirmed in our in vitro experiment to be

chemotactic to MDSCs, we propose that galectin-3 may

contribute at least partially to the accumulation of MDSCs

in the LLCs bearing mice in response to cisplatin therapy.

The progression of various tumors was considered to

correlate with abnormal levels of galectin-3 [26–28].

Moreover, preclinical data has shown that higher level of

serum galectin-3 was related to lymph node metastasis [29,

30]. In this study, the increased accumulation of galectin-3

in the cytoplasm of the LLC tumor as well as in the cir-

culation (Fig. 1) as detected in our study strongly sug-

gested the complicated mechanism by which LLC tumor

cells respond to cisplatin. Evidence showed that tumor cells

were able to expel cisplatin through the enhanced release of

exosomes [31], this was in accordance with our results that

increased level of peripheral galectin-3 may be the

response of the LLC tumor microenvironment to the

stimulation of cisplatin.

It should be noted that cisplatin was not detected to

increase the galectin-3 level of the LLC supernatant sta-

tistically in our ex vivo experiment(14.26 ± 2.16 ng/ml vs

9.23 ± 2.54 ng/ml). Nevertheless, our in vivo results

clearly showed that galectin-3 mostly localized in the

cytoplasm of the LLC tumor cells, and the immunostaining

of galectin-3 increased significantly after cisplatin inter-

vention (Figs. 1a, 3). It was reported that intracellular

Fig. 1 Cisplatin increased the expression of galectin-3 both in the

tumor tissue and the peripheral blood. a Galectin-3 protein in tumor

tissues determined by immunoperoxidase staining: (a), negative

control; (b), Weak staining without cisplatin treatment; (c), Moderate

staining with 0.4 mg/kg of cisplatin; (d), Strong staining with

4 mg/kg of cisplatin. b Galectin-3 level in peripheral blood measured

by ELISA. Compared to the NS group, the level of galectin-3 in blood

plasma of the higher cisplatin level group (4 mg/kg) significantly

increased (n = 6; *, P \ 0.05). In contrast, in LLC free mice,

cisplatin treatment could not change the galectin-3 level (n = 5)
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galectin-3 shifts dynamically depending on the cell status

[32]. Evidence showed that levels of nuclear galectin-3

decreased during the progression from normal to cancerous

states. Concomitantly, cytoplasmic expression was

increased [33]. On this basis, the elevated of cytoplasmic

galectin-3 expression after cisplatin in our study may

indicate the harmful reactions of tumor cells. Generally, we

demonstrated that LLC tumor cells could express galectin-

3 and that the elevated galectin-3 level was mostly the

response of this tumor to cisplatin therapy.

Additionally, our immunofluorescence and FCM results

showed that, besides the elevated number of MDSCs in

spleen, the accumulation of MDSCs also increased signif-

icantly in the tumor site after cisplatin intervention (Fig. 2).

It was reported that the MDSCs infiltrated to the tumor

tissue could mediate the tumor cell resistance to cytotoxic

T cells [34]. Therefore, it is likely that the increased

accumulation of MDSCs in the tumor site may help to be

more competitive to the immunosurveillance of the host.

Various factors including GM-CSF [10], PGE2 [35], stem

cell factor (SCF) [36] have been found to induce the

expansion of MDSCs. And the signaling pathways trig-

gered by most of these factors are reported to converge on

Janus kinase (JAK) protein family members and signal

transducer and activator of transcription 3 (STAT3) [4]. It

was reported that galectin-3 regulates the adhesion of

epithelial cells to collagens and laminins, and promotes

keratinocyte migration over wound re-epithelialization in

mice [37, 38].Furthermore, galectin-3 stimulates neutrophil

adhesion and migration, as well as eosinophil adhesion [39,

40].Interestingly, galectin-3 has recently been revealed to

exert regulatory actions through the JAK-STAT pathway

under pathological conditions [41]. If that is true, our

results that galectin-3 induced accumulation of MDSCs in

tumor tissue as well as the spleen in the LLCs bearing mice

may be dependent on the JAK-STAT pathway.

Fig. 2 Cisplatin induced MDSCs accumulation both in tumor tissue

and spleen. a Immunofluorescence showed CD11b?Gr-1?cells

accumulated in the spleen after cisplatin treatment. b Average

number of Gr1?CD11b?cells counted in three high power fields of

tumor tissue in different groups. c, d The proportion of Gr-

1?CD11b?MDSC was evaluated by flow cytometry using anti-Gr-

1 and anti-CD11b mAbs in spleens and tumor tissues with or without

cisplatin treatment. Each group included six mice (*, P \ 0.05)
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Fig. 3 The expression of galectin-3 in LLC cells was detected by

immunofluorescence. LLCs of climbs were incubated with galectin-3-

PE and examined using an inverted 80i Nikon wide field fluorescence

microscope and photographed with a CCD SPOT RT Camera. (a),

The LLC cells under normal light; (b), The nucleuses were dyed with

DAPI; (c, d), Galectin-3 located mainly in the cytoplasm

Fig. 4 LLCs derived galectin-

3 proteins were chemotactic for

MDSCs. a Splenic MDSCs

were isolated from the LLC

mice and the Gr-1 and CD11b

were detected by FCM.

b Splenic MDSCs were tested

by chemotaxis assay for their

migration in response to LLC

culture medium (CM). Data are

pooled from two independent

experiments. c The western blot

confirmed the expression of

galectin-3 in LLC cells. d The

galectin-3 ligand CD98 was

detected by flow cytometer on

the cell membrane of MDSCs
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Recently, the response of the tumor microenvironment

to chemotherapy has attracted much attention for their

potentials in drug resistance [42]. Our results strongly

suggested that cisplatin-induced galectin-3 might act as a

chemotactic factor to MDSCs. Interestingly, a recent study

has indicated that common cytotoxic drugs could induce

neoplastic cells to produce monocyte/macrophage recruit-

ment factors, which in turn enhance macrophage infiltra-

tion into the tumors [43]. Nakasone et al. [25] further

proposed that the myeloid cell infiltration occurred after

chemotherapy impedes the response to therapy, and this

could be regulated by the tumor immune microenviron-

ment. Our observation was in accordance with these stud-

ies, and we propose that galectin-3 may mediate the

cisplatin induced expansion of MDSCs, which could exert

adverse effects to cisplatin therapy. Further researches are

needed to confirm that.

Conclusions

In summary, our results suggested that galectin-3 was

chemotactic to MDSCs. And the accumulation of MDSCs

in the tumor site as well as the peripheral blood of the

LLCs mice in response to cisplatin therapy may be due to

the tumor derived gelectin-3. This primary data provided

new clues that targeting MDSCs recruitment, in combina-

tion with cytotoxic therapy, may have generally improved

outcomes in treating cancers.
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