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Abstract Notch signaling pathway, a highly conserved

cell signaling system, exists in most multicellular organ-

isms. The objective of this study was to examine Notch

signaling pathway in germ cell cyst breakdown and pri-

mordial follicle formation. The receptor and ligand genes

of Notch pathway (Notch1, Notch2, Jagged1, Jagged2 and

Hes1) were extremely down-regulated after newborn

mouse ovaries were cultured then exposed to DAPT or

L-685,458 in vitro (P \ 0.01). Since DAPT or L-685,548

inhibits Notch signaling pathway, the expression of protein

LHX8 and NOBOX was significantly reduced during the

formation of the primordial follicles. Down-regulated

mRNA expression of specific genes including Lhx8, Figla,

Sohlh2 and Nobox, were also observed. The percentages of

female germ cells in germ cell cysts and primordial folli-

cles were counted after culture of newborn ovaries for

3 days in vitro. The result showed female germ cells in

cysts was remarkably up-regulated while as the oocytes in

primordial follicles was significantly down-regulated

(P \ 0.05). In conclusion, Notch signaling pathway may

regulate the formation of primordial follicle in mice.
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Introduction

In mammals, the establishment of the primordial follicle

pool is important to availability of oocytes, which are

absolutely essential for fertility [1]. Mouse primordial germ

cells (PGCs) migrate from outside embryo to genital ridge

at 10.5 days post coitum (dpc), and divide by mitosis with
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incomplete cytokinesis to form nests or germ cell cyst [2].

At approximately 13.5 dpc, germ cells enter meiosis

afterwards called oocytes. Oocytes arrest in the diplotene

stage of meiotic prophase I at birth [3] and exist as cyst.

The majority of oocyte cysts separate into individual

oocytes (cyst breakdown) at 17.5 dpc of fetal mouse, then

after, oocytes are surrounded by pregranulosa cells to form

primordial follicles [4]. During this period, only as ubset of

oocytes ultimately survives but immature eggs die by

programmed cell death [5]. Mechanisms that govern the

event and result in oocyte death are not well characterized.

In addition, the knockouts of several transcription factors

have phenotypes suggesting important roles in formation of

mouse primordial follicle. Factor in the germline alpha

(Figla) is a basic helix loop helix transcription factor [6].

Figla knockout mice begin losing oocytes at birth and

oocytes still present but not enclosed in primordial follicles

[7]. Nobox (Newborn ovary homeobox), an oocyte specific

homeobox gene in oocytes, expresses not only in germ cell

cysts but also in follicles [8]. Knocking out Nobox result in

an increased oocyte loss and a delay in cyst breakdown in

neonates [9]. Sohlh2 (Spermatogenesis and oogenesis

helix-loop-helix 2), a novel spermatogenesis- and oogen-

esis-specific basic helix-loop-helix (bHLH) transcription

factor, presents in primordial follicles but not detectable in

growing oocytes [10]. Lhx8 (LIM homeobox 8) gene, a

LIM homeodomain transcriptional regulator, preferentially

expresses during oogenesis in females, which is critical in

early folliculogenesis [11].

Lunatic fringe (Lfng) mutants are infertile and have

MOFs (More oocyte follicles) [12]. Lfng is a member of

the fringe family of proteins that either stimulates or

inhibits Notch signaling. Therefore, Notch signaling may

play a role in cyst breakdown or follicle assembly. Notch

signaling, as an evolutionarily conserved pathway, regu-

lates cell proliferation, differentiation, and apoptosis [13].

Notch family receptors are large single-pass Type I trans-

membrane proteins. In mammals, four Notch family

receptors have been described and encoded by the Notch1,

2, 3 and 4 genes. During canonical Notch signaling, Notch

receptors interact with ligands that are also single-pass

Type I transmembrane proteins. The canonical Notch

ligands are encoded by the Jagged (Jag1, Jag2) and Delta-

like (Dll1, Dll3, Dll4) gene families. When ligands bind

receptors, Notch receptors become susceptible to proteo-

lytic cleavage mediated by c-secretase complex, which is a

large protease complex and is composed of a catalytic

subunit (presenilin-1 or presenilin-2) and accessory sub-

units (Pen-2, Aph1, and nicastrin). For releasing the

intracellular domain of Notch (NICD) [14, 15]. The NICD

then translocates into the nucleus where it interacts with the

CSL family of transcription factors to form the complex

[16–18]. The complex regulates hairy and enhancer of split

(Hes) and Hes-related transcription factor (Hey) families,

which are Notch target genes [19–21]. These target genes

work as transcriptional factors to regulate expression of

other genes in different cells. Furthermore, as known, the

Notch signaling pathway plays important roles in deter-

mination of cell survival during embryonic development

and adult life [19, 22–24]. For example, in Xenopus laevis

Delta–Notch signaling is involved in the segregation of the

three germ layers [25]. The fate of the male germ line stem

cells may also be mediated through the Notch signaling

pathway [26].

In addition, Notch signaling may play a role in cyst

breakdown or follicle assembly. Recently, it is found

blocking the Notch signaling in cultured neonatal mouse

ovaries resulted in the defect of primordial follicles, indi-

cating that Notch signaling is essential for primordial fol-

licle formation [27]. However, the reasons are not very

clear. This study, for the first time, indicated that the germ

cell cyst breakdown and primordial follicle formation was

regulated by Notch pathway via affecting the expression of

Lhx8 and Nobox genes.

Materials and methods

Animals

All procedures including animals in this study were

reviewed and approved by the ethical committee of Qing-

dao Agricultural University. CD1 mice (Vital River, Bei-

jing, China) were used for all experiments and housed in a

temperature- and light-controlled facility with free access

to water and food. Postnatal ovaries were obtained from

mice at 0 dpp.

Ovary culture

Briefly, the ovaries were placed on Millicell-PC membrane

inserts (3.0 mm pore size, 10 mm diameter (Millipore Corp.,

Medford, MA, USA) with medium filling only the lower

chamber, and every ovary was placed on single membrane.

Then the medium was removed from the lower chamber until

a thin film covered the ovaries (Fig. 1). The control group,

medium for organ culture was DMEM/F12 ?a-MEM (1:1;

Hyclone, Beijing, China) supplemented with 0.23 mM

pyruvicacid, 10 % (v/v) FBS (Gibco, Beijing, China), insu-

lin-transferrin-selenium-A mix (Gibco, USA), 100 U/ml

penicillin G, 100 mg/ml streptomycin sulfate, and 0.1 %

DMSO. While in the experiment group, ovarian tissues were

treated with c-secretase inhibitors to ease Notch signaling,

namely, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenyl-

glycine t-butyl ester (DAPT), (D5942, Sigma, USA) at a

concentration of 20 lM, or (5S)-(t-butoxycarbonylamino)-
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6-phenyl-(4R)hydroxy-(2R)benzylhexanoyl)-l-leu-l-phe-

amide (L-685,458) (L1790, Sigma) at a concentration of

10 lM, respectively. The medium was changed every 48 h

with replacement of half fresh medium. Experiments were

repeated at least three times. Every time we used at least three

ovaries of different groups.

Immunofluorescence

Ovaries were fixed by immersion in 4 % paraformaldehyde

for 12 h. The samples were serially sectioned at 5 lm and

mounted on glass slides. To quantitatively evaluate the

number of germ cells in cysts, primordial follicles and

primary follicles, slides from each ovary were arranged in

order, and every third section was marked for examination.

The protocol used in this study was previously described.

The section was blocked by BDT (3 % BSA, 10 % normal

goat serum in the TBS) for 45 min, then, incubated with

rabbit anti-MVH polyclonal antibody at a dilution of 1:200

(Abcam, ab13840, HongKong, China). After three rinses in

PBS, the sections were incubated with goat anti rabbit IgG

conjugated with fluorescein isothiocyanate at a dilution of

1:50 (Beyotime, Nantong, China) for 30 min at 37 �C. PI

was used to label nuclei. Vectashield (Vector, H-1000,

Shanghai, China) was employed to seal the covers. MVH

expression in sections was examined under Olympus BX51

fluorescence microscope.

RNA extraction, cDNA synthesis

Ovaries were collected from control and treatment groups

(DAPT (20 lM) or L-685,458 (10 lM)) at 0 dpp. Total

RNA was extracted using RNAprep pure MicroKit (Aidlab,

RN07, Beijing, China) following the manufacturer’s

instructions. RNA was resuspended in 16 ll nuclease-free

water and cDNA was synthesized by TUREscript 1st strand

cDNA Synthesis Kit (Aidlab, PC1802). The entire exper-

imental procedure has been stated previously [28–31]. PCR

conditions were set as: 50 min at 42 �C, 65 �C for 15 min

and finally a cooling step at 4 �C.

Quantitative real-time PCR

Primers designed for amplifying list in Table 1. Amplifi-

cation was carried out with Light Cycler real-time PCR

instrument (Roche LC480); the procedure was instructed

by handbook from real-time PCR apparatus using a Light

Cycler� SYBR Green I Master (Roche, 04887352001).

The reaction was performed in 10 ll reaction volume

containing 1 ll cDNA, 5 ll of SYBR green master mix,

0.4 ll of primers (20 lM), and 3.6 ll of nuclease-free

water per sample. The PCR conditions were set as: 10 min

at 95 �C, followed by 55 cycles at 95 �C for 10 s, 60 �C for

30 s and finally a cooling step at 4 �C. The expression was

normalized to reference gene expression using the formula:

2-(target gene CT value - reference gene CT value) [32]. Every

sample was amplified triplicates to normalize the system

and pipetting error, using the standard curve method with

b-actin and MVH as the reference gene.

Western blot

Western blot analysis was performed according to the lit-

eratures described before [33–35]. Briefly, total proteins

DMSO

DAPT or L-685,458

Cyst breakdown

Follicle assembly

A

B

Fig. 1 The diagram of

experiment. The ovaries were

placed on Millicell-PC

membrane inserts with DMSO,

L-685,458 and DAPT to detect

how the Notch signaling

pathway regulated the formation

of primordial follicle in mice
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Table 1 Primers used for

quantitative-PCR
Gene Primer sequence (50–30) Amplified fragment

length (bp)

Sequence number

b-actin F:TCGTGGGCCGCTCTAGGCAC

R:TGGCCTTAGGGTTCAGGGGGG

255 NM_007393.3

Notch1 F:CGTGGATTCATCTGTAGGTGC

R:CATAGGCAGGTGGGACTACG

134 NM_008714.3

Notch2 F:GCTGTCAATAATGTGGAGGCG

R:TTGGCCGCTTCATAACTTCC

125 NM_010928.2

Jagged1 F:TGGATTCAAGTGTGTGTGCC

R:GGAAGGCAATCACAGTAGTAGC

138 NM_013822.5

Jagged2 F:GCTTTGAATGCCACTGTCCG

R:AGATGCACTCGAAGCCGTCC

129 NM_010588.2

Sohlh2 F:TCTCAGCCACATCACAGAGG

R:GGGGACGCGAGTCTTATACA

199 NM_028937.3

Figla F:ACAGAGCAGGAAGCCCAGTA

R:TGGGTAGCATTTCCCAAGAG

225 NM_012013.1

MVH F:AGGGGATGAAAGAACTATGGTC

R:AGCAACAAGAACTGGGCACT

175 NM_010029.2

Nobox F:ACAAACGCCATGAGATTTCC

R:AACAGGGCCAGGTTCTAGGT

215 NM_130869.3

Lhx8 F:CAGTTCGCTCAGGACAACAA

R:CCTGCAGTTCTGAAACCACA

108 NM_010713.2
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Fig. 2 Effect of Notch signaling inhibitors, DAPT and L-685,458, on

the expression of Notch member and target Hes genes. When the fetal

mouse ovaries were cultured for 1, 3 and 5 days with DAPT or

L-685,458, Jagged1, Jagged2, Notch1 and Notch2 were down-

regulated. The results present as mean ± SD. *P \ 0.05, **P \ 0.01,

***P \ 0.001
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were extracted from tissues with RIPA lysis solution

(Beyotime, P0013C) for 30 min on ice with frequent

vortexing, then sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS–PAGE) as the sample loading buffer

was added. The volume of SDS–PAGE is one-fifth of

RIPA lysis solution. Next, the samples were boiled for

5 min. The lysates were collected by centrifugation at

12,000 rpm for 5 min at 4 �C. The proteins were separated

by SDS–PAGE with a 4 % stacking gel and a 10 % sep-

arating gel for 50 min at 100 V and 2.5 h at 120 V,

respectively, and then were transferred onto polyvinyli-

dene fluoride membrane by electrophoresis. After block-

ing, the membranes were incubated with rabbit anti-

NOBOX antibody (Abcam, ab41521) at a dilution of

1:200, and rabbit anti-LHX8 antibody (Sigma,

SAB2101342-50UG) at a dilution of 1:1,000 overnight at

4 �C, respectively. After rinsing three times in TBST, the

membranes were incubated at 37 �C for 1 h with horse-

radish peroxidase (HRP)-conjugated goat anti-rabbit IgG

(Beyotime, A0208) at a dilution of 1:50 in TBST. Beyo

ECL Plus Kit (Beyotime, P0018) was used for exposure.

The band intensity was quantified using MVH as internal

quantitative control with alpha view. All experiments were

duplicated at least three times.

Statistical methods

For each set of data, independent experiments were repe-

ated at least three times, representing the mean ± SEM,

within an individual experiment. The differences between

treatment and control groups were analyzed by ANOVA,

and differences were calculated by Tukey’s test. Results

were considered significant at P \ 0.05. All analyses were

carried out with the statistical analysis program [36].

Results

DAPT and L-685,458 are effective to inhibit Notch

signaling pathway

0 dpp ovaries were isolated from mice and cultured in vitro

with L-685,458 and DAPT which were widely used as

Notch signaling pathway inhibitors [37]. To confirm the

efficiency of these inhibitors, both of them were examined

in this study, and the expression of the Notch components

and their Hes target genes were quantified using RT-PCR

(Fig. 2). The results showed these genes (Notch1, Notch2,

Jagged1, Jagged2 and Hes1) were extremely down-
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Fig. 3 Quantitative RT-PCR analyses of expression of transcription

factors. When the ovaries from 0 dpp mice were cultured in vitro with

DAPT or L-685,458 for one day, expressions of Nobox, Lhx8, Sohlh2,

and Figla were down-regulated. The results present as

mean ± SD.*P \ 0.05, **P \ 0.01
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regulated after 0 dpp mouse ovaries were cultured and

exposed to DAPT or L-685,458 in vitro (P \ 0.01)

(Fig. 2). Specifically, day 0 ovaries cultured for 1 day with

20 lM DAPT displayed a 50 % decrease in Jagged1

mRNA levels, a 40.3 % decrease in Jagged2 mRNA levels

and a 73.9 % decrease in Notch1 mRNA levels (P \ 0.05).

Besides, Notch2 mRNA decreased 40.2 % after DAPT

treatment for 1 day (P \ 0.01). Notch1, Notch2, Jagged1

and Jagged2 mRNAs down-regulation persisted when

ovaries were cultured for 3 or 5 days with DAPT. Similar

to DAPT, day 0 ovaries cultured for 1 day with L-685,458

displayed extremely decrease in Jagged2 and Notch1

mRNA levels (P \ 0.01). When ovaries were cultured for

3 or 5 days with L-685,458, the inhibition were not as

obvious as DAPT. The study reveals Notch signaling can

be suppressed by culturing ovaries with a c-secretase

inhibitor.

Inhibition of Notch signaling affects expression

of transcription factors during the formation

of primordial follicles

A remarkable effect on follicular formation upon c-secre-

tase inhibitor was observed. To explain this phenomenon,

mRNA and protein expression of several transcription

factors, were examined, including Nobox, Figla, Lhx8,

Sohlh2 which were critical for formation of follicles

(Figs. 3, 4). The relative mRNA expression of Nobox,

Figla, Lhx8 were significantly lower in the DAPT-treated

group compared to control (P \ 0.05). What’s more, So-

hlh2 was reduced 49.4 % in treatment group (P \ 0.01).

When using L-685,458 as an inhibitor, only the expression

levels of Nobox and Lhx8 were significantly decreased

(P \ 0.05). Besides, 0 dpp mouse ovaries cultured with

DAPT or L-685,458 for 2 days in vitro, the proteins of

LHX8 and NOBOX were detected within mouse ovarian

tissues using western blotting. The data demonstrated the

concentration of LHX8 protein within DAPT-treated was

decreased 49.4 % lower than that of the control ovaries

without inhibitors (P \ 0.05). When using L-685,458 as an

inhibitor, LHX8 was down-regulated 64.43 % in treatment

group (P \ 0.01). However, the concentration of NOBOX

with DAPT or L-685,458-treated was not significantly

decreased. This suggests that Notch signaling is involved in

the formation of primordial follicles mainly by regulating

the expression of LHX8 and NOBOX.

Attenuating Notch signaling decreases primordial

follicle formation

To examine how Notch signal pathway affecting primor-

dial follicle formation, 0 dpp ovaries were treated with

DAPT or L-685,458 for 7 days, and the ovarian histology

was analyzed. Ovaries treated with DMSO for 7 days were

primarily composed of primordial follicles. At the same

time, small quantities of germ cells cysts were found per-

sisting in these ovaries near cortex. Conversely, DAPT-

treated ovaries expanded tracts of germ cells but not

assembled into follicles (Fig. 5a). Follicular counts

revealed that DAPT-treated ovaries had a significantly

down-regulated percentage of follicles, 64.03 ± 4.00 ver-

sus 90.22 ± 0.40 % for controls, correspondingly, a sig-

nificant increase of the percentage of germ cells remaining

in nests, 35.97 ± 4.40 versus 9.78 ± 0.35 % for controls

(P \ 0.01) (Fig. 5c). Similar to DAPT, L-685,458-treated

ovaries displayed a significantly reduction of germ cell nest
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Fig. 4 Expression of transcription factors by western blot. Detection

by western blot, the expression levels of LHX8 and NOBOX protein

were significantly decreased within DAPT or L685,458-treated

ovaries. In western blot, every four ovaries were collected as a group

for examination, the expression of LHX8 and NOBOX were

normalized to MVH, a germ cell specific marker. All experiments

were duplicated at least three times
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breakdown compared with controls. L-685,458-treated

ovaries had an extremely significant percentage of pri-

mordial follicles, 66.85 ± 0.93 versus 81.81 ± 0.82 % for

controls, and this was accompanied by a rise of germ cells

not encapsulated by somatic cells, 33.14 ± 0.89 versus

18.49 ± 0.87 % for controls (P \ 0.05).

Discussion

Folliculogenesis describes the progression of a number of

small primordial follicles into large preovulatory follicles

that enter the menstrual cycle. In mammals, ovarian fol-

licular development is a continuous process during repro-

ductive life span. Follicles develop through the primordial,

primary, and secondary stage before acquiring an antral

cavity. With further growth and differentiation, preovula-

tory follicles form and the oocytes release after LH stim-

ulation. In fact, only a few follicles go through ovulation.

Most of the developing follicles will lose as a result of

atresia [38–41]. Breakdown of germ-cell nests and forma-

tion of primordial follicles are key events in mammalian

early folliculogenesis. In mammalian ovary, the original

pool of primordial follicles is the source of all eggs that

will be produced over the entire reproductive life of the

organism. Establishment of oocytes is absolutely essential

for fertility. During the last few years, the formation and

development of mouse primordial follicles have been

investigated, but little remains known about the mecha-

nisms underlying primordial follicular formation and acti-

vation. The communication between the mammalian

oocyte and surrounding granulosa cells has been shown

crucial to folliculogenesis. However, signaling molecules

and pathways inside mammalian follicles that control for-

mation and early development of ovarian follicles have not

been studied extensively.

As one of the most important cell signaling pathways,

expression of Notch signaling components in the ovaries has

been examined previously [27, 42]. The evidence of

expression of Notch pathway genes in the mouse ovary

proposes a novel role for Notch signaling in regulating pri-

mordial follicle formation. In the primordial follicles,

JAGGED1 specifically expresses in the cytoplasm of

oocytes; however, JAGGED1 not only expresses in the

cytoplasm but also weakly expresses in the nucleus. The

different expression and localization may suggest JAG-

GED1 provide a potential role for transition from primordial

to primary follicles. NOTCH2 begin express in granulosa

cells of primary follicles. Expression patterns are consistent

with what has been reported in the adult mouse ovary [24].

The complementary expression patterns of JAGGED1 and

NOTCH2 imply a potential role for molecules in mediating

interactions between the germ and somatic cell compart-

ments during early follicle development.

An ovary culture system in vitro that can mimic the

conditions of the ovary in vivo is fundamental for the study
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Fig. 5 Inhibition of Notch signaling reduces oocyte cyst breakdown

and primordial follicle assembly. a. Histological sections of the

ovaries from 0 dpp fetal mice cultured in vitro for 7 days with DAPT

or L-685,458. Oocytes are stained brown with MVH, granulosa cell

showed red with PI stained. The bars 20 lm. b. The representative

form of cyst and primordial follicle. c. The proportion of oocytes in

cyst and follicles in control and inhibitors-treated groups. The results

present as mean ± SD. *P \ 0.05, **P \ 0.01
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of folliculogenesis. In previous study, a simple and effi-

cient method was developed to induce development of

follicles from fetal mouse ovaries using a three-dimen-

sional culture system [43]. The results provided evidence

that early onset of follicular formation and activation

occurred in vitro during fetal mouse ovary organ was

cultured. The study also verified this model is useful for

investigation of folliculogenesis mechanisms. The previous

study, for the first time, assessed the effect of continuous

DAPT or L-685,458 exposure to mouse follicular forma-

tion. L-685,458 and DAPT are inhibitors of c-secretase,

which catalyzes the final cleavage of the Notch receptor,

and have been widely used in other studies to block the

Notch signaling pathway [44, 45]. In this study, 0 dpp

mouse ovaries were cultured in vitro, and the Notch sig-

naling pathway was blocked by L-685,458 and DAPT

treatment. It is found blocking the Notch signaling pathway

resulted in decreased mRNA level of Notch signaling

pathway related genes. Inhibitors-treated ovaries displayed

the reduction of germ cell nest breakdown compared with

controls. Several transcription factors are known to affect

formation of ovarian follicles. Figla, Nobox and Sohlh2 are

critical for the formation and maintenance of primordial

follicles. Lhx8 is vital in early follicle formation and oocyte

differentiation, and it functions in part by regulating the

Nobox pathway. In this study, extremely significant

declines in Figla, Nobox, Sohlh2 and Lhx8 expression were

observed between the treated and control groups. There-

fore, it is reasonable to rationalize that attenuating Notch

signaling decreases primordial follicle formation by

inhibiting the expression of transcription factors.
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