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Abstract Our study used MHC class IIb gene exon3

complete sequence as markers to investigate genetic vari-

ability, selection and population differentiation in Chinese

alligator. In this study, 282 bp MHC IIb exon3 complete

sequence was got, none of the sequences contained inser-

tions/deletions or stop codons, suggesting that all sequen-

ces might come from functional molecules in the genome.

The neighbor-joining (NJ) tree revealed that Xuangzhou

and Changxing populations were genetically close related,

while Wild population showed the most diverse from the

other. Gene flow (Nm) was very higher than one, sug-

gesting that inter-group gene flow may have occurred.

Furthermore, the results showed that MHC IIb gene might

be a good molecular marker, we think that this technology

could be used for Chinese alligator breeding and releasing

in future.

Keywords MHC class IIb gene exon3 � Diversity �
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Introduction

Chinese alligator (Alligator sinensis), one of the 23 criti-

cally endangered crocodile species in the world, has been

closed to extinct during the past decades due to habitat loss

and serious illegal hunting [1]. The investigation indicated

that the number of Chinese alligators has decreased from

500 individuals in the 1980s to currently less than 120 or

150 individuals in the wild [1, 2].

Genetic variability in this relict species is obviously

essential for the genetic management of the captive

alligator. Until now, the genetic diversity studies about

Chinese alligator have mostly focused on neutral DNA

markers, such as RAPD [3], AFLP [4], mtDNA D-loop

sequencing [5, 6] and microsatellite [7–10]. However,

because of selective processes involving the environment

or the capacity for future adaptive change, the genetic

structure may differ from that of neutral genetic regions

[11–14]. Therefore, adaptive non-neutral markers have

become valuable especially [15–17], such as the genes of

the major histocompatibility complex (MHC), which

are found in all jawed vertebrates and play a critical

role in an organism’s immune response [18, 19]. Shi

et al. [20] analyzed the fragments of MHC class IIb

exon2 in three Chinese alligators from ARCCAR,

and Liu et al. [21] researched the exon3 partial

sequences in 14 Chinese alligators. They found there

was higher polymorphism of MHC class IIb genes in

Chinese alligators.

In this study, we would define MHC IIb gene exon3

complete sequences and expand on these earlier studies by

examining genetic variation across populations based on

these complete sequences and investigate selection at the

sequence level by examining patterns of sequence substi-

tutions. Our specific goals were (1) to define MHC class IIb

gene exon3 complete sequences and analyze selection, (2)

to provide more detailed genetic information for conser-

vation and management strategies for this endangered

population [22].
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Materials and methods

Samples and DNA extraction

Sample of individuals was given in Table 1. Sample col-

lection, transportation and storage were same to the pre-

vious study [3, 5]. DNA extraction followed a conventional

phenol/chloroform procedure [23], and genomic DNA

dissolved with ddH2O. The extracted DNA was examined

on 1 % agarose gels stained with 10 mg/ml ethidium bro-

mide, stored at -20 �C for further use.

PCR procedure

The primers amplifing the MHC designed by the sequence of

Caiman crocodilus (AF256651, AF256652 and AF277661)

through Primer premier 5.0 and Oligo 6.0 [24]. Amplification

reactions (30 ll) containing 30 ng genome DNA, 3 ll 109

PCR buffer (Sangon in Shanghai), 2 ll 25 mM MgCl2 (San-

gon in Shanghai), 1 ll 25 mM dNTP (Sangon in Shanghai),

2 ll 10 mM primer (Synthesized by Genscript in Nanjing), 1

U Taq DNA polymerase (Sangon in Shanghai). The PCR was

performed in a Mastercycler gradient (Eppendorf, Germany).

Initial denaturation of 95 �C for 5 min was followed by 35

cycles of 94 �C for 30 s, 47 �C for 30 s (primer annealing),

and 72 �C for 1 min (primer extension). A final extension of

72 �C for 10 min was incorporated, followed by cooling to

4 �C until recovery of the samples. PCR products were sep-

arated on a 1.5 % agarose gel following staining with 10 mg/

ml ethidium bromide and visualized using UV light.

Cloning and sequencing

PCR purified products were cloned into pMD18-T vectors

(Takara, Dalian, China) and transformed into DH5a com-

petent cells following the manufacturer’s recommendation.

After incubation at 37 �C on LB agar-ampicillin plates

overnight, at least 15 clones per individual were checked

for an insert by PCR. Between 8 and 11 insert-positive

clones per individual were sequenced with the M13 for-

ward and reverse primer by Genscript in Nanjing.

Sequences were obtained from at least two clones in the

same individual were used in the subsequent data analysis;

the sequences which had different length in the same

individual were kept. This strategy should allow for the

removal of potential artificial polymorphisms, because of

the use of Taq DNA polymerase by which mis-incorpora-

tion could occasionally occur.

Statistic analysis

After splicing with the ContigExpress software and cor-

recting with peak Chromas [25], all sequences were com-

pared (using the algorithm BLASTn) with those available

via the NCBI database (http://www.ncbi.nlm.nih.gov) [26].

Nucleotide multiple alignments were performed with

ClustalX [27].

Nucleotide polymorphism and diversity were calculated

using DnaSP v5 [28]. Analysis of molecular variance (AM-

OVA) was performed using Arlequin v3.1 [29] to assess

genotypic variations across all the populations studied. Pop-

ulation’s relationships were estimated using the NJ method.

Statistical analysis of nucleotide and amino acid sequences

was performed with MEGA v4 [30]. The non-synonymous

(dN) and synonymous (dS) substitution rates between alleles

were calculated for the entire sequence using the Modified

Nei–Gojorbori method applying the Jukes–Cantor correction

[31]. In addition, we used MEGA v4 to perform Z tests of

positive, neutral and purifying selection on the entire exon3.

Pairwise analyses of transitions and transversions, and

computation of DNA and amino acid entropy were performed

with the program DAMBE [32, 33]. To see how the alleles

were related, we reconstructed a nucleotide phylogeny by the

NJ method with Kimura’s two-parameter model, using

MEGA v4 [30]. Bootstrap values were calculated by 1,000

replicates, and branches corresponding to partitions repro-

duced in less than 50 % of bootstrap replicates were collapsed.

Results

Definition of MHC IIb gene exon3 complete sequences

By sequencing, sequences of three length types were

obtained in Chinese alligators, namely 913, 928, 943 bp.

Similarity search of the sequences at the NCBI database

showed 86–94 % similarity with C. crocodilus (AF256651,

AF256652 and AF277661). According to the intron–exon

boundary GT–AG rules, and by aligning with the sequence

of C. crocodilus (AF256651, AF256652 and AF277661),

we had found the sequences included 282 bp MHC IIb

exon3 complete sequence. The sequence did not show any

gaps, the nucleotide sequences were corresponded with

Table 1 Samples of Chinese alligator used for this study

Populations Sources Numbers Type

Wild population (Wild) Xuanzhou,

Anhui

7 Blood

Captive population in Xuanzhou

(Xuanzhou)

ARCCAR 7 Blood

Captive population in

Changxing (Changxing)

Changxing,

Zhejiang

7 Blood
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putative 93 amino acids peptide, none of the sequences

contained insertions/deletions or stop codons, suggesting

that all sequences might come from functional molecules in

the genome. The sequences from 928 and 913 bp length

types could be cut to the same exon sequence.

Nucleotide and amino acid variation

For simplicity, different sequences are tentatively referred

to as alleles even though they may be from different loci

[34]. In total, 206 clones from 21 Chinese alligators were

sequenced; an average of ten clones (range 8–11) per

individual. By sequencing, we indentified 43 alleles from

21 individuals. These sequences have been deposited to

GenBank (accession nos. JQ048623–JQ048665). More-

over, 21 alleles indentified in exon3 DNA complete

sequence and 16 alleles indentified in exon3 amino acid

complete sequence. 11.7 % (33 out of 282) of the nucle-

otide sites was variable and 16.1 % (15 out of 93) of the

amino acid sites was variable. Entropy measures the vari-

ation index at per site were given (Fig. 1). Nucleotide

diversity in Wild population was higher than that in two

captive populations, Xuangzhou population higher than

Changxing population. About haplotype diversity, Wild

population was highest, followed by Changxing and

Xuangzhou populations (Table 2).

Selection on MHC IIb exon3 complete sequence

Z tests allowed us to exclude the possibility that the exon3

experiences balancing selection (Z = -3.167, P = 1.000);

Z tests indicated that the dN/dS ratio does not differ from

neutrality (Z = -2.990, P = 0.003), and a test of purifying

selection was significant (Z = 3.134, P = 0.001) (Table 3).

Fig. 1 a Entropy measures the

variation index at per base site

in exon3 sequences, b entropy

measures the variation index at

per amino acid site Hi = -sum

[Pi�log 2 (Pi)]; Hi: 0–2; Pi: the

substitution frequencies of

different nucleotides per site

within the allelic sequences

sampled
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Substitution saturation analysis

The analysis of substitution saturation was conducted and

is shown in Fig. 2. When transitions occur much more

frequently than transversions, no saturation of substitution

is recognized. On the other hand, when transversions

gradually outnumber transitions, substitution saturation is

suspected because multiple substitutions may have occur-

red at each site. Therefore, we conducted the comparison of

two regression slopes. The slope of transitions was sig-

nificantly steeper than that for transversions against evo-

lutionary distances, so the substitution was considered not

to be saturated.

Population structure

The genetic distances between the Wild population and the

two captive populations were higher than that between the

two captive populations. The NJ tree (Fig. 3) revealed that

Xuangzhou population and Changxing population were

genetically close related, while Wild population showed

the most diverse from the others.

The difference among three populations was not sig-

nificant (P [ 0.05) in AMOVA. The degree of differenti-

ation within a population accounted for 99.53 %, while

only 0.47 % among populations (Table 4). All those indi-

cated that the genetic differences mainly occurred within

populations.

Alleles phylogeny

In this study, the sequences included exon3 complete

sequences. Phylogenetic NJ tree showed alleles group

coming from 928 bp sequences were relatively concen-

trated (Fig. 4). We also found trans-species polymorphism

Table 2 Analysis of genetic

diversity of different

populations

Population Number of

specimen

Average number of

nucleotide differences (k)

Haplotype

diversity (Hd)

Nucleotide

diversity (p)

Number of

haplotype (h)

Xuanzhou 7 9.543 0.84762 0.03420 7

Wild 7 10.04737 0.94211 0.03601 13

Changxing 7 6.93464 0.88889 0.02486 10

Total 21 8.876 0.894 0.03181 21

Table 3 Summary of nucleotide substitution rates in the MHC IIb

gene exon3 of China alligator

dS dN Purifying selection

Z P

Xuanzhou 0.093 ± 0.024 0.014 ± 0.007 3.393 0.001

Wild 0.091 ± 0.025 0.017 ± 0.006 3.054 0.001

Changxing 0.067 ± 0.018 0.010 ± 0.005 3.081 0.001

Total 0.083 ± 0.021 0.014 ± 0.006 3.134 0.001

Fig. 2 Substitution saturation analysis transitions-type and transver-

sions-type nucleotide differences plotted against the evolutionary

distance of Kimura’s two-parameter method

Fig. 3 The cluster of three populations in Chinese alligator based on

NJ method

Table 4 Hierarchical analysis of molecular variance (AMOVA) within/among populations

Source of variation df Sum of squares Variance components Percentage of variation Fst P value

Among populations 2 9.579 0.02084 Va 0.47 – –

Within populations 50 221.194 4.42389 Vb 99.53 – –

Total 52 230.774 4.44473 – 0.00469 0.35582 ± 0.01200

df degrees of freedom, Va variance components among populations, Vb variance components within populations, Fst fixation index
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Fig. 4 a NJ phylogeny of 21

alleles based on exon3 DNA

complete sequence, b NJ

phylogeny of 16 alleles based

on exon3 amino acids sequence.

A NJ phylogeny based on

genetic distance of the Kimura

two-parameter model and

bootstrap re-sampling for 1,000

times. The tree also includes

three alleles from the Caiman
crocodilus (AF256651,

AF256652 and AF277661)

(Bootstrap values [50 % were

indicated above branches)
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within the exon3 regions, three alleles of C. crocodilus

were scattered in the alleles of Chinese alligator, suggest-

ing that exon3 had high variation in or between species

(Fig. 4).

Discussion

Genetic variation of MHC IIb exon3 complete sequence

In previous studies, 38 variable sites among ten nucleotide

sequences and 23 variable sites among amino acid

sequences were detected in MHC IIb gene exon2 partial

sequences, which were 166 bp long (except one 160 bp)

[20]; 34 sequence haplotypes of exon3 were detected in the

sampled Chinese alligators, and 83 polymorphic (variable)

sites were found within MHC IIb gene exon3 partial

sequences (260 bp) [21]. In this study, 11.7 % (33 out of

282) of the nucleotide sites was variable and 16.1 % (15

out of 93) of the amino acid sites was variable. The

research based on MHC IIb gene was a more powerful

method for genetic diversity of Chinese alligator, this

technology could be used for Chinese alligator breeding

and releasing in future.

In contrast to the three populations, Wild population had

higher levels of MHC IIb diversity. This difference in

diversity is interesting, because we would expect uniform

distribution of alleles throughout the range. Different pat-

terns of diversity might be explained by differences in

population size, as larger populations have more genetic

diversity. Changxing population, however, is smaller than

Xuangzhou population.

Population fixation index (Fst) represents the genetic

differentiation among populations; the larger Fst values

are, the higher the degree of differentiation among popu-

lations is [35]. In this study, the result that Fst values was

very low (Table 4), indicated a lack of isolation among

three populations and there were no differentiation. The

result was the same as the researches by Wu et al. [3] and

Liu et al. [21]. Usually, gene flow values (Nm) less than

one indicates a limited group of gene flow, Nm values

higher than one may represent large levels of gene flow and

genetic exchanging now or in the past [36]. In this study,

gene flow (Nm) was 5.77, suggesting that inter-group gene

flow may have occurred.

Evidence for purifying selection

An intriguing alternative explanation is that high diversity

in MHC genes is driven by balancing selection against

diverse pathogens [11, 37]. However, patterns of diversity

differ somewhat across exons in the same gene; for

instance, the exon3 of class II loci encodes an extracellular

domain close to the transmembrane region, which may

experience purifying selection [38].

Such selection leaves a characteristic mutational signa-

ture in coding regions; in particular, codons that have

experienced balancing selection should have more non-

synonymous changes than synonymous changes, while

codons that experienced purifying selection will have very

few non-synonymous changes relative to the number of

synonymous changes.

In this study, Z tests indicated that the dN/dS ratio does

not differ from neutrality (dS [ dN), and a test of purifying

selection was significant (P = 0.001) (Table 3). This result

showed that the exon3 was expected to be under purifying

selection.

Conclusion

In this study, we had defined the MHC IIb exon3 complete

sequence. The sequence included 282 bp nucleotide and did

not show any gaps, the nucleotide sequences were corre-

sponded with putative 93 amino acids peptide. Z tests indicated

that the dN/dS ratio does not differ from neutrality (dS [ dN),

which showed that the exon3 was expected to be under puri-

fying selection. At the same time, we found that the research

based on MHC IIb gene was a more powerful method for

genetic diversity of Chinese alligator, this technology could be

used for Chinese alligator breeding and releasing in future.
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