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Abstract microRNAs are short, non-coding RNAs, that

exert a posttranscriptional control on protein synthesis by

mRNA interference. They are involved in normal and

pathological embryologic development, as well as in adult

life pathology, from myocardial infarction to cancer. There

are several brain-specific species of microRNA, showing

time-dependent pattern of expression, selectivity for neu-

ronal population, significant roles in correct cellular dif-

ferentiation and system development. The growing interest

in microRNAs extended also in the area of neurodegener-

ation, some of brain-restricted microRNAs being reported

to associate with disorders such as Alzheimer’s disease,

Parkinson’s disease or Huntington’s disease. The microR-

NAs research in the last 3 years offered a considerable

amount of information that needs to be integrated in the

vast machinery of cellular biology.
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MicroRNAs: what are they?

A short introduction on microRNAs

It is now known that less than 2% of human DNA is

translated into proteins and the fraction of protein-coding

DNA in the genome decreases with increasing organism

complexity. In bacteria, about 90% of the genome codes

for proteins, whereas in yeast, nematodes and mammals,

the percentage is progressively restricted to 68, 23–24, and

1.5–2%, respectively [1]. Yet more than half of the human

genome is transcribed, meaning that most of the transcripts

are non-coding RNAs. It is now clear that this genetic

information is not a redundant activity, but is rather a way

for the cell to regulate its phenotype, as important as

posttranslational events of protein synthesis [2]. Non-cod-

ing RNAs (ncRNAs) include several species that share only

one common feature-the absence of a reading frame to

initiate polypeptide synthesis: ribosomal RNA (rRNA),

transport RNA (tRNA), small nucleolar RNAs (snoRNAs),

small nuclear RNAs (snRNAs), microRNAs (miRNAs) and

Piwi-interacting RNAs (piRNAs), some genetic mobile

elements (a subset of retrotransposons) and other isolated

subspecies of RNAs, unclassified so far. ncRNAs diversity

has been demonstrated and accepted only recently and until

1999 only several hundred species were described. How-

ever, in the following 5 years, the ncRNA list expanded up

to 5,000 species and several new categories were added to

formerly known ones [3]. By 2010, the database ‘‘miRN-

ABase: the home of microRNA data’’ (accessible at http://

microrna.sanger.ac.uk/sequences/) registered more than
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15,000 entries, of which over 1,000 for Homo sapiens

[4–6].

The ncRNAs control gene expression through a variety

of mechanisms and act in distinct stages of ontogenetic

development. The idea that RNAs might be involved in

posttranscriptional regulatory mechanisms first rose in the

late 1960s, when it was assumed that some RNA types are

responsible for the active or inactive state of a gene by

direct complementary association [7]. The newly discov-

ered transcription factors unjustly dismissed this theory

until few decades later, when it was convincingly argued

that RNAs are not just simple intermediaries between

genes and proteins. Experiment in plants in the late 1980s

and early 1990s reported an occasional protein downreg-

ulation, following transfection or induced overexpression

of certain genes. These results were further confirmed in

Caenorhabditis elegans, by key experiments that proved

that double-stranded RNA (dsRNA) triggers messenger

RNA (mRNA) destruction and this dsRNA is further con-

verted into smaller species that mediate mRNA silencing.

Two studies reported independently, in 1993, the first

cloned microRNA–lin-14, a small RNA involved in

repressing lin-14 (lin 14) gene expression, gene encoding a

protein involved in regulating developmental timing of

C. elegans larvar lineages [8, 9]. Lee et al. reported two

definitory elements for microRNAs: (i) the increase of

transcriptome expression correlates with downregulation of

protein expression and (ii) the gene transcript contains base

sequences complementary to 30untranslated region (UTR)

of the mRNA of the downregulated protein.

Up-to-date the interest taken in microRNA biology grew

almost exponentially, more than 1,800 papers being pub-

lished only in 2009, bringing new information on their

structure and biological function and demonstrating their

involvement in different pathological mechanisms.

MicroRNAs biogenesis

MicroRNAs are single stranded RNA molecules (ssRNA)

of approximately 22 nucleotides, partially complementary

to the 30UTR of a mRNA. At first it was hypothesized that

coding sequences for microRNAs lie between protein and

coding genes, but soon after, intronic microRNA were

described, located within either coding or noncoding

transcriptional units, respecting the transcription pattern of

the host gene [10]. Intergenic microRNAs are independent

transcription units, with their own transcriptional regula-

tory elements and many of them are clustered in the gen-

ome [11]. Intronic or exonic genes can also be grouped and

translated as polycistronic RNA. These functional units

usually contain 2 or 3 genes, but may go up to 7 genes

[12, 13]. Clustering of microRNAs may have structural

semblance or may be functionally related, targeting

mRNAs of proteins from the same metabolic chain. In

humans, all chromosomes contain microRNAs genes,

except the Y chromosome [14].

MicroRNAs usually are transcribed as long pri-micr-

oRNA precursors, usually several kilobases, that contain

stem-loop structures [15], that will be processed in the

nucleus by RNase III complex, mainly composed of a

processing enzyme (Drosha) and a RNA binding protein

(DGCR8/Pasha) [16]. The enzymatic complex interacts

with the pri-microRNA at the base of the stem, positioning

the enzyme in the correct spatial configuration for asym-

metric cleavage. Drosha will sever one dsRNA spiral away

from the attachment site (11 bps), releasing a pre-micr-

oRNA containing a two nucleotide 30overhang, essential

for nuclear export by exportin 5 (Fig. 1) [17].

In the cytoplasm it will be further processed by another

Rnase III complex–Dicer, specialized to bind RNA ends,

especially duplex ends with short (*2 nt) 30 overhangs.

Dicer releases a 22-nucleotide double-stranded microRNA

with a 50phosphate end and a 2-nucleotide 30overhang [18].

The dsRNA will be incorporated into a RNA induced

scilencing complex (RISC), unwinded by a helicase, and

cleaved in two ssRNAs, of which only one will stably

associate with RNA binding proteins [19]. The key player

of RISC is RNA binding protein Argonaut (Ago), which, in

mammals, forms a trimeric complex with Dicer and its

RNA binding partner—TRBP. Such an association is

capable of rapid generation of mature duplexes from pre-

microRNAs and further guidance to target [20]. The

microRNA-RISC forms the so-called ‘‘effector complex’’,

or microribonucleoprotein complex (miRNP), responsible

for the microRNAs biological actions. MicroRNAs will

bind to a specific site of a mRNA, in the 30UTR region, site

usually present in multiple copies. Most microRNAs bind

imperfectly to their target, although a key feature of rec-

ognition involves Watson–Crick base pairing between the

microRNA ‘‘seed region’’-nucleotides 2–8 and mRNA

30UTR region. Based on this ‘‘seed region’’, microRNA

targets can be predicted using algorithms, such as Tar-

getScanS algorithm, that identifies conserved Watson–

Crick (W–C) matches to microRNA bases 2–7, flanked by

either a Watson–Crick match to the m8 position of the

microRNA or a conserved adenosine in the t1 position of

the target, designated as the t1A anchor [21]. Several

computational prediction programs are available for online

target searches and the use of bioinformatic analysis

revealed that one microRNA may actually interact with

hundreds of mRNAs and one mRNA 30UTR may have

multiple binding site for different microRNAs. Pairing

prediction cannot be made only by perfect matching of

seed region to mRNA 30UTR and sequences outside the

seed area are important to specifying targets or optimizing

the silencing [22].
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Recently, mature microRNAs were also identified inside

cell’s nucleus [23, 24], raising the possibility of epigenetic

regulation of gene expression [25].

MicroRNAs roles in normal embryological

development

Since the identification of the first microRNA and its role

in normal development of C. elegans, it was only logical

that interest for this new ncRNA species should focus on

embryological timing development and subsequent regu-

latory (either activatory, either inhibitory) mechanisms.

Indeed, many reports confirm the role of microRNAs in

normal tissue differentiation, and there are reports of dif-

ferent expression patterns of the same microRNA between

embryologic and adult life and also between different tis-

sue types. [26–29]

MicroRNA expression seems to be tightly regulated at

each step and varies with the tissue type and ontogenetic

period In the same tissue, during embryonic development

some species might be expressed at very high levels (up to

10,000 molecules/cell), while others barely detectable,

where as in adult life, the report can be reversed [30]. A

rough approximate shows that more than 5,000 genes are

controlled by microRNAs, with a ratio between microR-

NA: transcripts of 1:200. The role in cell differentiation is

elegantly illustrated by Lim et al. who successfully modi-

fied the cell’s faith by microRNAs overexpression. Hence,

overexpression or miRNA-214 in HeLa cells modifies the

phenotype into a nervous-like one, while miRNA-1 in a

muscle-like one [31]. In both cases, approximately 100

microRNAs were repressed, suggesting a tissular profile

responsible for the cellular phenotype. To enunciate only a

few roles of microRNAs in normal development, one can

think at developmental timing and correct larval stages

development in invertebrates [8, 9], balance between

apoptosis and proliferation [32, 33], fat storage [34], sen-

sorial specialization of nervous structures [35, 36], hema-

topoietic differentiation [37], stem cells asymmetric

division [38, 39] and malignancy [40, 41].

Significant functional data regarding microRNAs func-

tion were obtained by Drosha or Dicer knock-out (KO)

animal models, at first in C. elegans and later on in insects

and mammals.

Drosha KO does not seem to modify the phenotype

significantly, therefore most results involved Dicer1 (Dcr1)

KO. In Dcr1 KO, offsprings were infertile, so heterozygous

Fig. 1 The first step of microRNA biogenesis is the transcription of a

long pri-microRNA that contains loop-stem structures. These loop-

stem structures will be further cleaved-off from the primary transcript

by the RNAse III Drosha, a processing step that also takes place in the

nucleus. The cleavage product is called pre-microRNA and has a

typical two nucleotide 30overhang, essential for nuclear export by

exportin 5. The next enzymatic processing takes place into the

cytoplasm and it is performed by another Rnase III–Dicer, specialized

to bind RNA ends, especially duplex ends with short (*2 nt) 30

overhangs. Dicer releases a 22-nucleotide mature double-stranded

microRNA that will be further incorporated into a RNA induced

silencing complex (RISC), unwinded by a helicase, and cleaved in

two ssRNAs, of which only one will stably associate with RNA

binding proteins called Argonaute proteins (Ago). RISC will further

interact with 30UTRs of mRNAs, to either degrade target mRNAs or

to inhibit translation and protein synthesis
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mothers were used. The main concern with this model was

that there was always a possibility for cytoplasmic transfer

from the mother, which would have masked the early

phenotype of the KO. Indeed, the Drosophila studies pro-

vided a complex phenotype, similar to ones seen in lin-4

and let-7 KO mutants [42]. The zebrafish Dicer KO showed

an early phase of microRNAs accumulation that faded in

the following days, finally leading to embryo death around

day 10, with morphogenesis anomalies during gastrulation,

the brain, heart and somatic appearance being the most

affected [43]. Dicer1 mutant mice die in utero around day

7, 5 with gastrulation and axis defects. Interestingly, they

do not seem to have Oct 4 positive stem cells. Furthermore,

Dicer was shown to be absolutely necessary for in vitro

embryonic stem cells differentiation. Ago proteins KO

models also proved useful in C. elegans leading to severely

impaired embryologic development as well [44].

To study a single microRNA, one may use conditional

KO techniques in animals and/or tissue analysis at various

stages of development. To insure a higher specificity and

lack of interference with other Dicer intracellular path-

ways, the KO models were generated using complementary

constructs, either 20O (ribose)-methyl antisense nucleo-

tides, either locked nucleic acids (LNA). LNA is a modi-

fied ribonucleic acid, in which the ribose ring is stiffened

by a methylene bridge between 20O and 40C. Such exper-

iments offered valuable information on particular micr-

oRNA species, for example miRNA-302 was detected only

in stem cells and proposed as a novel stem cell marker [42].

Overall, the first studies involving the first microRNAs

(lin-4 and let-7), discovered in C. elegans and later on in

other species, showed beyond doubt the role of these

ncRNAs in correct cellular and tissular differentiation and

organogenesis.

MicroRNAs and central nervous system

embryological development

Narrowing the field of research to central nervous system

(CNS) ontogenetic and phylogenetic development, the

same features apply for brain specific microRNA species:

time-dependent pattern of expression, selectivity for certain

cellular populations, significant roles in correct cellular

differentiation and system development. Dicer KO zebra-

fish shows abnormal CNS morphology and neuronal mat-

uration defects [43]. Dicer mutants mice die in utero,

before neurulation [45]. Conditional Dicer KO in cell lines

such as dopaminergic neurons, Purkinje cerebellar neurons,

cortical neurons or hippocampal neurons offered more

information on miRNAs roles in neuronal development and

function. They seem to interfere with key regulatory pro-

cesses such as neuronal stem cells differentiation, neurites

outgrowth and synapse formation. In C. elegans, microR-

NAs are necessary for correct specification and mainte-

nance of taste neurons, in Drosophila, for maintenance of

correct differentiation of photoreceptors and in vertebrae,

microRNAs are involved in much more complex mecha-

nisms such as synaptic plasticity and learning, acting at

synaptic level ([46] and citations herein). It is currently

known that long-term potentiation needs local synthesis of

key constituents, which implies microRNA transport to

designated peripheral locations, in an inactive form as a

ribonucleic complex called ‘‘neuronal RNA granules’’ [47].

A subset of these RNAs can be found along the dendrites

and in dendritic spines. In synaptosomes were detected

both microRNAs and pre-microRNAs, along with Dicer

and Dicer-associated proteins. Enzyme activation occurs

locally by neuronal stimulation, through calpain-controlled

cleavage. Thus, posttranslational control mechanisms seem

to be regulated by synaptic transmission [48]. Involvement

of microRNAs in synaptic protein synthesis was further

proved by study of miRNA-134 in mice hippocampal

cultures. miRNA-134 colocalizes at synaptic level with

Limk1 (Limdomaincontaining protein kinase 1), a protein

involved in actin filaments dynamics and dendritic spine

morphology [49]. Limk-1mRNA suppression leads to

restriction of dendritic spines formation and, subsequently,

excitatory synapses. Interestingly, Limk1 mRNA -miRNA-

134 interaction is suppressed by brain-derived neurotrophic

factor (BDNF)—a neurotrophin associated with molecular

mechanisms of learning [50]. Another microRNA present

in the dendritic compartment is miRNA-138, a synaptic

plasticity inhibitor by alteration of Acyl protein thioester-

ase 1 (APT1) -mediated palmitoylation of certain mem-

brane proteins. Although not a direct inhibitor of mRNA

translation of a subunit of heterotrimeric G proteins, its

microRNA-mediated depalmitoylation is responsible,

according to Christensen, for the miRNA-138 phenotype

[51].

Several neuronal specific microRNA species were

described in CNS embryological development and differ-

entiation studies in mice: miRNA-125, miRNA-128,

miRNA-133, miRNA-134, miRNA-388, miRNA-9 and

miRNA-124. The last two are especially related to neuro-

genesis, their overexpression leading to poor astrocytic

differentiation in vitro, whereas miRNA-9 suppression or

co-suppression of both leads to a reduction in neuronal

number. In mice, miRNA-9 is abundantly expressed in

cerebral cortex during embryonic life, involved in correct

differentiation of Cajal-Retzius cells at hippocampal level,

differentiation mediated at least partially by STAT3

phosphorylation to TYR705 [52]. In zebrafish, the same

microRNA is involved in delimitation of rombencephalon-

mesencephalon boundary, an active zone of neural tube

organization and, by contrast with other CNS structures, is

2246 Mol Biol Rep (2012) 39:2243–2252
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absent in this particular area. Its local induction promotes

local neurogenesis and loss of zone characteristics by

suppression of FGF8, FGFR1 and Her 5 and 9–signaling

molecules with inhibitory roles in neuronal differentiation

[53]. miRNA-124 is one of the most abundantly expressed

microRNAs in the CNS. In both humans and mice, 3 genes

coding for miRNA-124 were identified, each on a different

chromosome. In mouse, the three genes are translated

concomitantly, with overlapping patterns. miRNA-124 can

be initially detected in neuronal precursors [54] and per-

sists in terminally differentiated cells and acts by interac-

tion with RE-1 silencing transcription factor (also known

as neuron-restrictive silencing factor/RE-1 silencing

transcription factor-NRSF/REST) that suppresses neuron-

specific genes in non-neuronal cells. Furthermore, miRNA-

124 postranslationally represses RNA binding protein

PTBR1 that acts as an inhibitor of alternative splicing that

generates neuronal-specific transcripts. Besides its role in

promoting expression of neuronal-specific genes, it is also

involved in neurites outgrowth and neuronal differentiation

of embryonic carcinoma in mice, as proven by Yu et al. in

P19 cell line, by transient overexpression of neural specific

basic helix–loop–helix (bHLH) transcription factors [55].

As for miRNA-125, an enhancement of miRNA-125a

and -b expression is observed in neuronal differentiation of

embryonic carcinoma. In mammals, target for both miR-

NA-125s is Lin-28, a protein recently involved in stem

reprogramming of somatic cells and also a target of let-7,

one of the first microRNAs to be described. A new target of

miRNA-125 is Mlin41, the homolog of lin41 of C. elegans,

a target gene for let-7. Mice with mutated Mlin41 show

neural tube closure defects and embryonic lethality [56].

miRNA-132 interferes with p250GAP mRNA translation,

a GTPase-Activating-protein important for neurites out-

growth and neurogenesis. In adult mammalian hippocampus,

this mRNA is usually found at very low levels [57].

miRNA-133b controls dopaminergic neurons differen-

tiation, raising the possibility of pathogenic implication in

Parkinson’s Disease [58]. Animal models of PD indicated

also miRNA-64 and miRNA-65 to be underexpressed in

this form of neurodegeneration and thus, one more possible

pathogenic link [59].

miRNA-134 is involved in dendritic spines formation by

regulating Limk1 protein expression in hippocampal neu-

rons, as previously described.

miRNA-388 is coexpressed during CNS ontogenesis

with apoptosis-associated tyrosine kinase (AATK), a

kinase essential for neuronal differentiation and neurites

outgrowth. miRNA-388 gene is actually an intronic

sequence of AATK gene and falls under the regulation of

AATK gene expression and are both required for proper

differentiation. Furthermore, miRNA-388 acts as a sup-

pressor of neuronal differentiation inhibitors [47].

Interestingly, although some of microRNA species are

highly conserved, their expression pattern might be com-

pletely different between species, as Bak et al. exemplifies by

a comparative study of microRNAs in CNS of zebrafish and

mice. A total of 44 species were expressed at three folds, not

in generalized manner, but with regional specificity.

Although the mature microRNAs had an almost 100%

sequence match between the two animal models and the seed

region was 100% conserved in 40 out of 44 microRNAs

studied, in about 20 cases the expression pattern was diver-

gent. In adult mouse, and correlated with literature results,

Bak et al. reported elevated expression of miRNA-9,

miRNA-124a, miRNA-125b, miRNA-127, miRNA-128,

and let-7 family members. miRNA-195, miRNA-497, and

miRNA-30b were elevated in cerebellum, brain stem was

characterized by increased levels of miRNA-34a,

miRNA-451, miRNA-219, miRNA-338, miRNA-10a, and

miRNA-10b and hipothalamus-miRNA-7 and miRNA-7b.

Hippocampus was rich in miRNA-218, miRNA-221,

miRNA-222, miRNA-26a, miRNA-128a/b, miRNA-138 and

let-7c and spinal cord in miRNA-10a and miRNA-10b [60].

MicroRNAs in neurodegeneration

Neurodegeneration implies a vast spectrum of pathologies

and ethiopathogenies. Neurodenerative diseases affect

different subsets of neurons, but a common risk factor of

most pathologies is advanced age. Early on-sets or

aggressive evolution are rare and usually genetically

determined, in which the mutant allele is expressed in a

dominant manner or inherited as a homozygotic gene. The

most frequent neurodegenerative disorders are Alzheimer’s

(AD), Parkinson’s disease (PD), amyotrophic lateral scle-

rosis (ALS) and Huntington’s disease (HD). The growing

interest in microRNAs extended in the area of neurode-

generation as well, especially following identification of

CNS specific species. Until 2009 more than 400 species of

microRNAs were identified in the human and chimpanzee

brain and it is estimated that the human brain expresses

over 1,000 species [61]. Interestingly, Berezikov presents

some of these microRNAs as newly acquired phylogenet-

ically, as they do not seem to be conserved between pri-

mate families.

Of all brain specific microRNAs, only a few have been

so far associated with neurodegeneration (see Table 1):

miRNA-133b [62], miRNA-433 [63], miRNA-64, miRNA-

65 [59] in PD, miRNA-9 in HD [64, 65], miRNA-146a

promotes specific aspects of inflammatory neurodegenera-

tion [66, 67], miRNA-132, miRNA-124a, miRNA-125b,

miRNA-107 miRNA-219 and miRNA-128, in AD [68–71].

One of the first reports on altered microRNA brain

profile in AD patients belongs to Walter Lukiw, who

Mol Biol Rep (2012) 39:2243–2252 2247
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presented a comparative analysis between fetal, adult and

AD hippocampus [68]. He limited his investigation at 13

brain specific microRNAs, expressed in hippocampus of

AD patients, as compared to normal fetal and adult hip-

pocampus. His results indicated abnormally high levels of

miRNA-9, miRNA-125b and miRNA-128 in AD hippo-

campus. miRNA-124a was detected at lower levels in AD

hippocampus as compared to adult and fetal controls, but

this modification in expression did not reach statistical

significance (P \ 0.05). Lukiw follows the line of inves-

tigation and identifies new microRNA species in AD hip-

pocampal specimens as compared to healthy age-matched

subjects. The results of his and P.Sethi’s study showed that

human neurons use only a limited set of microRNAs,

including the ones previously reported (miRNA-9, miR-

NA-125b, miRNA-132, miRNA-146a, miRNA-183). The

short half-life of microRNA makes them very volatile

postmortem, predisposing to erroneous data interpretation

due to delays in sample prelevation. Taking this aspect into

consideration and adjusting the results accordingly, Lukiw

and Sethi reported specifically increased levels of miRNA-

9, miRNA-125b and miRNA-146a in temporal cortex of

AD patients, as compared to PD, ALS or schizophrenia

patients [69].

A study by Wang et al. on brain slices of AD patients, as

compared to healthy or non-demented patients, showed a

statistically significant decrease of miRNA-107, even in

early stages. The AD cases were classified in four groups,

according to neuropsychiatric assessment and autopsy

results: (1) non-demented, without/with few anatomo-

pathological elements of AD; (2) non-demented but with

histopathological signs of early AD; (3) MCI with histo-

pathological elements of moderate AD and (4) AD.

Approximately 200 microRNAs were modified, but only

70 at statistically significant levels. Only miRNA-107

showed a statistically significant decrease from one group

to another, even between the group 1 and 2, making it

useful for screening in early stages. Wang et al. proved that

the 30UTR of BACE1 mRNA is a possible target for

miRNA-107, linking this miRNA to the ethiopathogeny of

AD. Moreover, beside the temporal cortex, miRNA-107

decrease was found in the motor cortex as well, which

might be an indication of a generalized altered pattern in

affected parts of AD brain [70].

Herbert et al. proved a statistically significant decrease

of miRNA-29a/b-1 cluster, complementary to 30UTR

mBACE1 in sporadic AD patients. In agreement with data

from literature [75–79], a two to five fold increase of

BACE1 in the cortex of the same AD patients was proven,

along with normal mRNA BACE1 levels as shown by

qRTPCR. The modification of expression is not confined to

a specific cortical area, as proven by comparison to cere-

bellum [72]. During normal fetal development miRNA-

29a/b-1 and BACE1 are mutually exclusive, as it is normal

for pared microRNA-mRNA. In HeLa both microRNAs

were capable of repressing the expression of a luciferase

reporter containing the mBACE130UTR, but not of the

control with mutated seed target. After overexpressing both

Table 1 MicroRNAs involved in neurodegenerative disorders

MicroRNA Function Neuropathology Target References

miRNA-9 Neuronal differentiation AD REST [64]

HD

miRNA-29a/b-1 Regulator of apoptosis AD BACE1 [72]

miRNA-107 G1 cell cycle arrest AD BACE1 [70]

miRNA-124 Neuronal differentiation AD Laminin c1; Integrin b1 [60]

SCP1 [55]

PTBP1

miRNA-125 Neuronal differentiation AD Lin-28 [56]

miRNA-128 Neuronal differentiation Prionic encephalopathy Bmi-1 [73]

miRNA-132 Neurites outgrowth AD P250GAP [57]

miRNA-133b Neuronal differentiation

towards dopaminergic line

PD Pitx3 [62]

miRNA-134 Dendritic spines organization AD Limk1 [49]

miRNA-146a Regulation of innate immune, viral,

and inflammatory responses

AD TRAF6 [71]

Prionic encephalopathy IRAK1 [73]

[74]

AD Alzheimer’s disease, HD Huntington’s disease, REST RE-1 silencing transcription factor, BACE1 b amyloid cleaving enzyme 1, PTBP1
Polypyrimidine tract-binding protein 1, Pitx3 Pituitary homeobox 3, Limk1 Limdomaincontaining protein kinase 1, TRAF6 TNF receptor-

associated factor 6, IRAK1 Interleukin-1 receptor-associated kinase 1
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microRNAs in HEK293 cells, the endogenous BACE1 and

Ab peptide synthesis were repressed. In contrast, the

miRNA-29a/b-depletion led to Ab accumulation [46].

Cogswell et al. quantified the expression of over 300 de

microRNAs in hippocampus, frontal medial gyrus and

cerebellum from AD patients in different stages of the

disease. These data showed changes for certain microRNA

species, correlating with evolution and localization of

pathological lesions. Furthermore, they report microRNA

detection in cerebrospinal fluid, with altered levels as

compared to healthy controls. Some of the microRNAs

reported by Cogswell’s group have been reported before

and include miRNA-9 and miRNA-132, whereas others

such as miRNA-29a and miRNA-29b showed contradic-

tory results, being increased in frontal medial gyrus and

miRNA-415 increases in hippocampus and frontal medial

gyrus [80].

Alterations in microRNAs expression are not necessar-

ily restricted to one pathogenic or metabolic chain. The

upregulation of certain microRNA might not be the cause

but the result of certain metabolic abnormality. For

example, in AD brain, accumulation of Ab 42 (the end

result of amyloid abnormal processing) is a weak stimulant

of toll receptors [81]. In some non-neuronal cell lines, Toll

stimulation by LPS has led to miRNA-132 and

miRNA-146b accumulation [82], whereas the depletion of

miRNA-132 reported by Cogswell et al. in AD brain would

correlate, under these circumstances, with an immune

response deficit. Also known to be related to innate

immune and inflammatory reactions, miRNA-146a was

recently reported to be increased in the neocortex of AD

patients versus age-matched control brains, increase that

correlated positively and statistically significant with the

stage of the disease [71]. Lukiw’s group observations were

confirmed in AD transgenic animal models and recreated in

vitro, in a neuronal-glial coculture, used to establish a

direct relationship between miRNA-146a expression level

and NF-kB activation. Interestingly, by in vitro manipula-

tion in a neuronal cell culture model of neuroinflammation,

the two were previously reported to be interdependent [66],

and further inquiry on downstream effect of NF-kB

induced miRNA-146a upregulation led to observations of

decrease interleukin-1 receptor-associated kinase-1 (IRAK-1),

but not IRAK-2 protein levels [67]. miRNA-146a profile

was found to be also modified in other neurodegenerative

disorders such as prion disease [73], in an epileptogenic

animal model as well in hippocampal cells of temporal

epilepsy patients [83] and in inflammatory neurodegener-

ation of viral encephalitis (e.g. herpes simplex encepha-

lopathy) [84].

Recent evidence emerged of miRNA-29 overexpression

in insulin resistance animal models that correlate well with

reports of association between diabetes and sporadic AD.

Memory impairment and AD have been associated with

anomalies in insulin signaling pathway molecules, such as

downregulation of insulin receptor IRS-1[85]. MiRNA-29b

was correlated with repression of dihydrolipoylbranched

chain acyltransferase (DBT), a subunit of a dehydrogenase

that metabolizes ramified amino acids, an essential source

of N for glutamate. Such enzymatic deficiency leads to

neurodegeneration, closing the vicious circle between

insulin resistance and AD.

Neurodegeneration also implies apoptosis, and there are

several microRNAs involved in both caspase-dependent

and caspase-independent apoptosis. A few apoptotic

mechanisms in which miRNAs involvement was proven

are: (i) histone-deacetylases suppression, (ii) p53 upregu-

lation, (iii) Bcl2 family members regulation [86].Unsur-

prisingly, some of previously discussed microRNAs are

reported to be related to apoptotic events (e.g. miRNA-128

and BCL2 upregulation [87]).

Concluding remarks

miRNAs biology is still an emerging science, with a lot of

unfilled blanks in biogenesis and molecular mechanisms.

The scientific world takes a great deal of interest in non-

coding RNAs, in search for new pathogenic mechanims of

rare, fatal or undertreated diseases and with hope for new

molecular therapeutic targets. Maybe even more than other

fields, neurodegeneration would greatly benefit from

miRNA science in several pathologies with high social

impact, such as AD, PD, ALS or HD.
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