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Abstract  Uncovering the genetic basis of agro-
nomic traits in sorghum landraces that have adapted 
to various agro-climatic conditions would contribute 
to sorghum improvement efforts around the world. To 
identify quantitative trait nucleotides (QTNs) asso-
ciated with nine agronomic traits in a panel of 304 
sorghum accessions collected from diverse environ-
ments across Ethiopia (considered to be the center of 
origin and diversity), multi-locus genome-wide asso-
ciation studies (ML-GWAS) were performed using 
79,754 high quality single nucleotide polymorphism 
(SNP) markers. Association analyses using six ML-
GWAS models identified a set of 338 significantly 
(LOD ≥ 3)-associated QTNs for nine agronomic traits 
of sorghum accessions evaluated in two environments 
(E1 and E2) and their combined dataset (Em). Of 
these, 121 reliable QTNs, including 13 for flowering 

time (DF), 13 for plant height (PH), 9 for tiller num-
ber (TN), 15 for panicle weight (PWT), 30 for grain 
yield per panicle (GYP), 12 for structural panicle 
mass (SPM), 13 for hundred seed weight (HSW), 6 for 
grain number per panicle (GNP), and 10 for panicle 
exertion (PE) were consistently detected by at least 
three ML-GWAS methods and/or in two different 
environments. Notably, Ethylene responsive tran‑
scription factor gene AP2/ERF, known for regulation 
of plant growth, and the sorghum Terminal flower1/
TF1 gene, which functions in the control of floral 
architecture, were identified as strong candidate genes 
associated with PH and HSW, respectively. This study 
provides an entry point for further validation studies 
to elucidate complex mechanisms controlling impor-
tant agronomic traits in sorghum.

Keywords  Agronomic traits · Genome-wide 
association study · Quantitative trait nucleotides · 
Sorghum bicolor

Introduction

Sorghum (Sorghum bicolor (L.) Moench) is an annual 
C4 plant belonging to the botanical family Poaceae 
under the Andropogoneae tribe (Clifford et al. 1990). 
It is the 5th most important cereal crop globally 
(FAO 2019) and a dietary staple for over 750 million 
people in the semi-arid regions of the world (FAO 
2018). Because of its ability to cope with unfavorable 
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growing conditions, sorghum will continue to feed 
the world’s expanding populations under the chang-
ing climate (Paterson 2008). Therefore, continuous 
improvement of sorghum cultivars for high yield is 
one of the main goals of sorghum breeding programs.

Yield is a polygenic trait and is affected by many 
factors such as plant phenology, morphology, and 
other physiological indices (Nadolska-Orczyk et  al. 
2017). Uncovering the genetic basis of these traits is 
critical for their effective manipulation, thus making 
the crop more efficient and resilient under a changing 
climate (Cattivelli et  al. 2008). During the last two 
decades, extensive efforts have been made to identify 
genomic regions/quantitative trait loci (QTLs) under-
lying traits of agronomic interest in sorghum through 
bi-parental linkage mapping studies (Crasta et  al. 
1999; Haussmann et  al. 2002; Rama Reddy et  al. 
2014; Sanchez et al. 2002; Subudhi et al. 2000; Suku-
maran et  al. 2016; Tao et  al. 2000; Tuinstra 1997; 
Xu et  al. 2000). However, this approach provides 
low mapping resolution, limited allelic diversity, and 
population specificity of detected QTLs (Feltus et al. 
2006; Gupta et  al. 2005; Korte and Farlow 2013). 
These limitations thus partly contributed to the slow 
transfer of knowledge from bi-parental QTL studies 
to practical applications in plant breeding.

In recent years, genome-wide association study 
(GWAS) has been widely used to identify genomic 
regions controlling traits of interest. Albeit being prone 
to false positive results, its high resolution and broader 
allele coverage make GWAS an important addition to 
the toolkit for genetic dissection of complex traits (Fang 
et al. 2017; Li et al. 2012; Ma et al. 2018; Zhao et al. 
2011; Zhu et  al. 2008). Sorghum is an ideal crop for 
linkage mapping studies due to its moderate linkage 
disequilibrium and self-pollination system (Hamblin 
et  al. 2005). Several studies in sorghum have recently 
used association mapping to uncover the genetic control 
of important traits. Traits are as follows: flowering time 
(Bouchet et  al. 2017; Zhao et  al. 2016); plant height, 
panicle length, panicle exertion, tiller number, and seed 
number (Shehzad and Okuno 2014; Zhao et al. 2016); 
culm length and number of panicle (Shehzad and 
Okuno 2014); inflorescence trait components (Morris 
et al. 2012); grain fill duration, panicle weight, and har-
vest index (Boyles et al. 2015); and grain yield (Boyles 
et al. 2016). However, most of these studies had various 
limitations: Firstly, most of these studies used germ-
plasm that had gone through the sorghum conversion 

program (Morris et al. 2012; Zhao et al. 2016) reduc-
ing genomic diversity in regions targeted for selection 
and hence limited success to dissect underlying loci 
for various traits in sorghum (Morris et al. 2012). Sec-
ondly, they were based on single-locus GWAS (SL-
GWAS) methods that are limited in detecting marginal 
effects quantitative trait nucleotides (QTNs) (Wang 
et al. 2016), and hence the multiple QTNs controlling 
complex traits could not be effectively identified in 
sorghum.

To overcome the major limitations of SL-GWAS, 
a series of multi-locus GWAS methods, including 
mrMLM (Wang et  al. 2016), FASTmrMLM (Tamba 
et al. 2017), FASTmrEMMA (Wen et al. 2017), ISIS 
EM-BLASSO (Tamba et al. 2017), pLARmEB (Zhang 
et  al. 2017), and pKWmEB (Ren et  al. 2018) have 
emerged as a powerful tool for QTN detection and 
QTN effect estimation for complex traits (Wang et al. 
2016; Li et  al. 2017; Chang et  al. 2018; Peng et  al. 
2018). The approach has already been successfully uti-
lized to dissect the genetic basis of important traits in 
several crops, such as maize (Zhang et al. 2018), rice 
(Liu et al. 2020) and barley (Hu et al. 2018). In addi-
tion, Ethiopia is a center of origin and diversity of sor-
ghum and has tremendous genetic diversity in the crop 
for various traits (Snowden 1936; Stemler et al. 1977). 
The availability of such diverse germplasm provides an 
opportunity for new insight into the genetic architec-
ture of important traits, and applying this knowledge 
in sorghum breeding programs might advance efficient 
genetic improvement of this crop.

In this study, we utilized the advantageous multi-
locus GWAS to investigate the genetic control of nine 
important agronomic traits in natural population of 
304 sorghum accessions by using 79,754 high qual-
ity SNP markers. We aim to identify common QTNs 
via multiple methodologies and then deduce potential 
candidate genes that can be further validated and uti-
lized in marker-assisted selection (MAS) to enhance 
the efficiency of cultivar development.

Materials and methods

Plant materials and phenotyping

A total of 304 diverse sorghum accessions were col-
lected from farmers’ fields of major sorghum grow-
ing regions (Amhara, Oromia, Southern Nations, and 
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Tigray) of Ethiopia. The complete list of accessions 
and relevant information are previously reported (Won-
dimu et al. 2021). These accessions were evaluated for 
important agronomic traits at two environments, Kobo 
(North Ethiopia, altitude: 1400  m) and Mieso (East 
Ethiopia, altitude: 1380 m) during the 2018 cropping 
season. The meteorological data for the two environ-
ments is given in Supplementary Table 1.

In brief, with an alpha lattice design, all accessions 
were sown at two field sites in two replications with a 
plot size of 4.5 m2 consisting of 2 rows with a spacing 
of 75 cm between rows. Fertilizer was applied at the 
rate of 100 kg/ha DAP at planting and 50 kg/ha urea 
at about 35  days after planting. Data were collected 
for nine agronomic traits following the standard sor-
ghum descriptor (IBPGR and ICRISAT 1993). Days 
to 50% flowering (DF) was recorded as the number 
of days from emergence until 50% of the panicles in 
a plot were at mid-anthesis. Plant height (PH) was 
measured at the flowering stage from the ground sur-
face to the tip of the main panicle; panicle exertion 
(PE) was measured as the length between the base of 
flag leaf and the base of the panicle; and number of 
tillers per plant (TN) was counted on the main stalk 
when the flower was in full bloom. At maturity, main 
panicles, from the ten random plants already ear-
marked, were cut and oven dried at 70  °C for 72 h. 
Before threshing, all panicles were weighed to get an 
average panicle weight (PWT), then the panicles were 
manually threshed and the weights of grain yield 
per panicle (GYP) and hundred seeds (HSW) were 
recorded. Structural panicle mass (SPM) was calcu-
lated as the difference between PWT and GYP, and 
grain number per panicle (GNP) was estimated as the 
ratio of GYP to HSW and multiplied by 100.

Phenotypic data analysis

Summary statistics were calculated for each trait at 
each environment. Phenotypic data from each envi-
ronment were analyzed by a single environment lin-
ear mixed model with sorghum accessions fitted as 
fixed effects. The model was illustrated as:

where yijk is the random phenotypic effect of the 
genotype i at block j, in replication k; μ is the gen-
eral mean; gi is the fixed effect of genotype i; rk is 

Yijk = � + gi + rk + bjk + �ijk

the random effect of replication k; bjk is the random 
effect of block j, in replication k; εijk is a random non-
genetic effect, with εijk ~ N (0, σ2).

To assess the effects of genotype (G), environ-
ment (E), and G × E interaction for each trait, the two 
environments were combined, and the genetic effect 
associated with accessions was decomposed into two 
components, the genetic effect of accessions and the 
interaction effect between accessions and environ-
ment (G × E effect). The linear mixed model was:

In this case, the new terms Ei and Ei Gl are the ran-
dom effects of environment and environment by geno-
type interaction, respectively. Fixed and random effects 
in the model were tested using the F-test and likelihood 
ratio test (Neyman and Pearson 1928), respectively. 
Variance components were estimated using a residual 
maximum likelihood method (Harville 1977). Broad-
sense heritability (h2) value for all traits was then cal-
culated using the formula given by Allard (1999). 
All mixed model analyses were performed using the 
REML (residual maximum likelihood) algorithm of 
SAS v9.2 (SAS Institute Inc 2008).

SNP genotyping

The 304 sorghum accessions were genotyped using 
genotyping-by-sequencing (GBS) methodology 
(Elshire et al. 2011), as briefly described in our pre-
vious work (Wondimu et al. 2021). The raw data for 
all accessions across 115,501 SNPs is publicly avail-
able at figshare ( https://​doi.​org/​10.​25387/​g3.​12813​
224). Data filtering using minor allele frequency 
(MAF > 5%) for the 304 samples yielded a total 
of 79,754 high quality SNP markers for the current 
genome-wide association study.

LD

Pairwise linkage disequilibrium (LD) as measured by 
the allele frequency correlations (r2) of each pair of 
SNPs was estimated separately for each chromosome 
and across the ten chromosomes in TASSEL 5.0 using 
a sliding window of 50  bp (Bradbury et  al. 2007). 
The critical value of r2 of 0.1 was considered as LD 
decay criterion (Nordborg et  al. 2002; Palaisa et  al. 

Yijkl = � + Ei + rj(Ei) + bk(Eirj) + Gl + EiGl + �ijkl

https://doi.org/10.25387/g3.12813224
https://doi.org/10.25387/g3.12813224


	 Mol Breeding (2023) 43:32

1 3

32  Page 4 of 15

Vol:. (1234567890)

2003; Remington et al. 2001). LD decay curve for each 
chromosome and whole genome level was fitted using 
a non-linear regression model in R software (R Core 
team 2019), as described by Remington et al. (2001).

ML‑GWAS

Multi-locus genome-wide association analysis (ML-
GWAS) analyses were performed using three data-
sets: (i) Kobo-2018 (E1), (ii) Mieso-2018 (E2), and (iii) 
Kobo-2018 and Meiso-2018 combined dataset (Em). 
Best linear unbiased estimators (BLUEs) of the geno-
typic values for each of the above nine traits in two envi-
ronments (E1 and E2) and their combined dataset (Em) 
were estimated using the REML algorithm, as described 
above. Marker-trait association analyses were performed 
using six ML-GWAS methods, including mrMLM 
(Wang et  al. 2016), FASTmrMLM (Tamba and Zhang 
2018), FASTmrEMMA (Wen et  al. 2018), pLARmEB 
(Zhang et  al. 2017), pKWmEB (Ren et  al. 2018), and 
ISIS EM-BLASSO (Tamba et al. 2017) implemented in 
the “mrMLM.GUI” R package (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​mrMLM/​index.​html). Population structure 
for these accessions has been previously estimated as six 
subpopulations (Wondimu et  al. 2021) using ADMIX-
TURE analysis (Alexander et al. 2009). The co-ancestry 
coefficient matrix (Q) of the 304 accessions is publicly 
available at figshare ( https://​doi.​org/​10.​25387/​g3.​12813​
224). Kinship matrix (K), an estimate of the level of 
relatedness among individuals, was internally calculated 
within mrMLM.GUI package. The population structure 
(Q) and kinship (K) matrices were then included in all 
the tested models to minimize the identification of false-
positive associations and increase the statistical analysis 
power. All parameters in GWAS were set at default val-
ues. The critical threshold for significantly associated 
QTNs was set at LOD ≥ 3.0 for all the six multi-locus 
models, as described in previous studies (Tamba et  al. 
2017). The resulting -log10 (P) values from the ML-
GWAS approaches were used to draw the Manhattan and 
Q-Q plots using the mrMLM.GUI package in R software 
(R Core team 2019).

Identification of reliable/stable QTNs and candidate 
genes

We considered a QTN reliable when it is detected 
by at least three multi-locus GWAS methods and/or 

in at least two situations (E1, E2, and Em). Addi-
tionally, QTNs that are consistently detected across 
at least two situations (E1, E2, and Em) were fur-
ther regarded as stable QTNs and followed in this 
study. To determine the regions of interest for selec-
tion of potential candidate genes, the average LD 
decay in which flanking SNP markers had strong 
LD (r2 > 0.1) was used. All the genes present in the 
association region with known putative functions 
were extracted from the most recently annotated 
sorghum reference genome v3.1 (McCormick et  al. 
2017) available at phytozome (https://​phyto​zome.​
jgi.​doe.​gov). By comprehensive analysis of gene 
annotation information promising candidate genes 
for each trait were further mined.

Results

Phenotypic variation

The distributions of the nine agronomic traits 
measured in sorghum accessions evaluated in this 
work are depicted graphically using histograms 
(Fig.  1). Two-way ANOVA showed significant 
(p < 0.05) differences among the genotypes (G) and 
genotype by environment (G × E) interaction effects 
for all the traits studied (Table  1), suggesting the 
wide genetic variability among the Ethiopian sor-
ghum accessions, which provides opportunities for 
effective selection. As for heritability estimates, 
the traits DF, PH, PE, and HSW presented rela-
tively high heritability values (h2 > 0.5), while TN, 
PWT, GYP, SPM, and GNP had moderate heritabil-
ity estimates (Table 1).

Comparing the mean performance of the acces-
sions in each of the environments (Table  1), mean 
days to flowering (DF) was slightly earlier in E1 
(96  days) than E2 (99  days); however, mean plant 
height (PH, 311.45  cm) and mean panicle exertion 
(PE, 9.08  cm) were relatively higher in E1 than the 
270.24 and 6.56 cm observed in E2 (Table 1).

Structural panicle mass (SPM) and grain number 
per panicle (GNP) had greater variation in E2 than 
in E1. However, the remaining traits displayed more 
consistent variation between the two environments. 
The complete phenotypic data of all accessions in two 
environments (E1 and E2) and their combined data 
(Em) are provided in Supplementary Table 2.

https://cran.r-project.org/web/packages/mrMLM/index.html
https://cran.r-project.org/web/packages/mrMLM/index.html
https://doi.org/10.25387/g3.12813224
https://doi.org/10.25387/g3.12813224
https://phytozome.jgi.doe.gov
https://phytozome.jgi.doe.gov
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Whole genome patterns of LD

Characterizing patterns of LD is critical for the design 
of association studies (Mather et al. 2007) and inter-
pretation of association peaks (Huang et al. 2010). In 
general, there was a rapid LD decay with increasing 
physical distance along the 10 sorghum chromosomes 
(Fig.  2 and Supplementary Fig. S1). At a threshold 
value of 0.1, LD decays within 60–80  kb on chro-
mosomes 5, 6, 7, and 9 but 80–100  kb on chromo-
somes 1, 2, 3, 4, 8, and 10 (Supplementary Fig. S1). 
On average, LD decays to background levels (r2 < 0.1) 
within 100 kb (Fig. 2).

This LD decay estimate is higher than previously 
reported values in sorghum of 10–30  kb (Wang 
et  al. 2013) and 10–15  kb (Hamblin et  al. 2005). 
This difference may be due to the low coverage of 
the genome by the markers and the small number 

of genotypes in previous studies. Since sorghum is 
largely self-pollinated, we expect higher levels of 
LD than in outcrossing species (Flint-Garcia et  al. 
2003). Accordingly, the extent of LD in sorghum 
is similar to that of rice (∼65–150  kb) (Mather 
et al. 2007), another self-pollinated crop, but much 
greater than maize (∼2 kb) (Yan et al. 2009), which 
is an out-crosser. Although we expect mapping res-
olution to range widely across the genome depend-
ing on the chromosome, the overall modest LD 
decay rate (< 100 kb) makes this Ethiopian collec-
tion suitable for GWAS.

QTNs identified by ML‑GWAS

To explore the genetic factors associated with nine 
agronomic traits, we conducted ML-GWAS based 
on a total of 79,754 high quality SNP markers (The 

Fig. 1   Histogram showing the distribution of the nine agro-
nomic traits evaluated in two different environments. DF, 
days to flowering (days); PH, plant height (cm); TN, number 
of tillers per plant (no.); PWT, panicle weight (g); GYP, grain 

yield per panicle (g/panicle); SPM, structural panicle mass (g); 
HSW, hundred seed weight (g); GNP, grain number per pani-
cle (no.); PE, panicle exertion (cm). Environments, E1, Kobo-
2018; E2, Mieso-2018
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genomic distribution of the SNP markers used in this 
study is shown in Fig. 3), and BLUEs from three data-
sets (E1, E2, and Em). Using six ML-GWAS models, 
a total of 338 QTNs distributed on 10 chromosomes 
were identified that are significantly associated with 

nine agronomic traits based on a LOD score thresh-
old of ≥ 3 in three situations/environments (E1, E2, 
and Em), as summarized in Table 2. A full list of the 
QTNs significantly associated with the phenotypes 
in each environment (E1 and E2) and the combined 
dataset (Em) is presented in Supplementary Table 3, 
while the Manhattan and Q-Q plots of the ML-GWAS 
results are reported in Supplementary Figs.  S2 and 
S3. Of the identified QTNs, 66, 110. and 162 were 
identified in E1, E2, and Em situations, respectively 
(Table  2). Among the ML-GWAS models, mrMLM 
resulted in the greatest number of significant QTNs 
identified (192), whereas the FASTmrEMMA had the 
lowest number of QTNs (78). Chromosome 1 had the 
highest number of the identified QTNs (49), followed 
by chromosome 9 (41), and chromosome 3 (39). 
Overall, the LOD value ranged from 3.01 to 8.37, and 
the proportion of phenotypic variance explained (r2) 
by each QTN ranged from 0.45 to 25.92% (Table 2).

To obtain accurate results, only QTNs showing 
repeatability (i.e., detected by at least three differ-
ent ML-GWAS models and/or in two different situa-
tions/ environments) were considered reliable. Using 
these criteria, we identified a total of 121 reliable 

Table 1   Two-way analysis of variance and descriptive statistics for nine agronomic traits of sorghum accessions evaluated in two 
environments

Gl is the fixed effect of the lth genotype; σ2
b is the random effect of the kth block within the jth replication in the ith location; σ2

r is 
the random effect of the kth replication in the ith location; σ2

E is the random effect of the ith location; σ2
G × E is the random effect of 

the genotype by location interaction; and σ2
e is the error variance.

DF days to flowering (days), PH plant height (cm), PE panicle exertion (cm), TN number of tillers per plant (no.), PWT panicle 
weight (g), GYP grain yield per panicle (g/panicle), SPM structural panicle mass (g), GNP grain number per panicle (no.), HSW hun-
dred seed weight (g); ns non-significant, h2 broad sense heritability, E1 Kobo-2018, and E2 Mieso-2018.
*, **, *** Significant at p < 5%, 1%, and 0.1% levels, respectively.

DF PH PE TN PWT GYP SPM GNP HSW

Gl 5.79*** 3.23*** 2.79*** 1.32* 2.03*** 1.99*** 1.32** 1.24*** 2.02**
σ2

b 3.09*** 229.84*** 0.23* 0.004* 53.64*** 34.84*** 8.67* 11,434* 0.01 ns

σ2
r 0.01 ns 4.16 ns 0.02 ns 0.001 ns 6.60 ns 7.50 ns 4.41 ns 2286.81 ns 0.01 ns

σ2
E 28.56 ns 594.82 ns 4.99 ns 0.001 ns 24.50 ns 14.24 ns 20.26 ns 21967 ns 0.21 ns

σ2
G × E 65.41*** 681.03*** 20.05*** 0.02*** 302.68*** 234.87*** 28.72*** 263,604*** 0.15**

σ2
e 12.2 540.68 1.6 0.02 223 132.66 38.41 201,914 0.14

h2 0.85 0.70 0.67 0.22 0.43 0.42 0.36 0.4 0.55
Mean E1 95.61 311.45 9.08 0.59 60.91 43.12 17.79 1420.69 2.91

E2 99.00 99.00 6.56 0.60 62.52 39.25 23.15 1645.11 2.34
Minimum E1 72.50 115.20 0.00 0.00 7.20 1.10 5.20 110.00 1.00

E2 69.00 115.20 0.00 0.00 5.33 0.67 4.37 98.52 0.68
Maximum E1 178.40 441.70 25.20 3.00 133.40 109.80 47.15 3370.00 4.50

E2 168.00 410.35 26.00 3.00 156.17 116.42 64.93 4138.12 3.68

Fig. 2   Genome-wide LD (r2) decay in the 304 Ethiopian sor-
ghum accessions. Average r2 (squared allele frequency corre-
lation between pairs of SNPs) were plotted against the corre-
sponding genetic distance between markers. The vertical solid 
green line represents the average genome-wide LD decay (i.e., 
LD decay = 64,550 base pairs) point
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QTNs significantly associated with nine agronomic 
traits, as presented in Supplementary Table  S4. The 
121 QTNs identified each explained a low percent-
age of phenotypic variation (PVE): DF (n = 13, 
PVE = 0.60–21.60%), PH (n = 13, PVE = 2.04–16.28%), 
TN (n = 9, PVE = 1.01–25.92%), PWT (n = 15, 
PVE = 1.54–15.65), GYP (n = 30, PVE = 0.79–13.64%), 
SPM (n = 12, PVE = 2.20–11.97%), HSW (n = 13, 
PVE = 0.01–16.54%), GNP (n = 6, PVE = 1.85–11.33%), 
and PE (n = 10, PVE = 1.86–17.76%). Addition-
ally, a total of 29 QTNs were significantly associated 
with more than one trait (Supplementary Table  S4). 
For instances, the traits DF and PH shared a common 
QTN (S10_13295281) mapped on chromosome 10 
that on average explained ~ 4.50% of the variation for 
the traits, whereas GYP and GNP had seven common 
QTNs (S1_22881870, S1_28143445, S2_58161802, 
S3_12356222, S7_63176270, S9_38639556, and 
S10_47554177) on chromosomes 1, 2, 3, 7, 9, and 10, 
and accounting for 2.04–13.64% of the total phenotypic 
variance for these traits. The traits PWT, GYP, and 

GNP also shared four common QTNs (S1_70244848, 
S8_6755616, S8_48609940, and S9_438623) mapped 
on chromosomes 1, 8, and 9 (Supplementary Table S4).

Identification of stable QTNs and candidate genes

A total of 46 QTNs consistently detected in at least 
two environments (E1, E2, and Em) were regarded as 
stable QTNs (Table  3). All these stable QTNs were 
distributed on the 10 sorghum chromosomes, with 
chromosome 10 showing the lowest number of asso-
ciations, while chromosome 8 showing the highest 
number of associations (10 QTNs associated with 
seven traits).

Among the 46 stable QTNs detected in at least two 
environments, 7, 9, and 13 were detected by three, four, 
and five ML-GWAS methods, respectively (Table  3). 
Moreover, 7 QTNs (S1_56717177, S1_56748133, 
S7_42021189, S8_43981111, S8_6755616, S9_57542210, 
and S10_13295281) were identified by six ML-GWAS 
methods to be associated with five agronomic traits in 

Fig. 3   Genomic distribu-
tion of the 79,754 high 
quality SNP markers across 
the ten sorghum chromo-
somes and their correspond-
ing density

Table 2   Summary of significant QTNs identified in two environments and their combined data using six ML-GWAS methods

E1 Kobo-2018, E2 Mieso-2018, Em E1 and E2 combined dataset, r2 (%) the proportion of total phenotypic variation explained by 
each QTN.

Methods E1 E2 Em QTN effect LOD score r2 (%)

Total 66 110 162  − 417.65–196.68 3.01–8.37 0.45–25.92
mrMLM 60 54 78  − 417.65–181.08 3.02–8.30 1.60–25.92
FASTmrMLM 66 46 76  − 179.88–156.17 3.03–7.49 1.23–13.73
FASTmrEMMA 39 14 25  − 213.78–24.65 3.00–5.62 1.21–6.51
pLARmEB 69 31 62  − 85.77–196.67 3.01–3.37 1.11–6.66
pKWmEB 70 29 64  − 92.94–21.74 3.04–8.21 1.95–18.62
ISIS EM-BLASSO 65 36 90  − 92.69–65.79 3.01–7.67 0.45–9.06
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Table 3   List of stable QTNs co-detected in at least two environments for nine sorghum agronomic traits

Trait QTN Chr Position (bp) r2 (%) LOD score Method Environment

DF S1_50556744 1 50,556,744 1.2–7.1 3.46–6.63 1, 2, 4,5, 6 2, 3
DF S1_50707856 1 50,707,856 1.1–6.0 3.99–6.67 1, 2, 4, 5, 6 1, 3
DF S2_381203 2 381,203 4.3–21.6 6.22–7.66 1, 2, 4, 6 2, 3
DF S2_61662614 2 61,662,614 1.7–6.3 3.17–8.42 1, 2, 3, 4, 6 2, 3
DF S3_53779488 3 53,779,488 3.1–4.6 4.86–6.12 3, 5, 6 2, 3
DF S7_62550036 7 62,550,036 2.5–5.8 3.53–4.78 3, 5 2, 3
DF S8_43981111 8 43,981,111 2.0–9.3 3.17–6.35 1, 2, 3, 4, 5, 6 1, 2, 3
DF S9_50173991 9 50,173,991 0.6–2.3 3.04–3.92 1, 3, 4, 5 1, 3
DF S10_13295281 10 13,295,281 2.5–17.0 3.45–7.11 1, 2, 3, 4, 5, 6 1, 3
PH S1_1162055 1 1,162,055 6.33–7.50 5.20–6.53 5 2, 3
PH S1_54236535 1 54,236,535 2.04–2.48 3.04–3.10 5, 6 2, 3
PH S3_65025755 3 65,025,755 2.51–5.40 3.24–5.13 1, 2, 3, 4, 6 2, 3
PH S5_11807444 5 11,807,444 3.27–4.31 3.65–3.87 6 2, 3
PH S8_22704195 8 22,704,195 2.57–8.80 3.09–6.50 1, 2, 4, 5, 6 2, 3
TN S4_2182692 4 2,182,692 10.69–25.92 3.30–7.59 1, 5 1, 3
TN S6_16736286 6 16,736,286 3.46–6.97 3.23–3.69 1, 2, 4, 5 2, 3
TN S9_9766004 9 9,766,004 6.52–8.89 3.23–4.71 2, 3, 4, 6 1, 3
PWT S2_43213283 2 43,213,283 2.88–11.51 3.03–3.74 5, 6 2, 3
PWT S8_48609940 8 48,609,940 3.83–11.61 3.46–7.63 1, 2, 4, 5, 6 2, 3
GYP S1_56717177 1 56,717,177 1.93–6.17 3.60–5.49 1, 2, 3, 4, 5, 6 1, 3
GYP S8_6755616 8 6,755,616 1.45–5.21 3.14–7.75 1, 2, 3, 4, 5, 6 1, 3
GYP S8_31257235 8 31,257,235 2.61–6.84 3.13–4.47 1, 2, 4, 6 1, 3
GYP S8_39811028 8 39,811,028 2.43–5.90 3.29–5.44 1, 2, 4, 5, 6 1, 3
SPM S2_1102875 2 1,102,875 3.28–7.07 3.46–4.19 1, 2, 6 2, 3
SPM S2_19689784 2 19,689,784 2.97–5.25 3.09–4.47 1, 2, 3, 4 2, 3
SPM S4_4369658 4 4,369,658 3.75–5.13 3.11–4.94 1, 4, 5, 6 2, 3
SPM S5_54509407 5 54,509,407 2.39–3.11 3.03–4.85 1, 2, 4, 5, 6 1, 3
SPM S8_46124561 8 46,124,561 5.86–11.59 3.05–3.14 5 2, 3
HSW S1_1778848 1 1,778,848 3.45–5.46 3.52–4.44 1, 2 1, 3
HSW S1_61393647 1 61,393,647 4.12–7.85 3.35–6.38 4, 5, 6 1, 3
HSW S3_60053030 3 60,053,030 3.10–6.75 3.75–5.88 1, 2, 3, 4, 6 2, 3
HSW S4_27457108 4 27,457,108 0.01–8.10 3.28–4.37 1, 2, 3, 4, 6 1, 3
HSW S5_7318809 5 7,318,809 3.68–4.06 5.88–6.13 6 1, 3
HSW S6_15657510 6 15,657,510 4.03–8.86 4.10–7.65 1, 2, 4, 5, 6 1, 3
HSW S7_42021189 7 42,021,189 1.23–4.97 3.05–5.36 1, 2, 3, 4, 5, 6 1, 3
HSW S8_3450030 8 3,450,030 2.83–6.85 3.05–8.88 3, 5, 6 1, 3
GNP S8_13750158 8 13, 750,158 3.84–9.64 3.98–6.79 1, 2, 4 1, 3
GNP S8_28946946 8 28,946,946 7.09–11.30 3.07–4.34 1, 5, 6 1, 3
GNP S9_27128739 9 27,128,739 1.85–3.99 3.34–3.49 2, 4 2, 3
GNP S9_56786250 9 56,786,250 6.85–9.06 3.02–7.68 3, 5, 6 1, 3
PE S1_56748133 1 56,748,133 4.57–9.04 4.98–9.56 1, 2, 3, 4, 5, 6 2, 3
PE S5_38163223 5 38,163,223 9.06–17.76 3.27–11.08 1, 2, 4, 5, 6 1, 3
PE S6_29259588 6 29,259,588 3.67–10.58 4.12–8.84 1, 2, 4, 6 2, 3
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at least two environments, with LOD score values rang-
ing from 3.05 to 11.42 (Table  3). Interestingly, 2 QTNs 
(S8_43981111for DF and S9_48893285 for PE) with 
moderate effects (r2 =  ~ 6%) were consistently detected 
across all situations/environments (E1, E2, and Em). 
The region containing one stable QTN (S8_6755616, 
LOD = 3.14–7.75; r2 = 1.45–5.21%) on chromosome 8 was 
significantly associated with PWT and GYP in two environ-
ments (E1 and Em).

To further understand the genetic basis of agro-
nomic traits, we detected several candidate genes 
surrounding 100 kb upstream and downstream of the 
above 46 stable QTN position, as suggested by the LD 
decay analysis in this study (Fig. 2). The complete list 
of candidate genes in proximity of the stable QTNs is 
reported in Supplementary Table S5). For instances, 
two putative candidate genes, Sobic.001G266200 
and Sobic.007G193300 surrounding significant 
QTNs associated with DF have annotations as F-box 
and MADS-box family proteins, respectively, that 
are involved in multiple developmental processes in 
plants (Saha et al. 2015).

Two candidate genes (Sobic.001G013800 and 
Sobic.003G324400) were also identified for PH on 
chromosomes 1 and 3, respectively, with the first gene 
encoding Ser/Thr protein phosphatase family protein 
and the other encoding Ethylene responsive transcrip-
tion factor (AP2/ERF) family protein (Supplemen-
tary Table  S5). Interestingly, several candidate genes 
including, Sobic.009G075400 (Protein RALF-like 4), 
Sobic.008G102200 (Photosystem II reaction center 
protein), Sobic.004G053400 (similar to Auxin respon-
sive protein-like), and Sobic.008G037300 (similar to 
Terminal flower1/TF1), and Sobic.009G237900 (Plas-
tocyanin-like domain protein) were identified adjacent 
to the stable QTNs associated with TN, PWT, SPM, 

HSW, and PE, respectively. Further examples are given 
in Fig. 4 and Supplementary Table S5.

Discussion

Although several studies already identified the genetic 
basis of important agronomic traits in sorghum using 
GWAS (Bouchet et al. 2017; Boyles et al. 2016; Mor-
ris et  al. 2012; Zhao et  al. 2016), panels composed 
exclusively of sorghum accessions from the center of 
origin and diversity had not been sufficiently explored 
(Girma et al. 2019). Moreover, very few studies have 
implemented the ML-GWAS approach to identify 
genetic variants in sorghum. The use of ML-GWAS 
has become a powerful means to identify genomic 
regions underlying traits of interest, particularly for 
complex traits controlled by multiple genes of small 
effect (Wen et  al. 2018; Zhang et  al. 2019). Hence, 
associated genomic regions reported herein provide 
valuable knowledge that could be further investigated 
for advancing understanding of the genetic control of 
traits of economic and adaptive importance.

In this study, we identified a total of 121 reliable 
QTNs detected by at least three ML-GWAS models 
and/or in two different environments (Supplementary 
Table 4). A comparison of the six ML-GWAS methods 
revealed that mrMLM was more powerful and robust 
than the other five models in the detection of reliable 
QTNs for agronomic traits. Most of the QTNs identi-
fied in this study were observed in only one environ-
ment, supporting our observation of the presence of 
significant genotype by environment (G × E) interaction 
effects for all the traits studied (Wondimu et al. 2020; 
Table 1). The presence of the G × E interaction is one 
of the main challenges in selecting QTNs in breeding 

Methods 1–6 represent mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO, respectively. 
Environments 1–3 represent Kobo-2018, Mieso-2018, and Kobo-2018 and Mieso-2018 combined data, respectively
DF days to flowering, PH plant height, TN number of tillers per plant, PWT panicle weight, GYP grain yield per panicle, SPM struc-
tural panicle mass, HSW hundred seed weight, GNP grain number per panicle, PE panicle exertion. r2(%) the proportion of total 
phenotypic variance explained by each QTN

Table 3   (continued)

Trait QTN Chr Position (bp) r2 (%) LOD score Method Environment

PE S9_48893285 9 48,893,285 3.05–4.61 3.39–3.96 1, 2, 4, 6 1, 2, 3
PE S9_50328580 9 50,328,580 2.00–5.09 3.11–3.55 1, 2, 3, 4, 6 2, 3
PE S9_57542210 9 57,542,210 2.50–4.94 4.73–11.42 1, 2, 3, 4, 5, 6 2, 3
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programs, as gene expression of these QTNs depend 
on the evaluation environments (Wu et  al. 2020). On 
the other hand, the stable QTNs identified herein pro-
vide great prospects for future genetic improvement of 
the traits evaluated in this study through the accumula-
tion of favorable alleles. Genetic correlations between 
traits can be ascribed to gene linkage and/or pleiotropy 
(Saltz et  al. 2017). In this study, a total of 29 pleio-
tropic QTNs were detected associated with more than 
one trait (Supplementary Table S4). Among these, one 

QTN (S10_13295281) on chromosome 10 was associ-
ated with DF and PH. Another four pleiotropic QTNs 
(S1_70244848, S8_6755616, S8_48609940, and 
S9_438623) mapped on chromosomes 1, 8, and 9 were 
associated with PWT, GYP, and GNP. The presence of 
pleiotropic effects of these QTNs controlling different 
agronomic traits has previously been suggested by our 
phenotypic correlation analysis (Wondimu et al. 2020).

As most of the agronomic traits studied are con-
trolled by polygenes, the effects of most of the QTNs 
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Fig. 4   Linkage groups and chromosomal positions of stable 
QTNs and candidate genes identified for sorghum agronomic 
traits. The stable QTNs and candidate genes are labeled on the 
right side of chromosomes, and trait name abbreviations dis-

play different traits. QTNs and candidate genes on each chro-
mosome are highlighted with colors. The intervals between 
adjacent loci in chromosomes denote the physical distance in 
mega bases
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identified in this study were small, confirming the 
quantitative nature of the traits (Gupta et  al. 2020). 
Nonetheless SL-GWAS methods have been widely 
adopted; they are limited in detecting marginal 
effects QTNs (Wang et al. 2016), and hence the use 
of ML-GWAS methods can mitigate the above limi-
tation and estimate the effects of all markers at the 
same time (Cui et al. 2018).

To explore the spectra of candidate genes, we focused 
on physical intervals supported by the LD decay infor-
mation (i.e., 100 kb upstream and downstream of associ-
ated QTNs; Fig. 2). One of the stable QTN discovered 
in this study is S7_62550036 that explained ~ 4.0% 
of the variation in flowering time (DF) (Supplemen-
tary Table  5). This marker is in close proximity to 
Sobic.007G193300 gene, which encodes a MADS tran-
scription factor family protein. MADS family members 
widely take part in the key regulatory pathways of plant 
growth and reproduction, including flower formation 
(Callens et  al. 2018). In rice, the OsMADS family is 
involved in controlling flowering time and develop-
ment of flower organs (Yu et  al. 2014). Another QTN 
(S3_65025755) with important effect on plant height 
(PH) is located near the Sobic.003G324400 gene that 
encodes Ethylene responsive transcription factor (AP2/
ERF) family protein, which has been reported to limit 
internode elongation by down regulating gibberellin 
biosynthesis genes in rice (Qi et  al. 2011). The candi-
date gene, Sobic.008G102200, associated with panicle 
weight (PWT) encodes Photosystem II reaction center 
protein, which is important for light harvesting during 
photosynthesis (Pietrzykowska et  al. 2014). Thus, its 
possible role in photosynthesis might in theory explain 
its association with panicle weight, as panicle yield can 
be determined by factors regulating photosynthetic rate 
(Ramamoorthy et  al. 2017). The QTN (S8_3450030) 
associated with hundred seed weight (HSW) is very 
close to a gene, Sobic.008G037300 (Terminal flower1/
TF1), which functions in the control of flowering time 
and floral architecture (Alvarez et  al. 1992). Muta-
tions in TFL1 accelerate flowering time and resulted in 
higher seed weight in Arabidopsis (Hanano and Goto 
2011). Another gene, Sobic.009G237900, encoding 
plastocyanin-like domain (Cu_bind_like) protein was 
found near S9_57542210 associated with PE (Supple-
mentary Table S5). Previous studies have indicated that 
phytocyanin gene family is involved in key plant activi-
ties, including apical bud organ development in plants 
(Fedorova et al. 2002).

Other candidates emerging from our search 
include genes putatively involved in biotic and abi-
otic stress responses, kinase activity, transport, and 
signal transduction (Supplementary Table  5). For 
instance, Sobic.001G266700 (zinc finger domain; 
C3HC4 zinc finger), and Sobic.004G028600 (Leu-
cine-rich repeat receptor-like protein kinase/LRR-
RLKs) were located near QTNs (S1_50707856 and 
S4_2182692, respectively) significantly associated 
with DF and TN. Previous studies identified C3H4-
type zinc finger member, as the gene most strongly 
upregulated by various abiotic stresses including 
drought (Ali-Benali et  al. 2012). It has also been 
proposed that LRR-RLKs might be involved in early 
responses to drought and ABA perception (Osakabe 
et al. 2005).

Conclusions

This study involved field-based phenotyping and geno-
typing-by-sequencing of Ethiopian sorghum landrace 
collection, representing a wide range of genetic varia-
tion that has evolved under diverse environmental condi-
tions. This approach helped identified valuable loci and 
potential candidate genes underlying genetic variation 
in nine important agronomic traits of sorghum. Here, 
we presented a list of important QTNs and candidate 
genes that offer opportunities for identifying specific 
genes associated with complex traits and elucidating 
underlying biological functions. Furthermore, functional 
validation of these newly discovered candidate genes is 
important to confirm the association results observed in 
the present study and perhaps providing a foundation for 
engineering alternative alleles with still-greater value. 
Overall, the results reported herein advance our under-
standing of the genetic mechanisms underlying complex 
traits and further support the development of new DNA 
marker tools for efficient genetic improvement of this 
crop through molecular breeding.
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