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accessions with 58,112 single nucleotide polymor-
phisms (SNPs) to dissect the genetic basis of HSW 
in across years in the northern Shaanxi province of 
China through one single-locus (SL) and three multi-
locus (ML) genome-wide association study (GWAS) 
models. As a result, one hundred and fifty-four SNPs 
were detected to be significantly associated with 
HSW in at least one environment via SL-GWAS 
model, and 27 of these 154 SNPs were detected in 
all (three) environments and located within 7 linkage 
disequilibrium (LD) block regions with the distance 
of each block ranged from 40 to 610 Kb. A total of 
15 quantitative trait nucleotides (QTNs) were identi-
fied by three ML-GWAS models. Combined with the 
results of different GWAS models, the 7 LD block 
regions associated with HSW detected by SL-GWAS 
model could be verified directly or indirectly by the 
results of ML-GWAS models. Eleven candidate genes 
underlying the stable loci that may regulate seed 
weight in soybean were predicted. The significantly 
associated SNPs and the stable loci as well as pre-
dicted candidate genes may be of great importance 
for marker-assisted breeding, polymerization breed-
ing, and gene discovery for HSW in soybean.

Keywords  Hundred-seed weight · Association 
analysis · SNPs · LD block regions · Stable loci · 
Candidate genes

Abstract  The hundred-seed weight (HSW) is an 
important yield component and one of the principal 
breeding traits in soybean. More than 250 quantitative 
trait loci (QTL) for soybean HSW have been identi-
fied. However, most of them have a large genomic 
region or are environmentally sensitive, which pro-
vide limited information for improving the phenotype 
in marker-assisted selection (MAS) and identifying 
the candidate genes. Here, we utilized 281 soybean 
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Introduction

Soybean (Glycine max [L] Merr.) is one of the most 
important legumes, commercially, and an essential 
dual-purpose crop with seeds enriched with pro-
teins and oils that provide food and feed for human 
and livestock consumption, respectively (Gupta et al. 
2021). In addition, its roots form a symbiotic asso-
ciation with soil microbes to fix atmosphere nitro-
gen making it useful in soil improvement programs 
(Chung and Singh 2008). The domestication of soy-
bean from its wild progenitor (G. soja Sieb & Zucc.) 
started in temperate regions of China between 3000 
and 9000  years ago (Hymowitz 1970; Carter et  al. 
2004; Lee et  al. 2011). However, in recent years, 
soybean has become the most prominent agricultural 
product with the contradiction between supply and 
demand in China, and more than 80% of soybean and 
its products need to be imported every year to meet 
the domestic demand (FAOSTAT 2019; Sun et  al. 
2017). This calls for a breeding effort to improve soy-
bean productivity in China to make it self-reliant.

The seed weight (usually expressed as over 100 
seeds, designated as HSW) is an important yield 
component and one of the principal breeding traits in 
soybean. It is not merely positively related to yield, 
but also often determines the final utilization of seeds 
(Hopper et  al. 1979; Friedman and Brandon 2001; 
Clarke and Wiseman 2000). For instance, large-
seeded cultivars are boiled as vegetable soybean 
(nimame) which is predominant in China, and 
demand for it has markedly increased globally over 
the past two decades (Liu et  al. 2022). The HSW is 
a typical quantitative trait, which is controlled by 
polygenes with minor effects and highly influenced by 
the environment and its factors (such as temperature, 
light, and soil moisture) (Panthee et  al. 2005; Liang 
et  al. 2016; Wu et  al. 2018). Therefore, dissecting 
the genes/molecular markers and understanding 
the genetic basis of HSW would be useful for the 
development of high-yield soybean cultivars.

More than 250 seed weight quantitative trait loci 
(QTL) were identified using different bi-parental 
mapping populations based on linkage analysis in 
the SoyBase databank (www.​soyba​se.​org) and sev-
eral others being reported in recent years (Hina 
et  al. 2020; Karikari et  al. 2019; Beche et  al. 2020; 
Kumawat and Xu 2021). Only a few genes controlling 
soybean seed weight have been predicted or cloned 

from QTL mapping. Lu et al. (2017) detected a major 
QTL for soybean HSW using a recombinant inbred 
line (RIL) population with high-density genetic maps 
derived from a cross between a cultivated soybean 
and a wild soybean. Within the QTL major region, a 
phosphatase 2C-1 (PP2C-1) gene was found to con-
trol HSW in transgenic plants. Nguyen et  al. (2021) 
used forward genetic methods and CRISPR/Cas9 
gene editing and identified GmKIX8-1 as the causa-
tive gene for a major QTL of seed weight that reg-
ulates the seed size in soybean. Huang et  al. (2021) 
identified a stable QTL for HSW on chromosome 
4 and predicted four seed weight–related candi-
date genes (Glyma.04G047800, Glyma.04G051200, 
Glyma.04G062400, and Glyma.04G073900). How-
ever, most of the reported QTL have not been used 
effectively to improve the phenotype in MAS and to 
identify the candidate genes for HSW. The main rea-
sons for this limitation include a large genomic region 
due to the low density of molecular markers in the 
genetic maps or environmental sensitivity (Han et al. 
2012; Niu et al. 2013; Li et al. 2020; Qi et al. 2020). 
Thus, identification of the major and stable locus 
within a small region for seed weight is important 
for facilitating the map-based cloning of genes and 
understanding the molecular mechanisms of soybean 
seed weight.

Association mapping is an effective method to ana-
lyze the genetic basis of complex traits, which can 
utilize a number of historic recombination events in 
a natural population and could significantly improve 
the resolution and accuracy compared with linkage 
analysis (Rafalski 2010; Ibrahim et  al. 2020). The 
use of GWAS alternatively called association/dis-
equilibrium mapping for complex traits in crops has 
gained prominence in recent years due to the devel-
opment of sequencing technology to obtain the sin-
gle nucleotide polymorphisms (SNPs) within the 
whole genome, lesser time for population assemble, 
and cost (Ibrahim et  al. 2020). Recently, there are 
a few studies on GWAS for soybean seed weight. 
Zhang et al. (2021) identified a novel candidate gene 
(SoyZH13_16G122400) controlling soybean seed 
weight by comparative selective signature analysis 
and high-resolution GWAS, which can provide new 
information for seed weight breeding. Ikram et  al. 
(2020) detected 43 stable quantitative trait nucleo-
tides (QTNs) and predicted 36 potential candidate 
genes for HSW. Karikari et al. (2020) reported 39 and 
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209 SNPs by 2 SL-GWAS and 6 ML-GWAS models, 
respectively, and predicted 4 hub-genes among the 
candidate genes by gene co-expression. Zhang et  al. 
(2016) detected 22 HSW QTL based on 309 soy-
bean accessions with 31,045 SNPs, and predicted six 
important candidate genes. Zhao et  al. (2019) based 
on 185 tested accessions identified 34 environmen-
tally stable QTNs and found sixteen candidate genes 
were significantly associated with soybean HSW. 
These studies indicate that GWAS is an effective 
method for genetic basis analysis and candidate gene 
mining for complex traits.

In the northern Shaanxi province of China, soy-
bean plays a major role in agricultural production. 
However, the ecological environment and soybean 
varieties in this region are different from other major 
soybean-producing areas in China, and less known 
about the genetics of HSW in this environment. 
Therefore in the present study, we utilized 281 diverse 
soybean accessions evaluated in 3 years (2018, 2019, 
and 2020), and performed one SL-GWAS model and 
three ML-GWAS models with 58,112 SNPs to iden-
tify major genomic regions for soybean HSW and use 
stable loci to mine the candidate genes for marker-
assisted selection and gene cloning (functional vali-
dation), respectively. The results from this study 
would provide useful information and lay foundation 
for breeding desirable cultivars with preferred seed 
weight.

Materials and methods

Soybean materials and field experimental design

In the present study, an association panel consisting 
of 281 soybean accessions (comprising 4 landraces 
and 277 improved cultivars) was used to perform the 
GWAS for HSW. These accessions were collected 
from diverse soybean production areas of China and 
have been used in our previously published study 
(Cao et  al. 2021). The association panel was grown 
from approximately May to October in a 1.5 m single 
row plot with a row spacing of 50 cm in three envi-
ronments: the Yan’an Experimental Station ( 36°72′ 
N; 109°40′ E) of Yan’an Agricultural Science Insti-
tute in Yan’an, Shaanxi, China, in the year 2018, 
2019, and 2020 (denoted as E1, E2, and E3, respec-
tively). All accessions were planted in a completely 

randomized block design with three replications in 
each year (environment). Field management was con-
ducted under normal conditions. Then, the seeds were 
harvested at maturity to evaluate the phenotype of 
HSW.

Phenotypic investigation and statistical analysis

For the HSW assessment, 100 healthy seeds with 
approximately 10% moisture content were randomly 
selected from each block to measure weight via elec-
tronic balance. The HSW for each accession in one 
planting environment was an average of three repli-
cations. The descriptive statistics of phenotypic data, 
such as mean, standard deviation, range, and coef-
ficient of variation (CV %) for HSW in the associa-
tion mapping population were calculated using the 
SPSS 20.0 software (SPSS Inc.; Chicago, IL, USA). 
To evaluate the effects of genotype, environment, and 
genotype by environment interaction on the HSW, an 
analysis of variance (ANOVA) for the joint environ-
ments was conducted using the SAS PROC mixed 
linear model program with random factors: geno-
types, environments, replications within an environ-
ment, and the genotype by environment interaction. 
The broad-sense heritability (h2) of HSW in associa-
tion mapping population was computed using the fol-
lowing equation:

where σg
2, σ2

ge, σ2
e, n, and r represent the genotypic 

variance, the variance of the genotype by environment 
interaction, the error variance, the number of environ-
ments, and the number of replications within an envi-
ronment, respectively (Nyquist and Baker 1991).

SNP genotypic and GWAS

All 281 accessions were genotyped for SNP markers 
using a high-throughput genotyping platform previously 
described in Cao et  al. (2021). Finally, 58,112 SNPs 
with minor allele frequencies (MAF) > 0.05 unevenly 
distributed on 20 chromosomes were used for genome 
association mapping. The details of SNP and popula-
tion structure information for these 281 accessions are 
described in our previous study (Cao et al. 2021).

In this study, one SL-GWAS model and three 
ML-GWAS models were utilized to perform the 
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association analysis. For the SL-GWAS model, the 
mixed linear model (MLM) with the principal com-
ponent (PC) and kinship (K) matrix as fixed and 
random effects was performed using the TASSEL 
5.0 software (Bradbury et al. 2007). To obtain more 
SNPs associated with HSW and examine their stabil-
ity across the three environments, − log10(P) ≥ 3 was 
used as a threshold to declare a significant association 
of SNPs with HSW in MLM in this study. In addition, 
three ML-GWAS models (mrMLM, FASTmrEMMA, 
and FASTmrMLM) were conducted with mrMLM.
GUI package in R (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​mrMLM/​index.​html) to complement and 
validate the loci identified by the SL-GWAS model 
(Wang et al. 2016; Wen et al. 2018; Tamba and Zhang 
2018). The screening criteria for marker-trait sig-
nificant association was set with a logarithm of odds 
(LOD) value of more than 3.0 which has been pro-
posed to balance high power and low false-positive 
rate (Zhang et al. 2019).

Stable locus screening and elite allele analysis

The environmental stability of the QTL/QTN is 
essential for use in candidate gene cloning and breed-
ing programs. Thus, only the SNP detected in all 
experimental environments was considered a stable 
QTN in this study. Then, linkage disequilibrium (LD) 
block analysis was performed on regions around the 
stable QTN position by Haploview 4.2 software with 
default settings (Barrett et al. 2005); the genome-wide 
association study results with gene structure and link-
age disequilibrium matrix were drawn by using IntAs-
soPlot package in R (He et al. 2020). The LD block 
which contains stable QTNs was considered a major 
and stable locus for soybean HSW. Based on the 

effect value and genotype information for the stable 
QTNs, the elite allele for HSW of the most signifi-
cantly associated stable QTN and haplotypes at each 
LD block can be determined. The HSW distribution 
of the accessions with different alleles and haplotypes 
was further examined.

Candidate gene prediction within important loci

Potential candidate genes for soybean HSW under-
lying the environmentally stable QTNs (LD block 
regions) were predicted according to the functional 
annotations of genes in soybean and their homolo-
gous genes in Arabidopsis, the expression of poten-
tial candidate genes in different soybean tissues and 
development stages, and the available literature. The 
functional annotations and expression datasets of 
genes (Wm82.a2) were downloaded from SoyBase 
for downstream analyses.

Results

Phenotypic variation of HSW in the 281 soybean 
accessions

To evaluate phenotypic variation among the 281 soy-
bean accessions, we investigated the HSW across 
three environments (E1, E2, and E3). The results 
of descriptive statistics and phenotypic distribution 
are shown in Table 1 and Fig. 1. HSW ranged from 
8.50 to 36.02  g with the mean ± standard deviation 
of 20.19 ± 3.18 g across all environments with a CV 
of 15.77% (Table  1). Whereas the HSW in E1, E2, 
and E3 environments had a range of 6.75–38.11  g, 
6.41–35.07  g, and 12.26–34.87  g, respectively 

Table 1   Descriptive statistics of soybean 100-seed weight in 281 accessions in different environments

a E1, E2, and E3 represent the test environment in 2018, 2019, and 2020 respectively
b SD represents standard deviation
c CV represents coefficient of variation
d h.2 represents broad-sense heritability

Environmenta Mean (g) SDb Max (g) Min (g) CV (%)c h2 (%)d

E1 20.98 3.60 38.11 6.75 17.16 93.16
E2 19.96 3.63 35.07 6.41 18.17
E3 19.63 2.91 34.87 12.26 14.85
Average 20.19 3.18 36.02 8.50 15.77
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(Table 1). CV % ranged from 14.85 to 18.17% in the 
three environments. Across all environments (E1, E2, 
E3, and mean), the phenotypic frequency of HSW 
had a continuous and relatively normal distribution. 
These results pinpoint that the HSW varied widely in 
this population and accorded with the typical of quan-
titative traits (Fig. 1). The h2 of HSW in 281 soybean 
accessions was high (93.16%) (Table  1), suggesting 
that HSW in this population is mainly controlled by 
genetic factors and less influenced by the environ-
ment, and its interaction with genotype (Table S1).

SNP‑trait association mapping by SL‑ and 
ML‑GWAS models

In this study, 281 soybean accessions with 58,112 
high-quality SNPs (MAF > 0.05) were used to per-
form the association analyses. The PCA and K for 
this panel were calculated as previously described 
(Cao et al. 2021). In order to obtain accurate and sta-
ble QTNs for HSW, two contrasting types of GWAS, 
SL-GWAS, and ML-GWAS models were used. 
According to the quantile–quantile (Q-Q) plots from 

SL-GWAS results, when − log10(P) ≥ 3, the observed 
value is greater than the expected value, indicat-
ing that these SNPs may be associated with HSW 
(Fig. 2).

The SL-GWAS model (MLM) with a thresh-
old of − log10(P) ≥ 3 detected a total of 75, 87, and 
98 SNPs associated with HSW in the E1, E2, and 
E3, respectively (Table 2, Table S2, Fig. 2, Fig. 3). 
These SNPs were distributed on 14 chromosomes 
with exception chromosome (Chr.) 1 (Chr.01), 
Chr.03, Chr.06, Chr.08, and Chr.12 (Table 2, Fig. 2). 
The phenotypic variance explained (PVE/R2) and 
allelic effect by a single SNP marker was between 
3.99 to 8.81% and − 4.24 to 4.24  g, respectively 
(Table S2). Cumulatively, 154 SNPs were detected 
across the three environments (E1, E2, and E3). In 
comparing the results across three environments, 
75 of 154 SNPs were environmentally sensitive, 
52 were detected in two environments, and 27 were 
detected in all environments (E1, E2, and E3). 
Therefore, the 27 SNPs could be considered stable 
SNPs (Table 2, Table 3, Fig. 2 and Fig. 3). Among 
the 27 environmentally stable SNPs, 1, 4, 1, 4, 3, 

Fig. 1   Frequency distribution of HSW in three environments and average of three environments. Where E1, E2, E3, and average 
represent the test environment in 2018, 2019, 2020, and the average of three environments respectively
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and 14 were distributed on Chr.02, Chr.05, Chr.07, 
Chr.13, Chr.16, and Chr.17 respectively. The LD 
block analyses were conducted for stable QTNs, 
and these 27 SNPs were located within 7 LD block 

regions with the distance of each block ranging 
from 40 to 610 Kb (Table 3, Fig. 4).

The average HSW phenotype of each soybean acces-
sion in three environments was used to conduct SNP-trait 

Fig. 2   Genome-wide association study (GWAS) results for 
HSW by SL-GWAS and ML-GWAS models. A, B, and C rep-
resent the GWAS and Q-Q plot results of the HSW in E1, E2, 
and E3 environments using the SL-GWAS model, respectively. 
The dashed horizontal line depicts a significant threshold 

level [− log10(P) ≥ 3]. Red dots represent the SNPs that could 
be detected in all environments. D GWAS results of the HSW 
using three ML-GWAS models based on the average pheno-
typic values of the three environments. Purple dots represent 
detected QTNs

Mol Breeding (2022) 42: 3838   Page 6 of 17
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association mapping by three ML-GWAS approaches 
(mrMLM, FASTmrMLM, and FASTmrEMMA). A 
total of 11, 9, and 4 significant QTNs with the LOD, 

QTN effect, and PVE range from 3.18 to 8.63, − 2.25 to 
1.98 g, and 2.22 to 11.95% were detected by mrMLM, 
FASTmrMLM, and FASTmrEMMA, respectively 

Table 2   Summary of single-locus GWAS model (MLM) results in different environments

a E1, E2, and E3 represent the test environment in 2018, 2019, and 2020 respectively
b Single environment, two environments, and three environments represent the number of SNPs detected in a single environment, two 
environments, and three environments respectively

Chromosome E1a E2a E3a Single environmentb Two environmentsb Three 
environmentsb

2 3 4 1 3 1 1
4 0 0 2 2 0 0
5 7 15 6 6 5 4
7 12 2 2 11 1 1
9 0 2 2 0 2 0
10 1 1 1 3 0 0
11 6 1 1 8 0 0
13 16 7 26 15 11 4
14 10 0 8 2 8 0
16 3 4 4 2 0 3
17 15 39 34 12 17 14
18 1 2 1 4 0 0
19 0 3 2 5 0 0
20 1 7 8 2 7 0
Total 75 87 98 75 52 27

Fig. 3   Venn diagram of SNPs detected in this study. A SNPs by single-locus-GWAS (SL-GWAS) across the three environments 
(2018 [E1], 2019 [E2], and 2020 [E3]). B SNPs detected by both SL-GWAS and multi-locus-GWAS models
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(Table  4, Fig.  2D). Among these QTNs, 2 SNPs 
(Gm07_37852330 and Gm13_21923558) were detected 
by all ML-GWAS models, 5 SNPs (Gm06_155985, 
Gm07_2584000, Gm13_28334337, Gm19_9403950, 
and Gm20_35141779) were detected by two ML-GWAS 
models, and other 8 SNPs were only detected by one 
ML-GWAS model (Table 4).

We further compared the results of different GWAS 
models; among the 15 significant QTNs identified by 
the ML-GWAS models, 10 SNPs could be detected by 
the SL-GWAS model (Fig. 3B). Four (locus 1–4) of the 
seven stable loci (LD block regions) significantly asso-
ciated with HSW detected by the SL model contained 
QTNs detected by the ML-GWAS models. Within the 
LD block 5 to 7 regions, no QTN was detected by the 
ML-GWAS models; however, in these three regions, 
the − log10(P) values of some SNPs were greater than 
4 (Fig. 2D), hence can be regarded as potential QTNs. 
The above results indicate that the results of the two 
models are largely consistent. However, the results of 
MLM (SL-GWAS) were not been subjected to the Bon-
ferroni correction (P < 0.05/58,112); if this correction 
was performed, no significant SNP could be identified, 
suggesting that the ML-GWAS models seem to have 
higher accuracy and detection power.

Validation and allelic effect analysis of stable loci for 
soybean HSW

Depending on the results of GWAS, seven LD block 
regions were significantly associated with HSW in all 

experimental environments. Therefore, we focused on 
these seven intervals and considered them as impor-
tant and environmentally stable loci controlling HSW 
in the studied panel and location. In order to validate 
these stable loci, the distribution of HSW was fur-
ther examined in individuals with different alleles 
of the most significant SNPs in these loci (Fig.  5). 
Seven SNP markers: Gm02_42561640 (T/C), 
Gm05_38473956 (T/G), Gm07_37852330 (T/A), 
Gm13_27285558 (T/A), Gm13_29266613 (G/A), 
Gm16_30060864 (T/C), and Gm17_15123072 (C/A) 
were used to analyze the distribution of HSW with 
different alleles. The results showed that HSW differs 
significantly (P < 0.05) among the different alleles of 
the seven markers. For example, Gm02_42561640 
(T/C) SNP with T allele accessions had an 
HSW of 20.60  g which was significantly higher 
(P = 1.1 × 10−6) than those with C allele (18.01  g). 
Similarly, Gm05_38473956 (T/G), Gm07_37852330 
(T/A), Gm13_27285558 (T/A), Gm13_29266613 
(G/A), Gm16_30060864 (T/C), and Gm17_15123072 
(C/A), alleles T, A, A, A, C, and C, could increase 
HSW by 1.36, 3.04, 1.96, 1.44, 3.84, and 3.64  g, 
respectively, relative to their alternative alleles. In 
addition, for all the above seven SNPs, the HSW of 
allele TTA​AAC​C was also significantly greater than 
that of allele CGA​AAC​A. Furthermore, we also ana-
lyzed the distributions of HSW in different haplotypes 
at each LD block. Significant phenotypic differences 
between some haplotypes can be found in each locus 
(P < 0.05). For example, in locus 1, we extracted 

Table 3   Stable loci for soybean 100-seed weight detected in all experimental environments

a Represents the intervals of LD blocks containing stable SNPs. The data inside and outside the brackets represent the position of LD 
blocks on soybean Wm82.a1 and Wm82.a2 reference genome, respectively
b Represents the phenotypic variance (%) explained by the stable SNPs
c Represents that this locus overlaps or is close to the previously reported QTL/QTN position

Locus name Chromosome Number of 
stable SNPs

Genomic interval on Wm82.a1 
(Wm82.a2) (Mb)a

 − Log(P) R2 (%)b References c

Locus 1 2 1 42.53–42.78 (39.47–39.72) 3.28–3.39 4.46–4.62
Locus 2 5 4 38.13–38.57 (41.76–42.22) 3.05–4.77 4.08–6.89 Ikram et al. (2020)
Locus 3 7 1 37.71–37.99 (37.61–37.89) 3.20–4.26 4.31–6.04 Wang et al. (2015a, 2015b)
Locus 4 13 3 27.01–27.62 (28.21–28.82) 3.00–5.86 3.99–8.81 Hyten et al. (2004); Funatsuki et al. 

(2005); Wang et al. (2015a, 2015b); 
Kato et al. (2014)

Locus 5 13 1 29.26–29.30 (30.46–30.50) 3.22–3.76 4.33–5.21 Wang et al. (2015a, 2015b)
Locus 6 16 3 29.88–30.15 (30.22–30.52) 3.77–4.11 5.23–5.82 Karikari et al. (2020)
Locus 7 17 14 15.09–15.45 (14.86–15.22) 3.05–4.87 4.06–7.07 Teng et al. (2009)
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the first four haplotypes and found that the average 
phenotypic value of soybeans with haplotype 1 was 
21.18  g, which was significantly higher than that of 
accessions with haplotype 4 (18.08 g). Similar results 
were found at other LD blocks (Figure S1). Combin-
ing all 7 LD blocks, the average HSW phenotype of 
accessions with increasing haplotypes (25.13 g) was 
larger than that of accessions with decreasing hap-
lotypes (18.87 g) (Figure S1). These results indicate 
that these stable loci could explain the genetic varia-
tion of HSW among the accessions, and the beneficial 
alleles from these LD block regions would be useful 
for MAS in soybean with high and stable HSW.

Prediction candidate genes of the stable loci for HSW 
in soybean

Potential candidate genes were mined from the 7 stable 
loci. A search for putative candidate genes resulted in 
a total of 217 genes within the 7 stable loci, of which 
197 genes have homologous genes in Arabidopsis. 
According to the functional annotations, gene ontol-
ogy (GO) enrichment analysis, and the expression data 
as well as available literature, the possible candidate 
genes were predicted. In all, 11 genes are involved in 
several biological processes such as gibberellin biosyn-
thetic process, seed development, cell growth, embryo 

Fig. 4   Results of LD block analysis of the region around the position of stable QTN. Twenty-seven stable SNPs were located within 
7 LD block regions with the distance of each block ranging from 40 to 610 Kb
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development, and lipid metabolic process which may 
play key roles in regulating seed size/weight. Except 
Glyma.02G209900, the RNA-Seq data of 10 other pre-
diction candidate genes are in Fig.  6 based on RNA-
seq data obtained from Severin et  al. (2010). Expres-
sion analysis for different soybean tissues showed that 
these 10 candidate genes have a high expression at one 
or various developmental stages in seed tissue (Fig. 6). 
Hence, these were considered to be the candidate genes 
for regulating HSW within the 7 stable loci (Table S3 
and Fig. 6).

Discussion

Soybean seed weight is a typical quantitative 
trait, controlled by numerous genes with small 
effects, and significantly affected by environmental 

conditions (Panthee et  al. 2005; Liang et  al. 2016; 
Wu et  al. 2018). It is difficult to improve soybean 
seed weight by traditional conventional breeding 
methods. MAS can effectively identify and track 
target genes by using markers closely linked to 
traits by reducing the number of lines to be tested in 
the selection and saves time in breeding programs 
(Hoeck et  al. 2003; Mian et  al. 1996; Kim et  al. 
2020). However, most of the reported QTL/QTNs 
were specific to an environment or located in large 
genomic intervals (Han et al. 2012; Niu et al. 2013; 
Zhang et al. 2016; Li et al. 2020; Zhao et al. 2019; 
Karikari et al. 2020). In contrast, breeders prefer to 
use stable QTL/QTNs with small genomic intervals 
in molecular-assisted breeding programs. Hence, it 
is imperative to identify the environmentally stable 
QTL/QTNs within a small region for seed weight 
for marker-assisted breeding.

Fig. 5   The distributions of the HSW in individuals with dif-
ferent alleles of the most significant SNPs in stable loci. A to 
G are the results of HSW distribution at Gm02_42561640, 
Gm05_38473956, Gm07_37852330, Gm13_27285558, 

Gm13_29266613, Gm16_30060864, and Gm17_15123072, 
respectively. H is the result of the combination of all 7 SNPs. 
Where “n” represents the number of soybean accessions

Mol Breeding (2022) 42: 38 Page 11 of 17    38
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Association mapping is an effective method to 
analyze the genetic basis of complex traits. Two main 
approaches of the GWAS are presented, one such 
approach is the SL-GWAS model (MLM) (Zhang 
et  al. 2005; Yu et  al. 2006), which has widely been 
used in the genetic dissection of complex traits in 
crops. But, this model usually requires Bonferroni’s 
correction for multiple tests to reduce the false-pos-
itive rates between the markers and the phenotype, 
which may lead to the exclusion of important loci 
(Zhang et  al. 2019). To overcome this issue, several 
ML-GWAS methods that do not need stringent Bon-
ferroni’s correction for multiple comparisons have 
been developed, such as mrMLM, FASTmrMLM, 
and FASTmrEMMA (Wang et  al. 2016; Wen et  al. 

2018; Tamba and Zhang 2018). However, previous 
studies have demonstrated that none of the methods 
could identify all QTNs (Khan et  al. 2019; Karikari 
et al. 2020; Ikram et al. 2020). Therefore, in order to 
obtain more possible related SNPs, it is necessary 
to combine the results from various GWAS models 
(Zhang et  al. 2019). This strategy has been used in 
several studies (Khan et al. 2019; He et al. 2018; Xu 
et al. 2017; Karikari et al. 2020).

In this study, we used 281 soybean accessions 
with 58,112 SNPs to dissect the genetic basis of 
HSW by 2 contrasting GWAS approaches. For the 
SL-GWAS model, the main purpose was to obtain 
more possible associated SNPs and to examine the 
stability of significantly associated SNPs in different 

Fig. 6   Heat map exhibiting the expression profiles of 10 can-
didate genes among the different soybean tissues and develop-
ment stages from the stable loci. DAF is days after flowering. 

RNA-seq data obtained from Severin et  al. (2010) is avail-
able on the SoyBase website (https://​soyba​se.​org/, accessed on 
12.12.2021)

Mol Breeding (2022) 42: 3838   Page 12 of 17
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environments. According to the results of the Q-Q 
plot, − log10(P) ≥ 3 was adopted as a threshold to 
declare a significant association of SNPs with HSW 
in the SL-GWAS model (MLM) (Fig. 2). As a result, 
27 SNPs were distributed in 7 loci that could be 
detected in all experimental environments (Fig.  2, 
Fig.  3). For ML-GWAS models, the main purpose 
was to verify the important locus obtained from the 
SL-GWAS model. Finally, the 7 LD block regions 
associated with HSW detected by the single-locus 
model could be verified directly or indirectly by the 
results of the ML-GWAS models (Table 4, Fig. 3B). 
The results show that the results of the two models 
are largely consistent, indicating these seven loci are 
major genomic regions for controlling HSW in soy-
bean. In addition, the allelic effect analysis was per-
formed on two alleles of peak SNP from each of the 
seven LD blocks. The results showed that the HSW 
of soybean accessions with n excellent allele was sig-
nificantly higher than that of accessions with another 
allele for all the 7 SNP peaks, and in particular the 
allelic effects of 7 SNPs could also be accumulated 
(Fig. 5). Phenotypic analysis based on the haplotypes 
of LD blocks had similar results  (Fig.  S1). These 
results provide useful information for soybean HSW 
molecular-assisted breeding and polymerization 
breeding in this region.

We further compared our results to already 
known loci/QTNs, 6 loci and 12 QTNs located near 
or overlapped with the genomic regions of known 
QTL/QTN for soybean HSW (Tables  2 and 3), giv-
ing credence to our results. For example, the posi-
tion of QTN Gm05_38411981 is similar to the one 
identified by Ikram et  al. (2020) at 38,490,635  bp 
on Chr.05. Locus 3 and locus 4 overlapped with 
the genomic regions of Seed weight 42–5 and Seed 
weight 15–3 reported by Wang et  al. (2015a) and 
Hyten et  al. (2004), respectively. However, except 
for locus 4, all loci in this study were detected in a 
small physical interval (< 500 Kb). For instance, Seed 
weight 42–5 was located in a large genomic inter-
val (greater than 2.3  Mb) between marker Sat_121 
and marker Satt210 in SoyBase, but in the current 
study, locus 3 is located in an approximately 280 Kb 
genomic interval (Table  3). Seed weight 15–3 was 
detected in approximately 4.7  Mb genomic interval 
between marker Sat_133 and marker Satt334 and 
overlapped with locus 4 (610  Kb); the resolution of 
QTL interval is greatly improved in our study. Hence, 

these QTL/QTNs could be considered important tar-
gets for soybean HSW to clone candidate genes in 
future studies. In addition, one locus (locus 1) and 
three QTNs (Gm02_42561640, Gm06_155985, and 
Gm10_4316320) were newly identified in this study, 
which can add to the growing knowledge of the 
genetic control of HSW.

In flowering plants, a mature seed consists of the 
embryo, the endosperm, and the seed coat. These 
three major anatomical components of seed have dif-
ferent genetic compositions and are known to be con-
trolled by many genes (Lafon-Placette and Kōhler 
2014). However, compared with the molecular mecha-
nisms underlying seed size/weight in Arabidopsis and 
rice (Li and Li 2014; Zhu et al. 2015; Ren et al. 2019), 
only a few genes controlling HSW have been cloned 
and predicted in soybean (Lu et  al. 2017; Nguyen 
et al. 2021; Lu et al. 2016; Du et al. 2017; Gu et al. 
2017; Di et  al. 2015). Based on gene function anno-
tation, GO, pathway analysis, and gene expression 
data as well as related literature, 11 candidate genes 
regulating soybean seed weight were predicted in this 
study. Glyma.02G209900 within locus 1 encoding a 
soluble cytoplasmic pyrophosphatase is homologous 
to AT1G01050, which can regulate the oil biosynthe-
sis in developing seeds and thus affects seed weight, 
indicating that it is a candidate gene for soybean HSW 
(Meyer et  al. 2012). Glyma.05G243400 underly-
ing the stable locus 2 is homologous to AT1G18070, 
which annotates to be involved in the translation elon-
gation factor EF1A/initiation factor IF2gamma fam-
ily protein in Arabidopsis, and it has been reported 
that this gene may be correlated with the regula-
tion of seed size/weight in soybean (Li et  al. 2019). 
Glyma.13G169700 is a sucrose efflux transporter gene 
homologous to the AtSWEET5 gene (AT5G62850). 
AtSWEET5 belongs to SWEET (sugars will eventu-
ally be exported transporter) family. A couple of genes 
from the SWEET family have been demonstrated 
to regulate seed size/weight and other seed quality 
traits in soybean and other crops (Wang et al. 2015b; 
Chen et al. 2015; Wang et al. 2020; Miao et al. 2020). 
Glyma.13G171300 is homologous to AT5G45920, 
which co-expressed with ABSCISIC ACID INSENSI-
TIVE 4 and involved in seed storage metabolism (Yan 
and Chen 2017). Glyma.13G172700 is homologous 
to WUSCHEL RELATED HOMEOBOX 9 (WOX9) 
in Arabidopsis. WOX9 is required for maintaining 
cell division and essential for Arabidopsis embryonic 
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development (Wu et  al. 2007). Glyma.17G165800 is 
a pentatricopeptide repeat (PPR) protein gene. PPR 
proteins have been shown to affect seed develop-
ment and size in rice and maize (Huang et  al. 2020; 
Li et  al. 2014). Glyma.17G166000 encodes geranyl 
diphosphate synthase 1 (GPS1) and is homologous 
to AT2G34630. GPS gene was found to be involved 
in gibberellin biosynthesis (Van-Schie et al. 2007). It 
is well known that gibberellin plays an important role 
in regulating seed development (Daviere and Achard 
2013). Recently, a key enzyme gene in the gibberel-
lin synthesis pathway (GmGA3ox1) was also cloned, 
which has an important impact on soybean yield (Hu 
et  al. 2022). Glyma.17G166100 annotates to encode 
GDSL-like lipase, which plays an important role in oil 
synthesis and seed development of oil and other plants 
(Ding et al. 2019; Clauss et al. 2011).

In addition to the homologous genes of the above 
eight genes identified to be related to seed weight 
in Arabidopsis or other crops, three other candidate 
genes also deserve attention. Glyma.05G245800 is 
associated with the biological process of cell pro-
liferation and has high expression specifically in 
seed 14 DAF (days after flowering) and 21 DAF 
stages in seed tissues. Glyma.13G168800 is highly 
expressed in the early stage of seed development 
(seed 10 DAF and seed 14 DAF), and the gene 
annotation information and GO enrichment analysis 
show that this gene is involved in anther develop-
ment, pollination, vegetative to reproductive phase 
transition of the meristem, and lipid storage bio-
logical processes. Glyma.05G246200 is associated 
with the biological process of seed development 
and is highly expressed in seed tissues at various 
seed developmental stages. This information indi-
cates that these genes may play an important role 
in seed set and development and affect seed weight. 
Therefore, the above genes could be targeted for 
further screening and possible functional validation 
to deepen our understanding of regulating seed size/
weight in soybean.

Conclusions

In this study, we performed a GWAS using 281 acces-
sions and 58,112 SNPs for dissecting the genetic 
architecture of HSW in soybean. As a result, a total 

of 154 SNPs and 15 QTNs significantly associated 
with HSW were dissected by the SL- and ML-GWAS 
models, respectively. Combined with the results of 
different GWAS models and the LD block and allelic 
effect analyses, 7 LD block regions were consid-
ered major genomic regions for controlling soybean 
HSW. And 11 candidate genes underlying the major 
genomic regions that may regulate seed weight in 
soybean were predicted. The significantly associated 
SNPs and the stable loci as well as predicted candi-
date genes might be of great usefulness for marker-
assisted breeding and gene discovery for HSW in 
soybean.
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