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was the determinant R2R3-MYB gene for antho-
cyanin biosynthesis in rice pericarps. The expression 
level of OsMYB3 in pericarps of black rice was sig-
nificantly higher than that of white rice. The knockout 
of OsMYB3 in a black rice variety caused significant 
downregulation of 19 anthocyanin metabolites and 
many other flavonoids in grains. Our research deep-
ens the understanding of regulatory system for antho-
cyanin biosynthesis in rice pericarps and provides 
implications for breeding black rice varieties with 
high anthocyanin level.

Keywords  Oryza sativa · Pigmented rice · MBW 
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Introduction

As one of the most important staple foods in the 
world, rice (Oryza sativa L.) generally provides 
energy and a portion of protein for daily need (Al-
Kanhal et  al. 1999). However, black rice, a special 
type of rice germplasm with anthocyanin accumu-
lation in the pericarps, have been proved to provide 
many additional health benefits compared with com-
mon white rice, such as preventing insulin resistance 
(Guo et  al. 2007) and cholesterol absorption (Yao 
et al. 2013), inhibiting breast cancer cell growth (Hui 
et al. 2010) and D-galactose-induced senescence (Lu 
et  al. 2014). Moreover, high anthocyanin intake has 
also shown to reduce the risk of cancer (Peiffer et al. 
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2016), inflammation (Miyake et al. 2011), and neuro-
logical diseases (Strathearn et al. 2014), cardiovascu-
lar diseases (Cassidy 2018), obesity (Li et al. 2013), 
and other chronic diseases. Therefore, the consump-
tion of black rice has been becoming more and more 
popular (Kushwaha 2016). Recently, black rice has 
been advocated to be consumed as staple food to sub-
stitute white rice due to its outstanding health-pro-
moting effects (Zhang 2021).

Anthocyanins are water-soluble flavonoid pig-
ments that are broadly accumulated in plants. The 
anthocyanin biosynthesis pathway is catalyzed by a 
set of enzymes including chalcone synthase (CHS), 
chalcone isomerase (CHI), flavanone 3-hydroxylase 
(F3H), flavonoid 3′-hydroxylase (F3’H), dihydrofla-
vonol 4-reductase (DFR), anthocyanidin synthase 
(ANS), and UDPG-flavonoid glucosyltransferase 
(UFGT). The activation of the anthocyanin biosyn-
thetic genes largely relies on the MBW complexes, 
consisting of three types of transcription factors (TFs) 
R2R3-MYB, bHLH, and WDR, and this regulatory 
model is widely conserved in higher plants (Xu et al. 
2015). According to the conservative amino acid 
motifs in the MYB repeat sequence, R2R3-MYBs 
in Arabidopsis thaliana can be further divided into 
22 subgroups (subgroup 1 to 22, SG1-22) (Kranz 
et  al. 1998). In MBW complexes, the R2R3-MYBs 
are generally responsible for the spatiotemporal pat-
terns of anthocyanin production (Albert et al. 2014). 
For instance, R2R3-MYBs of SG6 (PAP1, PAP2, 
AtMYB113, and AtMYB114) regulate the anthocya-
nin biosynthetic genes by forming the MBW complex 
with bHLHs (GL3, EGL3, or TT8) and TTG1 in veg-
etative tissues (Gonzalez et  al. 2008). Nevertheless, 
in the seed coat of Arabidopsis, the MBW complex 
composed of TT2 (R2R3-MYB, SG5), TT8 (bHLH), 
and TTG1 (WDR) activates the biosynthesis of proan-
thocyanidin, belonging to a branch closely related 
to anthocyanin in the flavonoid pathway (Baudry 
et  al. 2004). Interestingly, AtMYB113 (At1g66370), 
AtMYB114 (At1g66380), and PAP2 (At1g66390) are 
clustered on chromosome 1, which indicated that 
these genes probably derived from the tandem repeats 
of PAP1 (At1g56650) during the evolution of Arabi-
dopsis (Lin-Wang et al. 2010). In maize (Zea mays), 
ZmPl and ZmC1 of SG5 are responsible for anthocy-
anin biosynthesis via interacting with bHLHs (R/B1) 
and the WDR protein PAC1, i.e., ZmPl is responsi-
ble for the regulation in vegetative tissues and floral 

organs, and ZmC1 functions in caryopsis (Petroni 
et al. 2014). Different from the R2R3-MYBs of SG5 
and SG6, those of SG7 could activate the flavonoid 
biosynthetic pathway in absence of bHLHs. In Arabi-
dopsis, AtMYB11, AtMYB12, and AtMYB111 acti-
vate the expression of the early biosynthetic genes 
(EBGs) AtCHS, AtCHI, and AtF3H and the fla-
vonol synthase gene AtFLS, and their activations on 
AtFLS are partial redundancy (Stracke et  al. 2007). 
In maize, P1 regulates the expression of EBGs and 
tannin synthesis in floral organs (Grotewold et  al. 
1994). In apple (Malus × domestica), MdMYB1 
and MdMYBA mainly regulate the biosynthesis of 
anthocyanin in fruit skins, and MdMYB10 partici-
pates in the regulation of anthocyanin in apple flesh 
and leaves (Takos et al. 2006; Ban et al. 2007; Espley 
et al. 2007).

Rice may accumulate anthocyanin pigments in 
various tissues including leaves, leaf sheathes, inter-
nodes, ligules, pericarps, apiculi, and stigmas. The 
anthocyanin biosynthetic genes of rice have been 
well characterized (Reddy et  al. 1996, 2007; Druka 
et  al. 2003; Furukawa et  al. 2007; Kim et  al. 2008; 
Shih et  al. 2008; Tanaka et  al. 2008). However, 
anthocyanin production in different rice tissues was 
mainly determined by R2R3-MYB, bHLH regula-
tors, and the biosynthetic gene OsDFR (also known 
as Rd). For instance, OsC1 (R2R3-MYB), OsRb 
(bHLH), and OsDFR regulated anthocyanin biosyn-
thesis in leaves (Zheng et al. 2019). OsC1, OsKala4 
(bHLH, also known as OsB2), and OsDFR regulated 
anthocyanin biosynthesis in hulls (Sun et  al. 2018). 
While OsC1-OsPa (bHLH)-OsDFR and OsC1-OsPs 
(bHLH)-OsDFR regulated anthocyanin accumula-
tion in apiculi and stigmas, respectively (Meng et al. 
2021). Moreover, OrC1, a novel allele of OsC1 from 
O. rufipongon, was reported to have different tissue-
specificities in different rice subspecies, i.e., OrC1 
promotes anthocyanin accumulation in apiculi, leaf 
sheathes, and stigmas in indica rice, but only in 
apiculi in japonica rice (Qiao et  al. 2021). Oikawa 
et  al. (2015) demonstrated that the gain-of-function 
mutation of a rice bHLH gene OsKala4 activated 
the expression of anthocyanin biosynthetic genes in 
pericarps and caused the anthocyanin accumulation 
in pericarps. Recently, OsPAC1, a WDR that partici-
pated in activating anthocyanin biosynthetic genes in 
rice leaves (Zheng et al. 2019), was proved to be cru-
cial for anthocyanin biosynthesis in pericarps as well 
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(Yang et  al. 2021). However, the R2R3-MYB com-
ponent regulating anthocyanin biosynthesis in rice 
pericarps remained uncharacterized. Although OsC1 
widely regulates anthocyanin biosynthesis in multiple 
rice tissues as described above, it is not the R2R3-
MYB regulator for anthocyanin biosynthesis in rice 
pericarps. It was because that the expression of OsC1 
was essentially absent in rice pericarps (Zheng et al. 
2019).

Rice contains approximately 230 MYB genes 
(Feller et al. 2011). To identify the R2R3-MYB regu-
lator for anthocyanin biosynthesis in rice pericarps, 
in this study, we examined the expression correlation 
between all rice MYB genes and anthocyanin biosyn-
thesis–related genes to select putative MYB candi-
dates based on transcriptome data of pericarps from 
27 black rice accessions. We finally determined the 
R2R3-MYB regulator for anthocyanin biosynthesis in 
rice pericarps through further molecular and genetic 
analysis of the selected MYB candidate genes.

Materials and methods

Plant materials

A total of 27 black rice accessions were collected in 
China and used for transcriptome analysis (Supple-
mentary Table 1).

Rice pericarp sampling and RNA extraction

The black rice materials were grown in the field. 
The rice grains of 27 black rice accessions were har-
vested at 8 days after pollination (DAP) and placed 
into liquid nitrogen immediately. All grain samples 
of 8 DAP were transferred in the liquid nitrogen to 
the laboratory and were stored at – 80  °C before 
RNA extraction.

In the laboratory, rice grains of 8 DAP were first 
dulled using the forceps, and immature embryos 
were removed from the immature seeds by a scalpel. 
Then, the endosperms were subsequently squeezed 
out, and the remaining pericarps were place liquid 
nitrogen. The RNA extraction followed the proce-
dure as described by Yang et al (2006).

Transcriptome analysis

Transcriptome data of leaves from 268 rice acces-
sions, transcriptome data of young spikes from 265 
rice accessions, transcriptome data of 8 DAP peri-
carps from 145 rice accessions, and transcriptome 
data of 8 DAP endosperms from 60 rice accessions, 
which were all sequenced previously by our labora-
tory, were used to profile the expression of OsMYB3.

RNA samples were sent to Novogene Corpora-
tion (Beijing, China) for RNA sequencing. Refer-
ence genome and gene model annotation files were 
obtained from MSU Rice Genome Annotation Project 
Release 7 (http://​rice.​plant​biolo​gy.​msu.​edu). HISAT2 
v.2.1.0 (http://​ccb.​jhu.​edu/​softw​are/​hisat2/ index.
shtml) was used for mapping clean reads to the refer-
ence genome, and fragments per kb of transcript per 
million fragments mapped (FPKMs) of known genes 
were calculated by CUFFLINKS v.2.2.1 (http://​cole-​
trapn​ell-​lab.​github.​io/​cuffl​inks/) from the reference 
annotation file. The FPKM values were scaled to 0–1, 
a heatmap was illustrated using R/pheatmap, and the 
correlation coefficient matrices were generated and 
displayed using R/corrgram.

qRT‑PCR

Two micrograms of total RNA for each sample was 
treated with RNA-free DNase I (Promega). Reverse 
transcription was performed using M-MLV Reverse 
Transcriptase (Invitrogen). Real-time PCR was con-
ducted on a ViiA7 Real-time PCR system (Applied 
Biosystems, Foster City, CA, USA) using FastStart 
Universal SYBR Green Master (ROX) (Roche) as 
described by Zheng et al. (2019). The ubiquitin gene 
was used as the reference, and each sample was 
assessed in triplicate of technical replications. All 
primers used are listed in Supplementary Table 3.

Phylogenetic analysis

The amino acid sequences of known maize and 
Arabidopsis MYBs involved in anthocyanin or proan-
thocyanidin biosynthesis were obtained from Phy-
tozome (https://​phyto​zome.​jgi.​doe.​gov/​pz/​portal.​
html#). The amino acid sequences of 233 putative 
MYB TFs of rice (Feller et al. 2011) were extracted 
from RGAP 7 (http://​rice.​plant​biolo​gy.​msu.​edu/​

Mol Breeding (2021) 41: 51 Page 3 of 15    51

http://rice.plantbiology.msu.edu
http://ccb.jhu.edu/software/hisat2/
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
https://phytozome.jgi.doe.gov/pz/portal.html#
https://phytozome.jgi.doe.gov/pz/portal.html#
http://rice.plantbiology.msu.edu/index.shtml


1 3

index.​shtml). The amino acid sequences were aligned 
using the website tool CLUSTALOMEGA (https://​
www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/). Phylogenetic 
trees were constructed by a comprehensive molecu-
lar biology analysis tool suite, GENEIOUS (https://​
www.​genei​ous.​com/).

Anthocyanin content measurement

Anthocyanin extraction and content analysis followed 
the protocol described by Zhu et  al. (2010). The 
anthocyanin content was determined by high perfor-
mance liquid chromatography (HPLC) using an Agi-
lent 1260 series system (Agilent Technologies, Palo 
Alto, CA, USA).

Overexpression and knockout of OsMYB3 in 
transgenic rice

The full-length cDNA of OsMYB3 (LOC_
Os03g29614) was isolated from a black rice vari-
ety Zixiangnuo1 (Oryza sativa ssp. japonica) and 
inserted into pCAMBIA1300 under the control of 
the maize ubiquitin promoter and NOS terminator to 
form the overexpression vector. The CRISPR/Cas9-
based genome editing method was used to generate 
OsMYB3 knockout lines. OsMYB3 was inserted in an 
sgRNA-Cas9 expression vector as described by Ma 
et al. (2015). The overexpression vector of OsMYB3 
was introduced into Zixiangnuo1 and Chao 2–10 (a 
white rice variety), while the knockout vector was 
introduced into Zixiangnuo1. Agrobacterium-medi-
ated rice transformation followed the protocol as 
described by Lin et al. (2002).

Yeast two‑hybrid (Y2H)

Yeast AH109 cells were co-transformed with spe-
cific bait and prey constructs through the LiCl-PEG 
method according to the manufacturer’s manual 
(Clontech, Palo Alto, CA, USA). The transformants 
were selected on SD/-Leu/-Trp + X-α-gal medium. 
Interactions were tested on SD/-Leu/-Trp/-His/-
Ade + X-α-gal medium.

Transcriptional activity assay using rice protoplasts

The cDNAs of OsMYB3, OsKala4, and OsPAC1 
genes were isolated from Zixiangnuo1 and inserted 

into the “None” vector as effectors. Approximately 
2-kb promoter regions of the OsCHS, OsCHI, 
OsF3′H, OsF3H, OsDFR, and OsANS1 genes were 
isolated from Zixiangnuo1 and inserted into the 
“190fLUC” vector to drive firefly luciferase (fLUC) 
as reporters. The internal control vector contains 
renilla luciferase (rLUC) driven by the ubiquitin pro-
moter of Arabidopsis. Isolation of rice protoplasts and 
dual luciferase transcriptional activity assays were 
performed as described previously (Zong et al. 2016).

Luciferase activity was measured using the Dual-
Luciferase® Reporter Assay System (Promega). 
Three independent transformations and measure-
ments for each sample were performed.

Haplotype analysis

Nucleotide polymorphism information of OsMYB3 
of 533 rice accessions was downloaded from Rice-
VarMap (http://​ricev​armap.​ncpgr.​cn/) (Zhao et  al. 
2015). All SNPs and InDels with minor allele fre-
quency (MAF) ≥ 0.05 in coding regions of OsMYB3 
were used for haplotype analysis by DnaSP v.6.12.03 
(http://​www.​ub.​edu/​dnasp/), and the haplotype net-
work was drawn by haplotype viewer (http://​www.​
cibiv.​at/​~greg/​haplo​viewer).

Metabolomic profiling by LC–MS/MS

Whole-grain samples of OsMYB3 knockout lines and 
the original Zixiangnuo1, with three biological rep-
licates for each, were sent to Wuhan MetWare Bio-
technology Co., Ltd. (www.​metwa​re.​cn) for a flavo-
noid metabolite analysis. In brief, the freeze-dried 
sample was ground in a mixer mill with a zirconia 
bead for 1.5 min at 30 Hz, and 100 mg of this powder 
was extracted with 1  mL of 70% aqueous methanol 
at 4  °C overnight. During this time, the extract was 
vortexed three times to increase extraction rate. After 
centrifugation at 10,000 × g for 10  min, the extracts 
were absorbed (CNWBOND Carbon-GCB SPE Car-
tridge, 250  mg, 3  mL; ANPEL, Shanghai, China) 
and filtered (SCAA-104, 0.22 μm pore size; ANPEL) 
before LC–MS/MS analysis.

The treated extracts were analyzed using an 
LC–ESI–MS/MS system (HPLC, Shim-pack UFLC 
CBM30A, Shimadzu, Kyoto, Japan; MS, 6500 
QTRAP, Applied Biosystems, Norwalk, USA). The 
analytical conditions were as follows, HPLC: column, 
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Waters ACQUITY UPLC HSS T3 C18 (1.8  μm, 
2.1  mm * 100  mm); solvent system, water (0.04% 
acetic acid): acetonitrile (0.04% acetic acid); gradient 
program, 100:0 V/V at 0 min, 5:95 V/V at 11.0 min, 
5:95  V/V at 12.0  min, 95:5  V/V at 12.1  min, 
95:5 V/V at 15.0 min; flow rate, 0.40 mL/min; tem-
perature, 40 °C; injection volume: 2 μL. The MS was 
operated in positive and negative ion modes. The 
ESI source operation parameters were as follows: ion 
source, turbo spray; source temperature 500  °C; ion 
spray voltage (IS) 5500 V; ion source gas I (GSI), gas 
II(GSII), curtain gas (CUR) were set at 55, 60, and 
25.0 psi, respectively; the collision gas (CAD) was 
high. Metabolite quantification was performed using 
a multiple reaction monitoring method (MRM). De-
clustering potential (DP) and collision energy (CE) 
for individual MRM transitions were done with fur-
ther DP and CE optimization. A specific set of MRM 
transitions was monitored for each period according 
to the metabolites eluted within this period. Data 
were processed using Analyst 1.6.3 software.

Statistical analysis

ANOVA and Tukey’s honest significant difference test 
were performed using R/multcomp. For metabolomic 
profiling, all identified metabolites were subjected to 
orthogonal partial least squares discriminant analy-
sis (OPLS-DA), and those with variable importance 
in project (VIP) ≥ 1 and fold change (FC) ≥ 2 or ≤ 0.5 
were regarded as significantly differential metabolites.

Association study between the genomic 
polymorphisms of OsMYB3 and rice pericarp 
phenotype

For association study, we integrated the core collec-
tion of 533 rice accessions with 45 additional black 
rice accessions that we collected somewhere else and 
25 black rice accessions from the 3 k genome project 
(Wang et al. 2018), because there are only six black 
rice accessions in the core collection. Only the SNP 
sites appearing on the panel are used to complete gen-
otyping using the samtools (v1.8), and then use the 
beagle software to construct a reference panel and the 
imputation of the genotyping results. Nucleotide poly-
morphism information of OsMYB3 of 533 rice acces-
sions was downloaded from RiceVarMap. Genomes 
of 45 black rice accessions were re-sequenced 

previously by our laboratory. Nucleotide polymor-
phism information of OsMYB3 of 25 black rice acces-
sions from the 3  k genome project was downloaded 
from IRRI (http://​iric.​irri.​org/​resou​rces/​3000-​genom​
es-​proje​ct) (Wang et al. 2018). Association study was 
performed following the logistic regression method 
using PLINK v.1.90b3.40 (http://​www.​cog-​genom​ics.​
org/​plink/1.​9/​gener​al_​usa ge#cite). The significance 
thresholds were determined following a modified 
Bonferroni correction a* = a / Me.

Results

Transcriptome analysis revealed the putative MYB 
component for anthocyanin biosynthesis in the 
pericarps

We sequenced the transcriptomes of pericarps from 
27 black rice accessions (Supplementary Table  1), 
which was classified by the phylogenetic analysis into 
two clades, corresponding to two main rice subspe-
cies indica and japonica (Supplementary Fig. 1). The 
expression correlation between all 233 putative rice 
MYB genes and the flavonoid biosynthesis-related 
genes including OsCHS, OsCHI, OsF3’H, OsF3H, 
OsF3H2, OsDFR, OsANS1, OsANS2, OsUFGT, 
anthocyanidin reductase (OsANR), leucoantho-
cyanidin reductase (OsLAR), OsFLS, OsKala4, 
and OsPAC1 (Supplementary Fig.  2) was analyzed 
according to the transcriptome data (Supplemen-
tary Table  2). The result showed that four MYB 
genes (LOC_Os01g49160, LOC_Os01g63460, 
LOC_Os03g29614, and LOC_Os12g07640) out of 
all 233 putative rice MYB genes had a highly posi-
tive expression correlation with the anthocyanin bio-
synthetic genes OsCHS, OsCHI, OsF3’H, OsF3H, 
OsDFR, OsANS1, OsANS2, and OsUFGT, but low or 
no expression correlation with the biosynthetic genes 
of other flavonoid branches like OsANR, OsLAR, 
OsFLS, and OsF3H2 (Supplementary Fig. 2).

The phylogenetic analysis of the four MYB candi-
dates (LOC_Os01g49160, LOC_Os01g63460, LOC_
Os03g29614, and LOC_Os12g07640) and 28 known 
MYBs showed that LOC_Os03g29614 along with 
AtTT2 (Arabidopsis), ZmC1 (maize), ZmPl (maize), 
and OsC1 (rice) were grouped into the clade of SG5 
that was related to anthocyanin or proanthocyanidin 
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biosynthesis (Fig. 1a). In addition, the dual-luciferase 
transient transcriptional activity assay using rice pro-
toplasts showed that LOC_Os03g29614 could activate 
the promoters of the two anthocyanin biosynthetic 

genes OsCHS and OsDFR effectively when co-
expressed with OsKala4, the known bHLH component 
for anthocyanin biosynthesis in rice pericarps, but the 
other three MYB candidates (LOC_Os01g49160, 

Fig. 1   Characterization of the four MYB candidates for antho-
cyanin biosynthesis in the pericarp of black rice. a Phyloge-
netic analysis of the four MYB candidates and other known 
R2R3-MYBs. b The activation effects of the four MYBs on the 

anthocyanin biosynthetic genes OsCHS and OsDFR using a 
dual-luciferase transient transcriptional activity assay when co-
expressed with OsKala4. Error bars in represent the SD
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LOC_Os01g63460, and LOC_Os12g07640) did not 
(Fig. 1b). Therefore, LOC_Os03g29614 was selected 
as the putative MYB component of the MBW com-
plex activating the anthocyanin biosynthesis in the 
pericarps of black rice.

Functional characterization of LOC_Os03g29614

LOC_Os03g29614 was designated as to OsMYB3 
as it was located in chromosome 3 of rice. OsMYB3 
was predicted to contain a 966-bp open reading frame 
(ORF) encoding a protein product of 321 amino 
acids (aa). The aa sequence alignment of OsMYB3 
and four known R2R3-MYBs involved in anthocya-
nin or proanthocyanidin biosynthesis showed that all 
of these R2R3-MYBs were highly conserved at the 
R2R3 domain located on N-terminus, but variable on 
the C-terminus (Supplementary Fig. 3a).

We further investigated the expression pro-
files of OsMYB3 based on the transcriptome data of 
four different tissues (leave, spikes, pericarps, and 
endosperms). The result showed that OsMYB3 pre-
dominantly expressed in the pericarps. OsMYB3 had no 
or extremely low expression level in the leaves, spikes, 
and endosperms, but comparatively high expression 
in pericarps (Supplementary Fig.  3b). The expression 
level of OsMYB3 in the pericarps differed significantly 
among black rice, white rice, and red rice, although it 
expressed in the pericarps of all the three rice types. 
The expression level of OsMYB3 in the pericarps of 
black rice was significantly higher than that of white 
rice, but was not significantly different from that of red 
rice (Supplementary Fig. 3c). Moreover, the expression 
level of OsMYB3 in the pericarps did not show sig-
nificant difference among the different rice subspecies 
indica, japonica, and aus (Supplementary Fig. 3d).

As known, R2R3-MYBs of SG5 participate in 
activating anthocyanin or proanthocyanidin biosyn-
thesis via interacting with bHLH and WDR pro-
teins to form the MBW complexes. The Y2H assay 
proved that OsMYB3 interacted directly with any of 
the bHLHs OsRb, OsB1, and OsKala4 and the WDR 
OsPAC1 (Fig.  2a), indicating that OsMYB3 should 
function as a component of a MBW complex like 
other anthocyanin biosynthesis-activating R2R3-
MYBs of SG5. A dual-luciferase transient transcrip-
tional activity assay using rice protoplasts showed 
that none of OsMYB3, OsKala4, or OsPAC1 could 
activate the anthocyanin biosynthetic genes (OsCHS, 

OsCHI, OsF3′H, OsF3H, OsDFR, and OsANS1) 
alone (Fig. 2b). While co-transformation of OsMYB3 
and OsKala4 (i.e., OsMYB3 + OsKala4) effectively 
activated these anthocyanin biosynthetic genes, and 
OsMYB3 + OsKala4 + OsPAC1 further improved the 
activation effect compared with OsMYB3 + OsKala4 
(Fig.  2b). These results confirmed that the activation 
effect of OsMYB3 on anthocyanin biosynthesis relied 
on the formation of MBW complex.

OsMYB3 is the responsible R2R3‑MYB for 
anthocyanin biosynthesis in rice pericarps

OsMYB3 was knocked out in a black rice cultivar Zixi-
angnuo1 by using the CRISPR/Cas9 system to vali-
date its function. Three independent knockout lines 
of OsMYB3 (namely KO-5, KO-8, and KO-10) were 
generated with the target site located in the first exon 
encoding the R2 MYB domain (Fig. 3). KO-10 had a 
2-bp deletion and KO-5 and KO-8 had a 1-bp insertion 
in the first exon of OsMYB3, respectively (Fig. 3a), all 
of which caused a frame-shift mutation. In contrast to 
the wild-type (WT) Zixiangnuo1 that showed dark black 
grains, the three OsMYB3-knockout lines appeared light 
brown grains (Fig. 3b). The HPLC analysis showed that 
Zixiangnuo1 accumulated 997.1 μg/g cyanidin 3O-glu-
cosid (C3G) and 151.7  μg/g peonidin 3O-glucoside 
(P3G) in grains, while the anthocyanins in grains of the 
three knockout lines were all undetectable (Fig. 3c).

OsMYB3 was then overexpressed in Zixiangnuo1 
and a white rice cultivar Chao2-10 driven by the maize 
ubiquitin promoter. Three independent OsMYB3-
overexpressing lines of Zixiangnuo1 (OE-Z3, OE-Z4, 
and OE-Z5) and Chao 2–10 (OE-C3, OE-C6, and 
OE-C9) were acquired. The anthocyanin content in 
grains of OE-Z3, OE-Z4, and OE-Z5 was 1274.2 μg/g 
(P = 0.0040), 1211.4 μg/g (P = 0.0023), and 1117.9 μg/g 
(P = 0.0205), which were all significantly higher than 
that of the WT Zixiangnuo1 (993.1 μg/g: Fig. 3d and e), 
while OE-C3, OE-C6, OE-C9, and the WT Chao2-10 
did not show anthocyanin pigmentation in grains. Taken 
together, OsMYB3 is the responsible R2R3-MYB for 
anthocyanin biosynthesis in the pericarps of black rice.

Overexpression of OsMYB3 complemented the 
function of OsC1 in leaves

The previous study demonstrated that OsC1 was 
the determinant R2R3-MYB for anthocyanin 
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biosynthesis in rice leaves, and non-functional alleles 
of OsC1 caused complete anthocyanin absence in rice 
leaves (Zheng et  al. 2019). The leaves of Zixiang-
nuo1 and Chao2-10 were non-anthocyanin-pigmented 

because both cultivars contained the non-functional 
Osc1 allele with 10-bp deletion in exon 3 that was the 
most frequent null mutation of Osc1 alleles. However, 
leaves of all three OsMYB3-overexpressing lines of 

Fig. 2   Characterization of the regulatory role of OsMYB3 
in anthocyanin biosynthesis. a Yeast two-hybrid assay of 
OsMYB3 and known bHLH or WDR partners in rice OsKala4, 
OsB1, OsRb, and OsPAC1. b The activation effects of 

OsMYB3 + OsKala4 + OsPAC1 complex on the anthocyanin 
biosynthetic genes OsCHS, OsCHI, OsF3’H, OsF3H, OsDFR, 
and OsANS1, respectively, using dual-luciferase transient tran-
scriptional activity. Error bars represent the SD
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Zixiangnuo1 OE-Z3, OE-Z4, and OE-Z5 accumu-
lated 325.6 μg/g, 118.4, and 15.8 μg/g anthocyanins 
respectively, in contrast to undetectable anthocya-
nin in leaves the WT Zixiangnuo1 (Fig.  4a and b). 
Similarly, leaves in OsMYB3-overexpressing lines of 
Chao2-10 OE-C3, OE-C6, and OE-C9 accumulated 
58.9  μg/g, 247.3  μg/g, and 79.0  μg/g anthocyanins, 
respectively, but leaves of the WT Chao2-10 did not 
(Supplementary Fig.  4a and b). In addition, OE-C3, 
OE-C6, and OE-C9 exhibited purple apiculus with 
anthocyanin accumulation, but the WT Chao2-10 did 
not (Supplementary Fig. 4c).

qRT-PCR analysis showed that in leaves of OE-Z3, 
OE-Z4, and OE-Z5, the expression level of OsMYB3 
and LBGs (OsF3H, OsDFR, OsANS, and OsUFGT) 
were significantly upregulated compared with the 
WT control, whereas the expression level of EBGs 
(OsCHS, OsCHI, and OsF3′H) together with several 
regulator genes OsKala4 and OsPAC1 remained unaf-
fected (Fig.  4c–l). In leaves of OE-C3, OE-C6, and 
OE-C9, OsMYB3 and six anthocyanin biosynthetic 
genes (OsCHS, OsF3’H, OsF3H, OsDFR, OsANS, 
and OsUFGT) were significantly upregulated, while 
the expression of OsKala4 and OsPAC1 remained 

Fig. 3   Knockout and overexpression of OsMYB3 in the black 
rice cultivar Zixiangnuo1. a Sequencing for the CRISPR/Cas9-
targeted sites close to the 5′end of OsMYB3 knockout plantlet 
lines. b Grain color of the wild type Zixiangnuo1 and three 
knockout lines of OsMYB3. c Anthocyanin content in grains 
of Zixiangnuo1 and OsMYB3 knockout transgenic lines. KO-5, 
KO-8, and KO-10 were three independent knockout lines 
of OsMYB3. d Grain color of the wild type Zixiangnuo1 and 

three OsMYB3-overexpressed transgenic lines. e Anthocyanin 
content in grains of Zixiangnuo1 and OsMYB3-overexpressed 
transgenic lines. The asterisk (*) and double asterisk (**) indi-
cate significant differences as compared to Zixiangnuo1 at 
P < 0.05 and P < 0.01, respectively. OE-Z3, OE-Z4, and OE-Z5 
were three independent overexpression lines of OsMYB3. Error 
bars represent the standard deviation in c and e 

Mol Breeding (2021) 41: 51 Page 9 of 15    51



1 3

unaffected (Supplementary Fig.  4d-m). Overexpres-
sion of OsMYB3 activated more anthocyanin biosyn-
thetic genes in leaves of Chao2-10 compared with the 
case in Zixiangnuo1, indicating that the activation 
effect of OsMYB3 on anthocyanin biosynthetic genes 
in rice leaves might vary among different genetic 
backgrounds. These results demonstrated that over-
expression of OsMYB3 was able to complement the 
function of OsC1 in rice leaves.

Haplotype analysis of OsMYB3

Li et  al. (2020) demonstrated that OsMYB3 is also 
the responsible gene of a minor quantitative trait 
locus small grain 3 (SG3), which negatively regulates 
grain length in rice. Moreover, a 12-bp insertion in 
exon 3 of OsMYB3 was the functional mutation that 
was significantly associated with grain length in the 
indica subpopulation. OsMYB3 alleles with the 12-bp 
insertion were regarded as non-functional ones (i.e., 

Fig. 4   Overexpression of OsMYB3 in black rice cultivar Zixi-
angnuo1. a Anthocyanin content in leaves of Zixiangnuo1 and 
OsMYB3-overexpressed transgenic lines. b Comparison of 
leaves between Zixiangnuo1 and OE-Z3. c–i Relative expres-
sion level of anthocyanin biosynthetic genes in leaves of Zixi-

angnuo1 and OsMYB3-overexpressed transgenic lines. j–l 
Relative expression level of transcriptional regulatory genes in 
leaves of Zixiangnuo1 and OsMYB3-overexpressed transgenic 
lines. Error bars represent the standard deviation
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sg3), because the insertion mutation caused a substi-
tution of 7 continuous amino acid (aa) residues due to 
a frame shift followed by a loss of 20 aa residues at 
the C-terminus of the protein product due to a prema-
ture stop codon compared with the alleles without the 
insertion (Li et al. 2020).

To investigate whether the 12-bp insertion was 
also associated with the function of OsMYB3 in regu-
lating anthocyanin biosynthesis in the pericarps, we 
analyzed the genomic sequences of OsMYB3 from 
533 rice accessions. According to the variation in the 
coding sequence region, a total of 26 haplotypes (H1 
to H26) of OsMYB3 were identified, and 4 haplotypes 
(H2, H3, H6, and H20) representing 312 rice acces-
sions contained the 12-bp insertion (Fig.  5a and b). 
It was worth noticing that H3 that contains the 12-bp 
insertion presents in all the five rice subpopulations 
indica, japonica, intermidiate, aus, and aromatic. 
This indicated that H3 was likely the ancestral hap-
lotype, and those ones without the 12-bp insertion 
should be the mutants.

We noticed that the expression level of OsMYB3 in 
the pericarps differs significantly between black rice 
and white rice (Supplementary Fig.  3c). A correla-
tion analysis between the genomic polymorphisms of 
OsMYB3 (including promoter and terminator regions) 
and its expression level in pericarps was conducted. 
However, none of the genomic variations in OsMYB3 
were found to be significantly correlated with its 
expression (Supplementary Fig.  5a). Furthermore, 
an association study between the genomic polymor-
phisms of OsMYB3 and rice pericarp phenotype also 
did not identify significantly correlated locus (Sup-
plementary Fig. 5b).

Identification of differential metabolites associated 
with anthocyanin biosynthesis

To further investigate the affection of OsMYB3 
expression on metabolites associated with anthocya-
nin biosynthesis, the LC–MS/MS analysis was used 
to profile the metabolites especially anthocyanins 
and flavonoids in grains of OsMYB3 knockout lines 
and the original Zixiangnuo1. The principal compo-
nent analysis (PCA) of identified metabolites showed 
that three biological replicates of OsMYB3 knockout 
lines and Zixiangnuo1 were classified into two dif-
ferent groups (Supplementary Fig.  6a). A total of 
205 metabolites were identified with 81 differentially 

accumulated metabolites (DAMs). Among the 81 
DAMs, 75 were downregulated in OsMYB3 knock-
out lines compared with Zixiangnuo1, while 6 were 
upregulated (Supplementary Fig. 6b). KEGG enrich-
ment showed that DAMs in anthocyanin biosynthesis 
pathway exhibited the highest rich factor and signifi-
cance (Supplementary Fig. 6c).

In the anthocyanin biosynthesis pathway, a total 
of 20 DAMs were detected and normalized. Among 
them, 12 anthocyanin DAMs were completely unde-
tected in OsMYB3 knockout lines, and 7 anthocya-
nin DAMs were markedly downregulated. Only one 
anthocyanin metabolite in OsMYB3-knockout lines 
was upregulated (Supplementary Fig.  7). These 
results indicated that the function of OsMYB3 has a 
wide impact on the accumulation of anthocyanin and 
flavonoid-related metabolites.

Discussion

By far, the bHLH (OsKala4) and WDR (OsPAC1 or 
OsTTG1) components regulating anthocyanin bio-
synthesis in rice pericarps have been characterized 
successively (Oikawa et al. 2015; Yang et  al. 2021). 
In this study, we determined OsMYB3 as the R2R3-
MYB regulator for anthocyanin biosynthesis in rice 
pericarps. OsMYB3 fell into the region of the rice 
genomic locus Kala3, which was previously demon-
strated to control the black grain trait together with 
the loci Kala1 (OsDFR) and Kala4 according to the 
phenotypic observation in near isogenic lines (Maeda 
et  al. 2014). However, the functions of OsMYB3 
gene in anthocyanin biosynthesis had not been well 
characterized yet. The previous research showed 
that the mutated OsKala4, which caused the origi-
nation of black rice, expressed in both pericarps and 
leaves (Zheng et  al. 2019), while OsPAC1 was also 
confirmed to participate in the activation of antho-
cyanin biosynthesis in both rice leaves and pericarps 
(Yang et  al. 2021; Zheng et  al. 2019). These results 
indicated that neither OsKala4 nor OsPAC1 is the 
pericarp-specific regulators for anthocyanin biosyn-
thesis of black rice. Our results showed that among 
four different tissues leaves, spikes, pericarps, and 
endosperms, OsMYB3 expressed predominantly in 
pericarps. Therefore, OsMYB3 is the pericarp-specific 
regulator for anthocyanin biosynthesis in black rice. 
Because black rice was originated from the function 
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Fig. 5   Haplotype analysis of OsMYB3. a Haplotype network of OsMYB3. b Sequence polymorphism of different haplotypes of 
OsMYB3 
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acquired mutation of OsKala4, the original function 
of OsMYB3 in pericarps should not be associated 
with anthocyanin biosynthesis. A recent study dem-
onstrated that OsMYB3 was also negatively regulating 
grain length (Li et al. 2020), which is consistent with 
our inference that OsMYB3 had other function in 
pericarps besides activating anthocyanin biosynthe-
sis as a partner of OsKala4 and OsPAC1. Therefore, 
our study demonstrated an interesting paradigm how 
a pleiotropic gene evolves a novel function.

Our study showed that overexpression of OsMYB3 
significantly enhanced anthocyanin accumulation in 
grains of black rice. This indicated that the expression 
level of OsMYB3 might be associated with antho-
cyanin content in grains of black rice. Actually, tran-
scriptomic analysis showed significant differences in 
expression level between black rice and white rice. 
However, we did not identify DNA sequence vari-
ants associated with grain color or expression level 
of OsMYB3 in CDS or promoter region of OsMYB3. 
Probably, the difference in expression level of 
OsMYB3 between black rice and white rice might 
be associated with the expression level of certain 
upstream regulators. For instance, FaMYB10 was a 
key regulator of the anthocyanin synthesis pathway in 
strawberry, and the RAV transcription factor FaRAV1 
activated the FaMYB10 to promote the synthesis of 
anthocyanin (Medina-Puche et al. 2014; Zhang et al. 
2020). Moreover, knockout of OsMYB3 also caused 
significant downregulation of most flavonoid metabo-
lites besides anthocyanins in black rice, indicating 
that OsMYB3 also plays roles in activating other 
branches of the flavonoid pathway. Taken together, 
OsMYB3 is an important regulator determining nutri-
ents of rice, and characterization of OsMYB3 pro-
vides valuable implications to breed highly nutritious 
rice varieties.
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