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Introduction

Rapeseed (Brassica napus, AACC, 2n = 38) is 
derived from an interspecific cross between B. rape 
(AA, 2n = 20) and B. oleracea (CC, 2n = 18) (U N 
1935). As an important oil crop, rapeseed is widely 
grown in China, Europe, North America, and Aus-
tralia (Yang et  al. 2017, 2018; Shahid et  al. 2019), 
with the global seed production of 70 million tons per 
year (http://​www.​fao.​org/​faost​at/​en/#​data/​QC/​visua​
lize).

Seed yield per plant of rapeseed is determined by 
three components: pod number per plant (PN), seed 
number per pod (SNPP), and seed weight (SW), which 
are typical quantitative traits (Quijadaet al. 2006; Shi 
et  al. 2015). In comparison with PN, SNPP and SW 
have a relatively high heredity (Lu et al. 2017; Shi et al. 
2015). A slightly negative correlation was detected 
between SNPP and SW (Lu et al. 2011; Cai et al. 2014; 
Shi et  al. 2015; Zhu et  al. 2020), indicating a weak 
trade-off between SNPP and SW in rapeseed.

Abstract  Seed number per pod (SNPP) and seed 
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findings revealed both overlapping and independent 

Shuangshuang Xin and Hongli Dong contributed equally 
to this work

S. Xin · H. Dong · L. Yang · D. Huang · F. Zheng · 
Y. Cui · S. Wu · J. Liao · Y. He · H. Wan · Z. Liu · X. Li · 
W. Qian (*) 
College of Agronomy and Biotechnology, Southwest 
University, Chongqing 400715, China
e-mail: qianwei666@hotmail.com

W. Qian 
Engineering Research Center of South Upland Agriculture, 
Ministry of Education, Chongqing 400715, China

/ Published online: 17 June 2021

Mol Breeding (2021) 41: 41

http://orcid.org/0000-0003-4086-9870
http://www.fao.org/faostat/en/#data/QC/visualize
http://www.fao.org/faostat/en/#data/QC/visualize
http://crossmark.crossref.org/dialog/?doi=10.1007/s11032-021-01232-1&domain=pdf


	

1 3

More than 100 quantitative trait loci (QTL) were 
detected for SNPP (Zhang et al. 2006; Radoev et al. 
2008; Shi et  al. 2009; Basunanda et  al. 2010; Wang 
and Guan, 2010; Zhang et al. 2010; Chen et al. 2011; 
Zhang et  al. 2011; Ding et  al. 2012; Qi et  al. 2014; 
Cai et al. 2014; Shi et al. 2015; Li et al. 2015; Yang 
et al. 2016; Lu et al. 2017; Zhu et al., 2020) and for 
SW (Udall et  al. 2006; Shi et  al. 2009, 2011, 2019; 
Fan et al. 2010; Chen et al. 2011; Zhang et al. 2011; 
Ding et al. 2012; Yang et al. 2012; Li et al. 2014; Fu 
et al. 2015; Liu et al. 2015; Wang et al. 2016a; Luo 
et al. 2017; Dong et al. 2018). Those QTL were dis-
tributed in almost all chromosomes of rapeseed. 
However, the positions of those QTL were seldom 
compared due to the differences of research materials 
and marker systems used in those studies. Moreover, 
the segregated population was derived from the cross 
between two parents in the majority of those studies, 
which only harbored the variances from two parents.

With the rapid development of sequencing technol-
ogy, genome-wide association studies (GWAS) have 
been extensively used to dissect complex traits in 
crops. The releases of reference genomes of rapeseed 
and its two parental species, B. rapa and B. oleracea 
(Wang et  al. 2011; Chalhoub et  al. 2014; Liu et  al. 
2014; Sun et al. 2017; Bayer et al. 2017; Song et al. 
2020), have ensured possibility to conduct collinear-
ity analysis among QTL. In this study, we carried out 
whole-genome association analysis for SNPP and SW 
in a natural population of rapeseed, which composed 
of 157 varieties from three ecotype groups with dis-
tant diversity, and found 101 and 77 SNPs signifi-
cantly associated with SNPP and SW, which located 
in 65 and 49 haplotype blocks, respectively, of which 
five overlapping loci and three pairs of loci with col-
linearity controlled both SNPP and SW. Our findings 
revealed both overlapping and independent loci con-
trolling SNPP and SW, and provide the target loci 
for simultaneous improvement of SNPP and SW in 
rapeseed.

Materials and methods

Plant material and field experiment

A natural population of rapeseed comprising of 52 
spring inbred lines from North America, 54 winter 
inbred lines from Europe, and 51 semi-winter inbred 

lines from China (Table S1) was grown in Southwest 
University, China (Beibei, Chongqing), using a rand-
omized complete block design with two replications. 
Each plot consisted of 30 plants, with 30 cm between 
rows and 20 cm within rows spacing. The field man-
agement followed the standard agriculture practice.

Trait evaluation and statistical analysis

At maturity, fifty well-developed siliques in the mid-
dle of inflorescence were collected from five individ-
uals in the middle of each plot to investigate SNPP 
and SW across years (denoted as “trait-year”). SNPP 
was calculated as the average number of well-filled 
seeds per silique, and SW was the average weight of 
1000 seeds in three replicates in each plot.

The data of SNPP was collected across 4  years 
(2015, 2016, 2018, 2019). The investigation of SW 
was reported across 4 years (2013–1016) in the previ-
ous study (Dong et al. 2018) and was extended to the 
other 2 years (2018–2019). The 6 years’ data of SW 
was merged for the following analysis.

Analysis of variance (ANOVA) and correlation 
analysis of each environment were performed using 
SAS version 9.3 (SAS Institute Inc.). Analysis of var-
iance (ANOVA) was performed using SAS GLM pro-
cedure (Freund and Littell 1981); the Pearson’s cor-
relation coeffecients were calculated by SAS CORR 
procedure. The broad-sense heritability was calcu-
lated according to the following formula: h2 = σ2

G/
(σ2

G + σ2
GE/e + σ2

e/er), where σ2
G, σ2

GE, and σ2
e are 

the variations of genetic, the interaction of the gen-
otype by environment, and error, respectively. e and 
r are the numbers of environments and replications, 
respectively (Kowles 2001).

The best linear unbiased predictor (BLUP) value 
for each line was inferred across all years using the 
R package “LME4” by considering both the genotype 
and the environment as random effects (Lamprianou 
2013).

Genome‑wide association study

The genome of accessions in natural population 
was sequenced with a 5 × sequencing depth, pro-
ducing total of 690,953 SNPs in the previous study, 
where population structure (Q) and relative kinship 
(K) analysis of natural population were calculated 
(Dong et  al. 2018). Those SNPs were employed to 
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detect associated signals for SNPP and SW with a 
multi-locus random-SNP-effect mixed linear model 
(Q + K) by using an R software of mrMLM v4.0 and 
integrating six GWAS methods (Zhang et al., 2020) , 
including mrMLM, FASTmrMLM, FASTmrEMMA, 
pLARmEB, pKWmEB, and ISIS EM-BLASSO.

The GWAS threshold for significant SNPs was set 
to − log10(P) > 5.83 (P = 1 / total SNP) for the mod-
els of mrMLM, FASTmrMLM, FASTmrEMMA, and 
pKWmEB, and the Manhattan plots and Q-Q plots 
were displayed using the R package “qqman” (Turner 
2014). The GWAS threshold for significant SNPs was 
set to LOD > 3 for the models of pLARmEB and ISIS 
EM-BLASSO.

Co‑location and synteny analyses of significant loci

The square of the correlation coefficient (r2) calculat-
ing with the R package “LDheatmap” was employed 
to estimate linkage disequilibrium (LD) between 
SNPs (Shin et al. 2006). The haplotype blocks (HBs) 
were determined by the average of r2 > 0.6 between 
adjacently significant SNPs on same chromosome 
(Qian et al. 2016), or by extending 50 kb on each side 
of the significantly associated SNPs outside of the 
HBs (Raman et al. 2016). The associated regions with 
the overlapped HB intervals for SNPP and SW were 
defined as genetic co-location loci. A chromosome-
scale alignment of syntenic loci was performed using 
the large-scale genome synteny tool SYMAP version 
4.2 (Soderlund et al. 2011).

To identify candidate genes in the haplotype 
blocks for SNPP and SW, the homologs of known 
genes associated with the two traits were annotated 
to the Darmor-bzh reference genome of rapeseed by 
BLASTP analysis. The SNPs and candidate genes of 
interest were integrated on the Circos diagram using 

Perl (Krzywinski et al. 2009). Haplotype maps were 
drawn in GraphPad Prism 8.

Results

Phenotypic variation of seed number per pod and 
seed weight

The SNPP and SW were investigated in a natural 
population across 4  years (2015, 2016, 2018, 2019) 
and 2 years (2018, 2019), respectively. A normal dis-
tribution of SNPP and SW was observed in most of 
years by Shapiro–Wilk normality test (Table 1). Wide 
variances were found for SNPP ranging from 4.40 to 
31.63 seeds per silique, and for SW ranging from 1.82 
to 5.53  g per 1000 seeds, indicating that SNPP and 
SW exhibit typically quantitative trait characteriza-
tions (Table 1 and Fig. S1).

In order to gain more information, the 4-year’s 
data of SW previously collected (Dong et  al. 2018) 
was merged with the new data for the following anal-
ysis. ANOVA showed significant differences of geno-
type (G), environment (E), and interaction between 
genotype and environment (G × E) for both of SNPP 
and SW (Table S2). High broad-sense heritability was 
found for SNPP (0.854) and SW (0.922), in accord-
ance with the previous studies (Cai et  al. 2014; Lu 
et  al. 2017), indicating that both SNPP and SW are 
mainly controlled by genotype. A high or middle sig-
nificantly positive correlation was found for SNPP 
and SW across years (p < 0.001), but a slight correla-
tion was found between SNPP and SW (Table 2).

Genome‑wide association study

Genome-wide association analysis was carried out 
using the Q + K model with six methods to identify 

Table 1   Phenotypic 
analyses for seed number 
per pod and seed weight 
in a natural population of 
rapeseed across years
* Significance at P < 0.05. SNPP, 
seed number per pod; SW, seed 
weight; SD, standard deviation; 
CV, coefficient of variation; h2, 
broad-sense heritability

Trait Environment Range Mean ± SD CV (%) Shapiro–Wilk 
statistics (W)

h2

SNPP 2015 4.40–29.43 18.85 ± 5.84 31.00 0.977* 0.854
2016 6.39–24.43 15.09 ± 4.05 26.83 0.985
2018 4.44–30.73 18.72 ± 5.05 27.00 0.995
2019 9.50–31.63 22.34 ± 4.48 20.05 0.982

SW 2018 1.82–5.28 3.32 ± 0.66 20.00 0.988 0.922
2019 1.95–5.53 3.44 ± 0.70 20.00 0.989

Page 3 of 13    41Mol Breeding (2021) 41: 41



	

1 3

associated signals at whole-genome level. Manhattan 
plots and LOD score plots were shown in Fig. 1 using 
BLUP, and in supplementary Figure S2 and S3 using 
the data of each year for each trait. A total of 101 
and 77 significantly associated SNPs for SNPP and 
SW were detected across years and methods, respec-
tively (Table  S3; Fig.  S3), including 15 significant 
SNPs for SW detected in previous study (Dong et al. 
2018). These significant SNPs which were unevenly 
distributed on all of the chromosomes, explained 
1.35–29.47% and 0.78–34.58% of the phenotypic var-
iances for SNPP and SW, respectively (Table  3 and 
Fig. 2).

Among these significant SNPs, 48 and 15 signifi-
cantly associated SNPs were repeatedly detected for 
SNPP, and 37 and 9 SNPs were repeatedly detected for 
SW in different methods and years, respectively. Espe-
cially, 3 significantly associated SNPs (rs.A01.21808623, 
rs.A03.5434721, rs.C06.33564706) for SNPP and 
7 significantly associated SNPs (rs.A04.15831065, 
rs.A04.15918524, rs.A04.15980541, rs.A04.18313809, 
rs.A06.21357638, rs.C06.30246876, rs.C07.40291083) 
for SW could be detected simultaneously in both differ-
ent years and methods (Table S3).

In order to identify candidate genes, the homologs 
of known genes for SNPP and SW within the HB 
intervals were selected. In the LD analyses, 65 and 49 
HBs were associated with SNPP and SW. Of which, 
15 and 24 HBs for SNPP and SW were overlapped 
with the QTL previously detected, respectively 
(Table S4). It indicated that those overlapped loci had 
stable effects on SNPP and SW.
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Fig. 1   Manhattan plots and LOD score plots of genome-
wide association analysis for seed number per pod and seed 
weight. In the Manhattan plots, the x-axis indicates the physi-
cal positions of SNPs along each chromosome; the y-axis is 
the − log10P for the association; the horizontal dashed line indi-
cates the significant threshold (− log10P = 5.83); each method 
is displayed by different colors. In the LOD score plots, the 
vertical red lines indicate significant SNPs with LOD > 3. 
SNPP (SW)-BLUP-number: (1) mrMLM; (2) FASTmrMLM; 
(3) FASTmrEMMA; (4) pKWmEB; (5) pLARmEB; (6) ISIS 
EM-BLASSO
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Homologs related with SNPP and SW

SNPP and SW are two important yield-related traits, 
which have been extensively researched in plant. 
More than 490 and 790 genes related with SNPP 
and SW were reported in model plants (Ge et  al. 
2019; Qu et al. 2015; Li et al. 2019), but only a few 
genes, BnaC9.SMG7b for SNPP (Li et al. 2015) and 
BnARF18, BnaA9.CYP78A9, BnaUPL3, and BnDA1 
for SW (Liu et al. 2015; Shi et al. 2019; Miller et al. 
2019; Wang et  al. 2017a), were discovered in rape-
seed partially due to its complex genome. We specu-
lated that the homologs of those known genes from 
model plants may control SNPP and SW in rapeseed.

We aligned those known genes with the refer-
ence genome of rapeseed and found that 43 and 33 
homologs were located in the HBs for SNPP and 
SW, respectively (Fig. 2 and Table S4). Those genes 
were involved in the processes of gamete develop-
ment, double fertilization, and seed development. 
For example, BnaA05g27620D, BnaA06g33830D, 
and BnaC07g34400D are homologous to Arabidop-
sis AtMYB65, AtSPP, and AtRAB1A, which were 
involved in pollen development; BnaC05g17010D 
and BnaC05g18750D are homologous to AtEMB1968 
and AtINO, which were involved in ovule devel-
opment; BnaC01g40440D and BnaC08g16910D 

are homologous to AtEDA30 and AtRH36, which 
were involved in embryo sac development; 
BnaC01g40560D and BnaC08g35530D are homolo-
gous to AtUNE7 and AtEC1.3, which were involved 
in double fertilization; and BnaA06g04380D and 
BnaC05g06470D are homologous to AtAPX1 and 
AtPIAL1, which were involved in embryo devel-
opment (Yang et  al. 2016). BnaC01g00190D and 
BnaC09g07510D are homologous to AtBUPS1 and 
AtRALF34, which were required for pollen tube 
integrity (Ge et al. 2019) (Table S4). Those homologs 
of the known genes within HB intervals are important 
candidate genes for SNPP and SW in rapeseed, which 
might contribute to the differences on SNPP and SW 
in natural population of rapeseed.

Collinearity and genetic co‑location analyses of 
associated loci for SNPP and SW

There are wildly homologous fragments of chromo-
some between the A and C subgenomes of rapeseed 
(Chalhoub et  al. 2014), harboring possibly homolo-
gous QTL for SNPP and SW. We compared HB inter-
vals for SNPP and SW at the whole-genome level and 
found 2 sets of loci with collinearity for SNPP (one set 
of associated region: A03. 4,768,780–4,789,504  bp 
and C03. 6,403,467–6,441,508  bp and the other set 

Table 3   Summary of GWAS result for seed number per pod and seed weight in different environments

SNPP, seed number per pod; SW, seed weight; R2, phenotypic variance

Trait Environment Number of associ-
ated SNPs

Chromosome R2 (%)

SNPP
2015 11 A06/A07/C01/C03/C04/C06/C07 4.31–24.88
2016 33 A02/A03/A04/A06/A07/A09/A10/C01/C02/C03/C04/C05/

C06/C07/C08
1.36–25.47

2018 19 A01/A03/A05/A06/A07/C01/C02/C03/C05/C06 1.35–24.02
2019 29 A03/C03/C05/C06/C07/C08/C09 3.75–29.47
BLUP 26 A01/A03/A04/A05/A06/C02/C03/C06/C07/C08/C09 2.36–29.39
SW
2013 23 A04/A08/A09/C02/C03/C05/C06/C07 6.11–27.66
2014 9 A01/A04/A06/A07/A09/A10/C05 0.78–25.05
2015 7 A01/A02/A04/A06/C06/C07/C09 7.49–12.80
2016 11 A01/A02/A09/C01/C02/C03/C04/C05/C06/C07/C08 3.75–17.01
2018 13 A02/A04/A06/C02/C04/C05/C06/C08/C09 2..25–23.37
2019 6 A01/A02/A05/A06/C02/C09 4.12–22.22
BLUP 17 A01/A03/A04/A09/C06/C07 4.52–34.58
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of associated region: A03.5436489–5,484,721  bp 
and C03.7165828-7245967 bp), and 3 sets of 
loci with collinearity for SNPP and SW (harbor-
ing associated region A03. 5,414,635–5,472,966 
bp for SNPP vs C03. 7,105,825–7,205,825 bp 
for SW; A05. 1,054,698–1,076,186 bp for SNPP 
vs C04. 1,164,692–1,187,029 bp for SW; C06. 

4,084,407–4,184,407  bp for SNPP vs A06. 
1,743,417–1,779,766 bp for SW) (Table 4 and Fig. 2).

Genetic linkage and pleiotropy are common phe-
nomena in plant (Wagner and Zhang, 2011; Yang et al. 
2016). By screening possibly pleiotropic loci for SNPP 
and SW, we found 5 overlapping association regions for 
both SNPP and SW (A05. 9,622,605–9,700,016 bp, C03. 
7,165,828–7,205,825 bp, C05. 10,738,902–10,761,872 bp, 

Fig. 2   Concentric circles of genetic intervals for seed num-
ber per pod (SNPP) and seed weight (SW) in Brassica napus. 
(a) Chromosomes. (b) Significant association SNPs with SW 

(blue) and SNPP (red). (c, d) Candidate genes for SW (purple) 
and SNPP (green). (e) Collinear regions on A and C subge-
nomes for SW and SNPP
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C07. 40,241,083–40,340,965  bp, and C08. 
20,687,111–20,731,514 bp) (Table 4 and Fig. 2).

The genetic effect of haplotypes was calculated in 
those overlapping association regions for SNPP and 
SW in natural population. It was interesting that the 
same direction of genetic effect on SNPP and SW was 
found among haplotypes in those overlapping asso-
ciation regions, except an overlapping association 
region (C03. 7,167,118–7,173,145 bp) with opposite 
direction of genetic effect on SNPP and SW among 
haplotypes (Fig.  3). Those findings indicate pleio-
tropic effects on SNPP and SW in those overlapping 
association regions.

Discussion

Seed number per pod and seed weight are two impor-
tant components of seed yield per plant in rapeseed. 
In this study, a total of 101 and 77 significant SNPs 
for SNPP and SW located in 65 and 49 haplotype 
blocks, which were identified in the whole-genome 
level. Of which, five loci were overlapped for SNPP 
and SW, and three pairs of loci exhibited collinearity 

for SNPP and SW, indicating both overlapping and 
independent loci underlying SNPP and SW in rape-
seed. To the best of our knowledge, it is the first study 
to conduct a comparative QTL study on seed number 
per pod and seed weight in rapeseed. Our findings not 
only discovered target loci for improvement of SNPP 
and SW, but also showed high possibility to simul-
taneously improve SNPP and SW by manipulating 
those loci with the same direction of genetic effect.

A slight correlation between SNPP and SW was 
detected in this study, in accordance with the previ-
ous studies (Lu et al. 2011; Cai et al. 2014; Shi et al. 
2015; Zhu et al. 2020), indicating diverse regulation 
mechanisms for SNPP and SW. Seed number per 
pod is related with the processes of fertilization and 
seed development, such as the number of ovules per 
ovary, the proportion of fertile ovules, the proportion 
of ovules fertilized, and the proportion of fertilized 
ovules that develop into seeds (Yang et al. 2016; Shi 
et  al. 2015), while seed weight is regulated by the 
signals of maternal and zygotic tissues, involving the 
ubiquitin–proteasome pathway, G-protein signaling, 
mitogen-activated protein kinase (MAPK) signal-
ing, phytohormone perception and homeostasis, and 

Table 4   List of loci with genetic co-location and A/C subgenome collinearity for seed number per pod and seed weight

SNPP, seed number per pod; SW, seed weight; R2, phenotypic variance

Type Trait Associated SNP Associated regions (bp)  − log10(P) R2% Method Environment

Co-locating loci
1 SNPP rs.A05.9672605 A05.9622605–9,700,016 8.06 7.59 mrMLM 2018

SW rs.A05.9650016 8.22–8.47 17.36 FASTmrMLM, pLARmEB 2019
2 SNPP rs.C03.7215828 C03.7165828–7,205,825 6.04 8.44 mrMLM, FASTmrMLM 2018

SW rs.C03.7155825 8.00 7.80 pLARmEB 2016
3 SNPP rs.C05.10711872 C05.10738902–10,761,872 6.74–7.47 3.75 FASTmrMLM, pLARmEB 2019

SW rs.C05.10788902 8.22 4.54 pLARmEB 2016
4 SNPP rs.C07.40290965 C07.40241083–40,340,965 6.26 4.58 ISIS EM-BLASSO 2015

SW rs.C07.40291083 6.07–7.44 9.17–9.76 mrMLM, FASTmrMLM 2015, BLUP
5 SNPP rs.C08.20681514 C08.20687111–20,731,514 9.00 9.42 pLARmEB 2019

SW rs.C08.20737111 6.91 5.85 mrMLM, FASTmrMLM 2016
Loci with A and C subgenome collinearity
1 SNPP rs.A03.5434721 A03.5414635–5,472,966 6.07–12.08 8.14–19.26 mrMLM, FASTmrMLM, 

ISIS EM-BLASSO
2018, 2019

SW rs.C03.7155825 C03.7105825–7,205,825 8.00 7.80 pLARmEB 2016
2 SNPP rs.A05.1104698 A05.1054698–1,076,186 7.02 29.39 FASTmrMLM BLUP

SW rs.C04.1187404 C04.1164692–1,187,029 12.40 14.15 mrMLM, FASTmrMLM 2016
3 SNPP rs.C06.4134407 C06.4084407–4,184,407 6.31 3.00 mrMLM, FASTmrMLM 2018

SW rs.A06.1788078 A06.1743417–1,779,766 6.20–7.70 16.77 mrMLM, ISIS EM-BLASSO 2019
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some transcriptional regulators (Li et  al. 2019). The 
diverse regulation mechanisms for SNPP and SW 
were supported by the researches of carbon partition-
ing, which is vital for seed growth and development. 
The leaf photosynthesis acts on SNPP, while silique 

wall photosynthesis alone acts on the SW in Arabi-
dopsis (Zhu et  al. 2018). Silique photoassimilation 
was a major contributor to seed weight in rapeseed 
(Hua et al. 2012).

a b c

d e

Fig. 3   Genetic effects on seed number per pod and seed 
weight among haplotypes in overlapping association regions in 
a natural population of rapeseed. Linkage disequilibrium anal-
ysis and haplotype analysis of 5 associated regions (a–e). Top, 
the horizontal axis represents haplotypes and the vertical axis 
represents the phenotypic values of seed number per pod and 

seed weight. The red and blue dots represent the average per-
formance of SNPP and SW across years among 157 accessions 
in a natural population. ***,**, *: Significance at P < 0.001, 
P < 0.01, and P < 0.05, respectively. Bottom, pairwise LD esti-
mates in the different haplotype block
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However, the five overlapping loci and three loci 
with collinearity for SNPP and SW which were 
detected in this study, and the QTL of qSN.A6 with 
antagonistic pleiotropy on SNPP and SW which was 
detected in the previous study (Yang et  al. 2016), 
seemed to show that there were same regulators or 
pathways to control both SNPP and SW in rapeseed. 
Similar observations were documented in other spe-
cies. For example, the expression of AtMINI3 and 
AtIKU2, the two downstream genes of the SHB1-
MINI3-IKU2 cascade in endosperm proliferation 
and embryo development pathway, were particularly 
reduced by the overexpression of AtRAV1, result-
ing in reduced SNPP and SW in Arabidopsis (Shin 
and Nam 2018). AtPGI1 which participates in GA-
mediated reproductive development and storage 
reserve biosynthesis positively regulates Arabidopsis 
SNPP and SW (Bahaji et al. 2018). The loss of func-
tion of AtGRDP1 which is involved in abiotic stress 
response showed a diminished number of seeds per 
pod and a reduction of seed weight in Arabidopsis 
(Rodríguez-Hernández et  al. 2017). Downregula-
tion of OsOTUB1, which encodes a deubiquitinating 
enzyme to interact with the E2 ubiquitin-conjugating 
protein OsUBC13 and transcription factor OsSPL14 
(Wang et  al. 2017b), and overexpression of OsSGL, 
which regulates stress tolerance and cell growth 
(Wang et al. 2016b), can enhanced grain number and 
seed weight in rice. OsGSN1 encodes the mitogen-
activated protein kinase phosphatase OsMKP1, and 
the GSN1-MAPK module coordinates the trade-off 
between grain number and grain size by integrating 
localized cell differentiation and proliferation (Guo 
et  al. 2018). Overexpression of OsDEP1, which is 
involved in regulating the carbon–nitrogen metabolic 
balance, can decrease grain weight and increase grain 
number in rice (Zhao et al. 2019). OsSPL18 controls 
grain weight and grain number in the OsmiR156k-
OsSPL18-DEP1 pathway in rice (Yuan et al. 2019).

Taken together, our findings revealed both overlap-
ping and independent loci controlling SNPP and SW, 
and high possibility to simultaneously improve SNPP 
and SW by manipulating those loci with same direc-
tion of genetic effect in rapeseed.
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