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Abstract Soil salinity is widespread in rice-producing
arcas globally, restricting both vegetative growth and
grain yield. Improving salt tolerance of rice is a prom-
ising approach to meet the increasing food demand. An
extensive literature survey indicates that maintaining
proper Na*/K* ratio and reactive oxygen species
(ROS) content is the key issues for rice adaption to salt
stress. In this review, distinctive from the existing re-
views, we mainly discuss recent progresses in identify-
ing the components and pathways involved in the rice
response to salt stress and the approaches that can be
used for breeding and cultivating salt-tolerant rice,
pointing out the potential phytohormonal regulation of
the components and the homeostasis of Na*/K* and
ROS. Thus, this review attempts to provide a compre-
hensive overview of the recent research on rice adaption
to salt stress, which may provide guidance for rice
breeding to engineer better salt-tolerant rice varieties.
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Introduction

With the increase of world population, more foods are
needed to meet the demands. Due to the reduction of
cultivated land and lack of fresh water, it is encour-
aged to use saline-alkali land to make up for the
shortages. There are about 1 billion hectares of
saline-alkali land in the world. Effective use and im-
provement of saline-alkali land will make full use of
land resources. Rice (Oryza sativa L.) is an important
monocotyledonous crop and a primary food for more
than half of the world population. Its productivity is
critically affected by various abiotic stresses, such as
drought, salinity, cold, and heat (Almeida et al. 2016;
Zhu 2016). As one of the major constraints in rice
cultivation worldwide, salinity affects many aspects
of rice growth and development (Zeng et al. 2002;
Ganie et al. 2019). Thus, breeding and cultivating
salt-tolerant rice varieties have become one of the
most important approaches to increase grain yield
and ameliorate saline-alkali soil.

The sensitivity of rice to salinity stress greatly de-
pends on growth stages, organ types, and genotypes
(Khan et al. 1997; Nam et al. 2015). Generally, seedling
and reproductive stages of rice are considered to be the
salt-susceptible stages, it becomes tolerant to salinity
during active tillering and at maturity period. As the
primary target site for perception of salt stress, roots
are more susceptible to salt than other organs (Gupta
and Huang 2014; Nam et al. 2015). Salt tolerance of
indica rice is higher than japonica rice (Chen et al. 2004;
Hussain et al. 2019). Excess salts adversely affect all the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11032-020-1100-6&domain=pdf
https://orcid.org/0000-0001-9788-7290
https://orcid.org/0000-0002-3039-0850

47 Page2of 13

Mol Breeding (2020) 40: 47

metabolic activities in rice, leading to substantial reduc-
tion in growth and yield (Yang and Guo 2018a, b).

Salinity stress can induce osmotic and ionic stresses in
plants. Osmotic stress is rapidly sensed by the plants soon
after exposure to salinity conditions, leading to water and
solute deficit in plants. Ionic stress begins with the accu-
mulation of Na* and CI” in the plant cell, and eventually
resulting in premature leaf senescence (Munns and Tester
2008; Yang and Guo 2018a, b). Excess Na* in the cyto-
plasm interferes with K* function. K* is important for the
catalytic activities of enzymes in metabolic pathways (Fu
and Luan 1998). Thus, the maintenance of a low intracel-
lular Na*/K* ratio is important for plants to survive under
salinity stress (Shabala and Pottosin 2014; Munns et al.
2016). In addition to osmotic and ionic stresses, salinity
stress causes accumulation of reactive oxygen species
(ROS) in plant cells, which can severely damage cellular
structures and macromolecules such as enzymes, DNA,
and lipids (Wang et al. 2009; Genisel et al. 2015; Ahanger
et al. 2017).

In this review, we mainly focus on the phytohormonal
regulation of Na*/K* and ROS homeostasis associated
with salt tolerance in rice, with exploration of the problems
in the current research, for understanding the molecular
mechanism of salinity tolerance which may have implica-
tions for improvement of rice varieties.

Na*/K* homeostasis is associated with salt tolerance
in rice

Salt stress is commonly caused by high concentrations
of Na* and CI” in soil (Ismail et al. 2014). Excess Na*
competes with K* for uptake across the plasma mem-
branes of plant cells, which is important for the catalytic
activities of many enzymes (Fu and Luan 1998), even-
tually reducing plant growth and causing cellular injury
and even death. Thus maintaining cellular Na*/K* ho-
meostasis is a crucial factor determining the plant’s
survival ability during the response to salt stress (Yang
and Guo 2018a, b).

One primary response in maintaining cellular ion
homeostasis is by restricting the accumulation of toxic
sodium (Na*) (Tester and Davenport 2003). Salt Overly
Sensitive 1 (SOS1), which mediates Na*/H* exchange
at the plasma membrane and cellular Na* extrusion, is
responsible for salt stress signaling and Na* tolerance
(Martinez-Atienza et al. 2007; Ji et al. 2013). In
Arabidopsis, SOSI1 could function both in Na* loading
(under mild saline stress at 25 mM NaCl) and unloading
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(at high salinity, 100 mM NaCl) (Shi et al. 2000). In rice,
lower expression of OsSOS! in old leaves may decrease
frequency of retrieving Na* from old leaf cells (Wang
et al. 2012). Overexpression of OsSOS! in Arabidopsis
increases salt tolerance (Martinez-Atienza et al. 2007).
The high-affinity K* channel (HKT) family is well-
established plant Na* and Na*/K* transporters in con-
trolling Na* accumulation (Garciadeblas et al. 2003;
Platten et al. 2006; Horie et al. 2007; Almeida et al.
2013). In rice, the HKT gene family is divided into two
classes: class I comprises Na*-selective transporters,
including OsHKTI;1, OsHKTI;3, OsHKTI,;4, and
OsHKT1I,5, and class Il comprises transporters perme-
able to both Na* and K*, including OsHKT2;1,
OsHKT2;3, and OsHKT2;4 (Platten et al. 2006;
Hauser and Horie 2010). Mutation in OsHKT1;1 leads
to increased accumulation of Na* in the shoot and
hypersensitivity to salt stress (Wang et al. 2015;
Campbell et al. 2017). OsHKT1;4 plays an important
role in restricting Na* accumulation in aerial parts dur-
ing salinity stress at the reproductive growth stage
(Suzuki et al. 2016). OsHKT1;5 reduces the transport
of Na* to shoots and positively regulates salt tolerance
(Ren et al. 2005). The evidence by analyzing
transposon-insertion rice mutants disrupted in
OsHKT?2;1 indicates that OsHKT?2;1 is a central trans-
porter for nutritional Na* uptake into K*-starved rice
roots. But OsHKT2;1-mediated Na* influx does not
cause Na' toxicity, as its transcription is down-
regulated upon salt stress (Horie et al. 2007). These
studies suggest that HK T-mediated Na*/K* homeostasis
contributes to salt tolerance in rice.

Accumulating studies showed that a number of
genes regulate rice salt tolerance by regulating HKT
genes, such as MYB-like transcription factor,
OsMYBec, positively regulates salt tolerance by direct-
ly activating the expression of OsHKTI;5 and
OsHKT2;1 (Wang et al. 2015). Ethylene insensi-
tive3-likel/2 (OsEIL1/2), the core transcriptional reg-
ulators of the ethylene signaling pathway, negatively
affect salt tolerance by directly activating the expres-
sion of OsHKT2;1 (Yang et al. 2015). Rice magne-
sium transporter OsMGT1 is required for conferring
salt tolerance in rice through enhancing the transport
activity of OsHKT1;5 (Chen et al. 2017). Mutation in
rice reduced culm numberl (rcnl), encoding a G
subfamily ABC transporter (OsABCGS), causes a
high Na*/K* ratio and salt-sensitive phenotype. Fur-
ther analysis found that RCN1/OsABCGS is essential
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for upregulation of OsHKTI;5 under salt stress
(Matsuda et al. 2014). The above results suggest that
the modulation of Na™/K* homeostasis under salt
stress may provide an effective way to improve salt
tolerance in rice.

Enhancement of ROS scavenging improves salt
tolerance in rice

As a by-product of the plant’s stress response, ROS such
as superoxide radical (O,"), hydroxyl radical (OH ) and
hydrogen peroxide (H,O,) are able to cause oxidative
damage to protein, DNA, and lipids (Apel and Hirt
2004; Miller et al. 2010). ROS were originally believed
to merely represent toxic molecules, but they have been
now recognized as signal molecules in many plant cel-
lular processes (Xia et al. 2009; Tsukagoshi 2016; Lv
etal. 2018). Due to the dual role of ROS in plants, a fine-
tuned balance between ROS biosynthesis and scaveng-
ing is crucial for maintaining appropriate levels of ROS
at different development stages and in different growing
environments (Bose et al. 2014; Tsukagoshi 2016;
Zhang et al. 2016a).

Plants harbor numerous ROS generating pathways.
NADPH oxidase is the most extensively studied. The
plant NADPH oxidases (NOXs), which are also called
as respiratory burst oxidase homologs (Rbohs), are the
most studied ROS-producing enzymes. Rbohs produce
ROS through catalyzing O, to O,” (Torres and Dangl
2005). There are 9 Rboh genes in rice genomes, and
each homolog has a specific role in a broad range of
biological processes (Marino et al. 2012; Wang et al.
2013). Salt treatment induced the expression of
OsRbohA and OsRbohl, but repressed that of OsRbohB,
OsRbohC, OsRbohE, and OsNox6 (Wang et al. 2013),
suggesting that diverse roles of OsRboh genes in re-
sponse to salt stress. Moreover, NOX activity was sig-
nificantly higher in salt-tolerant than salt-sensitive cul-
tivars of rice (Kaur et al. 2016a; Saini et al. 2018). These
studies suggest that OsRbohs are linked to salt stress
adaptation mechanisms in rice.

In addition to controlling the production of ROS,
plants have evolved two efficient pathways for ROS
scavenging, namely, enzymatic and nonenzymatic anti-
oxidant defense system (You and Chan 2015). In enzy-
matic system, O, first is converted into H,O, by
superoxide dismutase (SOD). Ascorbate peroxidase
(APX), catalase (CAT), and glutathione peroxidase
(GPX) then detoxify H,O, (You and Chan 2015;

Mittler 2017). In rice, overexpression of OsMn-SOD1
leads to less accumulation of mitochondrial O," under
salt treatment (Li et al. 2013). Transgenic plants over-
expressing OsCu/Zn-SOD exhibited higher germination
of seeds and plant height than non-transgenic plants
under salt stress (Guan et al. 2017). There are eight
APX genes in rice, including two cytosolic APXs
(OsAPXI1 and OsAPX2), two peroxisomal APXs
(OsAPX3 and OsAPX4), and four chloroplast APXs
(OsAPX5, OsAPX6, OsAPX7, and OsAPX8) (Hong
et al. 2007). The expression of OsAPX2, OsAPX7, and
OsAPXS was upregulated under salinity stress (Teixeira
etal. 2006; Hong et al. 2007; Zhang et al. 2013). Mutant
with loss-of-function of OsAPX2 showed reduction of
APX activity and sensitivity to salt stress, whereas
transgenic lines overexpressing OsAPX2 displayed the
increase of APX activity and enhancement of salt toler-
ance (Zhang et al. 2013). All these studies suggest that
increase of ROS-scavenging enzyme activity decreases
oxidative stress damage and enhances rice tolerance to
salt stress.

Nonenzymatic antioxidants, including glutathione
(GSH), ascorbic acid (AsA), carotenoids, tocopherols,
and flavonoids, are also crucial for ROS homeostasis in
plants (Gill and Tuteja 2010). Exogenous application of
GSH and AsA leads to reduced ROS accumulation and
increased salt tolerance (Xu et al. 2017; Wang et al.
2018). Knockdown of the expression of genes involved
in AsA synthesis increases the accumulation of ROS
and decreases the salt resistance of rice (Qin et al. 2016a,
b; Wang et al. 2018), suggesting that GSH and AsA play
important roles in the fine control of ROS homeostasis
to improve salt tolerance.

Recent analyses with mutational and transgenic
plants revealed that multiple genes contributed to im-
prove salt tolerance in rice by regulating genes involved
in ROS biosynthesis and scavenging pathway. Calcium-
dependent protein kinasel2 (OsCPK12), encoding a
calcium-dependent protein kinase (CDPK), positively
regulates rice salt tolerance by reducing accumulation
of ROS (Asano et al. 2012). The zinc-finger proteins
(ZFP), such as OsZFP179, OsZFP182, OsZFP185,
OsZFP213, OsZFP245, OsZFP252, and drought and
salt tolerance (DST), are involved in regulating rice salt
tolerance. Among them, OsZFP179, OsZFP182,
OsZFP213, OsZFP245, and OsZFP252 positively reg-
ulate tolerance to salt by increasing ROS-scavenging
ability (Huang et al. 2005; Xu et al. 2008; Sun et al.
2010; Huang et al. 2012; Zhang et al. 2018), whereas
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OsZFP185 and DST negatively regulate rice tolerance
to salt through regulating ROS-scavenging gene tran-
scriptions (Huang et al. 2009; Cui et al. 2015; Zhang
et al. 2016b). All these studies suggest that enhancing
ROS-scavenging ability can efficiently increase the salt
tolerance of rice.

Phytohormonal regulation of rice in salt-triggered Na*/
K* homeostasis and ROS scavenging

Plant hormones regulate normal growth and mediate
responses to abiotic stress (Kazan 2015; Van de Poel
et al. 2015). Studies in rice have shown that several
phytohormones are related to the salt tolerance of rice,
such as auxin, ethylene, abscisic acid (ABA), and gib-
berellin (GA) (Xia et al. 2012; Shan et al. 2014; Tao
et al. 2015; Sah et al. 2016). Among these phytohor-
mones, the function of ethylene in salt tolerance of rice
has been extensively studied (Tao et al. 2015; Zhang
et al. 2016a).

In rice, ethylene treatment of etiolated seedlings
exhibited double response, namely, promotion of cole-
optile growth but inhibition of root elongation (Ma
et al. 2013). Based on the ethylene double response, a
series of ethylene-response mutants maohuzi (mhz)
were identified (Ma et al. 2013). Among these mutants,
rice ethylene signaling components MHZ6/
ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1) and
MHZ7/ETHYLENE INSENSITIVE2 (OsEIN2) were
isolated (Ma et al. 2013; Yang et al. 2015). Loss-of-
function or suppression of OsEIN2, OsEILI, or
OsEIL?2 results in improvement of salt tolerance, while
overexpressing each of them leads to salt hypersensi-
tivity at the seedling stage. Further investigations indi-
cate that this negative regulation of OsEIL1 or OsEIL2
in salt tolerance is likely attributed in part to the direct
regulation of OsHKT?2; 1 expression and Na* uptake in
roots (Yang et al. 2015). Recent studies in rice showed
that salt treatment upregulates ethylene biosynthesis
gene transcriptions and ethylene production, leading
to the inhibition of primary root elongation and re-
duced salt tolerance. Moreover, the regulators involved
in salt-induced ethylene biosynthesis are emerging,
such as SALT INTOLERANCE]1 (SIT1) and DNA-
BINDING WITH ONE FINGER 15 (OsDOF15) (Li
etal. 2014; Qin et al. 2019). SIT1, a lectin receptor-like
kinase, positively regulates salt tolerance by activating
MITOGEN-ACTIVATED PROTEIN KINASE3/6
(MPK3/6), which promotes ethylene and ROS
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overproduction (Li et al. 2014). OsDOF15 is a DOF-
binding with one finger (DOF) transcription factor,
negatively regulates ethylene biosynthesis by directly
binding to the promoter of /-aminocyclopropane-1-
carboxylate synthasel (OsACSI). Under salt treat-
ment, the transcription of OsDOF15 was suppressed,
resulting in activation of the ethylene biosynthesis
genes and enhanced ethylene biosynthesis, thereby
inhibiting root growth (Qin et al. 2019). These studies
imply that salt treatment enhances ethylene biosynthe-
sis in rice, which might promote Na* uptake and ROS
accumulation, thus leading to reduction of salt toler-
ance of rice.

In addition to directly regulating Na*/K* uptake and
ROS accumulation, ethylene also coordinates with other
phytohormones to modulate plant response to salinity.
Auxin coordinates many of the key processes in plant
development and adaptive growth (Strader and Zhao
2016; Wang et al. 2019a, b). Comprehensive analysis
and expression profiling of genes in rice under salt stress
showed that many genes involved in auxin transport,
auxin signaling, and auxin homeostasis pathway were
regulated by salt stress (Jain and Khurana 2009; Chai
and Subudhi 2016). Downregulation of two rice auxin
receptor genes, transport inhibitor responsel (OsTIRI)
and auxin signaling F-box2 (OsAFB2), via OsmiR393
overexpression, leads to reduced tolerance to salt in rice
(Xia et al. 2012). Exogenous application of auxin ana-
logue naphthalene acetic acid (NAA) induced ROS
production, whereas inhibiting the auxin biosynthesis
by aminoethoxyvinylglycine (AVG) suppressed ROS
production (Du et al. 2012), suggesting that auxin con-
tributes to rice salt tolerance by modulating ROS pro-
duction. Interaction between ethylene and auxin was
revealed by two ethylene-response mutants: rice ethyl-
ene-insensitive7 (rein7/yuc8) and mhz2/soil-surface
rootingl (sorl) (Qin et al. 2017; Chen et al. 2018).
REIN7/YUCS catalyzes the conversion of indole-3-
pyruvic acid (IPA) to indole-3-acetic acid (IAA) in auxin
biosynthesis, it is transcriptionally modulated by ethyl-
ene signaling component OsEIL1 (Qin et al. 2017).
MHZ2/SOR1, a RING finger E3 ubiquitin ligase, regu-
lates ethylene response in primary roots by interacting
with OsIAA26, a typical Aux/IAA protein involved in
the auxin signaling pathway (Chen et al. 2018). Collec-
tively, these studies suggest that ethylene may regulate
ROS accumulation by modulating auxin biosynthesis
and signaling, subsequently affecting the salt tolerance
of rice.
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Table 1 Genes involved in salt tolerance regulation in rice

Genes name Accession number  Gene function

0sSOS1 0s12g44360 Exports Na* ions out of cells, positively regulates salt tolerance

OsHKTI; 1 0s04g51820 Mediate Na*-specific transport, positively regulates salt tolerance

OsHKTI;4 Os04g51830 Mediate Na*-specific transport, positively regulates salt tolerance

OsHKTI;5 0s01g20160 Mediate Na*-specific transport, positively regulates salt tolerance

OsMYBc 0s09g12770 Encoding MY B-like transcription factor, positively regulates salt tolerance
OsEIN2 0s07g06130 Ethylene signaling component, negatively regulates salt tolerance

OsEIL1 050320790 Ethylene signaling component, negatively regulates salt tolerance

OsEIL?2 0s07g48630 Ethylene signaling component, negatively regulates salt tolerance
RCNI1/OsABCGS5  0s03g17350 Encoding a G subfamily ABC transporter, positively regulates salt tolerance
OsCu/Zn-SOD 0s08g44770 Encoding superoxide dismutase, positively regulates salt tolerance

OsAPX2 0s07g49400 Encoding ascorbate peroxidases, positively regulates salt tolerance

OsCPK12 0s04g47300 Encoding a calcium-dependent protein kinase, positively regulates salt tolerance
OsZFP179 0s01g62190 Encoding C2H2-type zinc-finger protein, positively regulates salt tolerance
OsZFP182 0s03g60560 Encoding TFIIIA-type zinc-finger protein, positively regulates salt tolerance
OsZFP185 0s02g10200 Encoding A20/AN1-type zinc-finger protein, negatively regulates salt tolerance
OsZFP213 0s12g42250 Encoding C2H2-type zinc-finger protein, positively regulates salt tolerance
OsZFP245 0s07g39870 Encoding TFIIIA-type zinc-finger protein, positively regulates salt tolerance
OsZFP252 0s12g39400 Encoding TFIIIA-type zinc-finger protein, positively regulates salt tolerance
DST 0s03g57240 Encoding Zinc-finger protein, negatively regulates salt tolerance

SIT1 0s02g42780 Encoding a lectin receptor-like kinase, positively regulates salt tolerance
OsDOF15 0s03g55610 Encoding a DOF-binding with one finger transcription factor, negatively regulates salt tolerance
OsTIR1 0s05g05800 Auxin receptor, positively regulates salt tolerance

OsAFB2 0s04g32460 Auxin receptor, positively regulates salt tolerance

OsGA20x5 0s07g01340 Encoding a gibberellin metabolism enzyme, positively regulates salt tolerance
OsCKX2 0Os01g10110 Encoding cytokinin oxidase, negatively regulates salt tolerance

OsRR9 Os11g04720 Negative regulators of cytokinin signaling, negatively regulates salt tolerance
OsRR10 0s12g04500 Negative regulators of cytokinin signaling, negatively regulates salt tolerance
OsCYP94C2b Os12g05440 Encoding a JA-catabolizing enzyme, positively regulates salt tolerance

Abscisic acid (ABA) is the central regulator of
abiotic stress resistance in plants (Finkelstein 2013;
Sah et al. 2016). Salt stress causes an increase in the
ABA accumulation, and exogenous ABA may allevi-
ate the deleterious effects of salt stress (Chen et al.
2006; Park et al. 2008; Welsch et al. 2008). In rice,
ethylene treatment induced the expressions of MHZ4
or MHZ5, which are involved in ABA biosynthesis,
leading to increased accumulation of ABA in roots.
Mutation of either MHZ4 or MHZS5 reduced ethylene
sensitivity in root growth. Genetic analysis revealed
that MHZ4 and MHZ5-dependent ABA pathways act
downstream of ethylene receptors to positively regu-
late root response to ethylene (Ma et al. 2014; Yin
etal. 2015). Given that ABA production and signaling

are necessary for plant responses to salinity, MHZ4
and MHZ5 are anticipated to have some roles in plant
responses to salinity. Thus, besides regulating seed-
ling growth, MHZ4 and MHZ5 may also mediate the
interaction between ethylene and ABA on controlling
stress responses.

Gibberellins (GA) are plant hormones that govern
many aspects of plant biology. Several studies have
revealed that GA participate in the regulation of rice
salt tolerance (Shan et al. 2014; Zhu et al. 2015).
Slender ricel (SLRI), the rice homolog of
Arabidopsis DELLA genes that have been identified
as GA signaling components, was highly induced by
salt stress. Moreover, salt induction of SLRI expres-
sion was dependent on OsMYB91, an R2R3-type
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Fig. 1 The role of phytohormones in regulating salt tolerance in
rice. Salt stress activates SIT1-MPK3/6 phosphorylation cascade
and represses OsDOF15 transcription, leading to increased ethyl-
ene biosynthesis. Ethylene overproduction promotes ABA, auxin,
JA and GA biosynthesis, ultimately leads to enhanced Na* uptake
and ROS accumulation, thereby exhibiting salt-sensitive pheno-
type. OsEIL1/2, the master transcriptional regulator of ethylene
signaling in rice, directly regulate the expression of OsHKTS (a
high affinity Na* transporter), SD/ (GA biosynthesis gene), and
OsYUCS (auxin biosynthesis gene), and GY/ (JA biosynthesis
gene). Auxin accumulation promotes SOR 1-mediated degradation
of OsIAA26, thus resulting in ROS accumulation. MHZ4 and

MYB transcription factor in rice (Zhu et al. 2015).
Overexpressing gibberellin2-oxidases5 (OsGA20x5),
a gene involved in the GA catabolic pathway, en-
hanced the resistant to high-salinity stress in rice
(Shan et al. 2014), suggesting a negative role of GA
in rice salt tolerance. Under submerging conditions,
the ethylene signaling transcription factor OsEILI
directly activates the transcription of semidwarf]
(SD1I), thereby promoting GA biosynthesis (Kuroha
et al. 2018), suggesting an ethylene-GA crosstalk in
abiotic stress. It remains to be further investigated
whether this interaction is involved in salinity stress
response.

Several studies have shown that cytokinins (CKs)
functionally control plant adaptation to environmen-
tal stresses. In Arabidopsis, the CK-deficient plants
with reduced levels of various CKs exhibited
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MHZS, which are involved in ABA biosynthesis, may mediate
the interaction between ethylene and ABA in regulation of salinity
response. CKs induce ethylene biosynthesis by upregulating the
transcription of ethylene biosynthesis genes. Ethylene promotes
ABA and auxin biosynthesis to inhibit root growth and inhibits JA
biosynthesis to promote coleoptiles/mesocotyls growth. Under
submergence, ethylene promotes internode elongation through
increasing transcription of SD/ and GA production to escape
flooding in deepwater rice. The solid lines indicate direct interac-
tions, and the dashed lines indicate indirect interactions. The
arrows indicate stimulatory effects, whereas the T sharp symbol
indicates inhibitory effects

enhanced salt tolerance (Nishiyama et al. 2011).
However, exogenous application of CKs resulted in
increased salinity tolerance in Solanum melongena
(Wu et al. 2014). Knockdown cytokinin oxidase?2
(OsCKX2) in rice, which encodes an enzyme that
degrades CK, resulted in better vegetative growth,
higher relative water content and photosynthetic ef-
ficiency than those of wild type under salt stress
(Joshi et al. 2018). Loss-of-function type A response
regulators (RRs), OsRR9 and OsRRI10, which are
negative regulators of CK signaling, exhibited
higher salinity tolerance than wild-type rice seed-
lings (Wang et al. 2019a, b), suggesting that CKs
positively regulate salinity tolerance in rice. Recent
research in rice has shown that CK treatment in-
creased ethylene level by upregulating the transcrip-
tion of ethylene biosynthesis genes, leading to the
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inhibition of root growth (Zou et al. 2018), suggest-
ing that CKs promote ethylene biosynthesis in roots,
whether salt stress promotes ethylene biosynthesis in
rice roots through CKs remains to be studied.

Brassinosteroids (BRs) are plant steroid hormones,
which play essential roles in plant growth and devel-
opmental programs (Yang et al. 2011; Wei and Li
2016). Apart from their roles in the regulation of plant
growth and development, BRs confer tolerance to a
range of abiotic stresses (Krishna 2003; Divi et al.
2010). Under salinity conditions, BRs activate ethyl-
ene biosynthesis and signaling pathway, thereby im-
proving the salt tolerance of tomato seedlings (Zhu
et al. 2016). In rice, exogenous application of BRs
enhances salt tolerance of rice (Sharma et al. 2013).
Moreover, the expression levels of genes involved in
BRs biosynthesis and signaling pathway in salt toler-
ance cultivars of rice are higher than those in salt-
sensitive cultivars (Kaur et al. 2016b), suggesting that
BRs play an positive role in rice salt tolerance; how-
ever, whether this process depends on ethylene re-
mains to be studied.

The function of jasmonic acid (JA) in plant’s resil-
ience to many environmental challenges has been well
studied, and its role in salt tolerance has also been
reported (Qiu et al. 2014; Zhao et al. 2014; Kazan
2015). Endogenous JA accumulations in roots of rice
plants are subjected to salt stress, and exogenous JAs
improved salt-stress tolerance in rice and wheat
(Moons et al. 1997; Kang et al. 2005; Qiu et al.
2014). Rice mutants with defect in JA biosynthesis
exhibit improved tolerance to salt stress (Hazman
et al. 2015). Overexpression of the Cyt P450 family
gene OsCYP94C2b, encoding a JA-catabolizing en-
zyme, shows decreased JA content along with im-
proved performance on high concentrations of salt
(Kurotani et al. 2015). Furthermore, constitutive over-
expression of rice JASMONATE ZIM-domain
(OsJAZ) genes leads to improved salt tolerance (Ye
et al. 2009). All these studies suggest that JA play a
vital role in the adaptation to salt stress. The interac-
tion between JA and ethylene has been investigated in
rice, ethylene signaling component, OsEIL2, directly
binds to the promoter of JA biosynthesis gene
GAOYAOI (GYI) to suppress its promoter activity,
thus leading to inhibited JA biosynthesis and promot-
ed mesocotyl/coleoptile elongation (Xiong et al.
2017). Further investigation may focus on whether
this interaction plays a role in salt stress.

Conclusions and perspectives

During the past few years, multiple studies were com-
mitted to elucidating the mechanism of salt tolerance in
rice (Table 1), and the results show that maintaining
Na*/K* and ROS homeostasis is an effective way for
rice to adapt to salt stress (Ganie et al. 2019). From
above studies, a general conclusion could be made: on
the one hand, salt stress induces SIT/ transcription,
which in turn activates MPK3/6 to promote ethylene
biosynthesis. On the other hand, salt stress inhibits
OsDOF15 transcription, leading to increased ethylene
biosynthesis. Ethylene overproduction promotes ABA,
auxin, JA and GA biosynthesis, ultimately leading to
enhanced Na* uptake and ROS accumulation, thereby
inhibiting growth and even causing plant death (Fig. 1).

Plant hormones play important roles in regulating
responses to a wide variety of internal and external
stimuli (Kazan 2015; Sah et al. 2016). Engineering of
hormone biosynthesis and signaling pathways can po-
tentially offer new avenues to the improvement of abi-
otic stress tolerance in rice. However, changes in plant
hormone biosynthesis and signaling can have undesir-
able consequences on rice growth and development
(Yoshikawa et al. 2014; Yin et al. 2017). Thus, precise
control of hormone productions and signaling may be
critical for promotion of rice salinity tolerance. Several
genes involved in hormone response have been reported
to confer stress tolerance when overexpression in di-
verse species without adverse effects on plant develop-
ment (Seo et al. 2010; Schmidt et al. 2013; Makhloufi
et al. 2014), suggesting that focusing on downstream
responses genes in hormone signaling pathway may be a
good idea for genetic improvement of salt tolerance in
rice. In addition, precise control hormone biosynthesis
and signaling factor using specific promoters is another
effective way to improve salt tolerance in rice.

Salt stress causes significant reductions in rice pro-
duction worldwide, thus improving salt tolerance is a
promising approach to meet the increasing food de-
mand. Cultivar improvement through conventional
breeding is feasible, but it takes a long time to minimize
linkage drag through phenotypic screening
(Iftekharuddaula et al. 2012; Hasan et al. 2015). Single
nucleotide polymorphisms (SNPs) marker-assisted se-
lection will greatly promote the molecular breeding
process (Gimhani et al. 2016; Rana et al. 2019). There-
fore, efforts should be made to capture useful quantita-
tive trait loci (QTLs) associated with the salinity

@ Springer



47 Page 8 of 13

Mol Breeding (2020) 40: 47

tolerance as possible genetic markers to introgress into
elite rice varieties. Moreover, salt tolerance in rice is a
cumulative effect of different salinity tolerance mecha-
nisms governed by multiple genes (Horie et al. 2012),
thus it remains to be further investigated how multiple
genes are transferred at the same time with stable inher-
itance to offspring.

Wild rice with wide genetic diversity is considered a
valuable source of genes for tolerance to salinity stress,
which can be potentially used in rice breeding (Prusty
et al. 2018; Quan et al. 2018; Yichie et al. 2018).
Transcriptome analysis of salt stress responsiveness in
the seedlings of Dongxiang wild rice showed that many
genes involved in hormone biosynthesis or signaling
pathway were upregulated or downregulated (Zhou
et al. 2016), suggesting that hormone homeostasis is
essential for salt-stress tolerance in rice. Further studies
showed that wild rice confers high salt tolerance by
modulating Na*/K* uptake (Prusty et al. 2018; Yichie
et al. 2018), but the relation between wild rice and the
salt tolerant mechanism is largely unclear. Further stud-
ies should focus on cloning the salt tolerance gene of
wild rice and elucidating its regulatory mechanism,
which may be utilize in rice improvement. In addition
to wild rice, tetraploid rice also exhibited resistance to
salt stress (Tu et al. 2014), which inspires us that poly-
ploid breeding will be a new way to improve salt toler-
ance in rice.
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