
Genomic prediction of sugar content and cane yield
in sugar cane clones in different stages of selection
in a breeding program, with and without pedigree
information

Emily Deomano & Phillip Jackson & Xianming Wei &
Karen Aitken & Raja Kota & Paulino Pérez-Rodríguez

Received: 6 August 2019 /Accepted: 16 March 2020
# Springer Nature B.V. 2020

Abstract High cane yield and commercially extract-
able sucrose (CCS) content are two of the key sugarcane
commercial traits selected in sugarcane breeding pro-
grams. Advancements in genomic prediction may pro-
vide opportunities to speed up gains for these traits in
breeding programs by combining accurate prediction of

breeding values in candidate parent clones shortening
generation intervals. Selection trials in commercial
breeding programs may provide training populations
for developing genomic predictions. In this study, three
different populations of clones in early and advanced
stage selection trials in an established commercial sug-
arcane breeding program were used to assess genomic
prediction accuracy. The clones (genotypes) were eval-
uated for cane yield and sugar content in field trials and
genotyped using a SNP array developed for sugarcane
cultivars and parents. Five models (Bayes A, Bayes B,
Bayesian LASSO, Bayesian GBLUP and RKHS) were
tested using pedigree and/or marker data. Prediction
models that included marker information had higher
prediction accuracies than models with pedigree data
only. For CCS, the prediction accuracies for genotypes
in advanced stage trials using DNA markers were supe-
rior compared with prediction accuracies for early-stage
trials, suggesting that prior intensive selection for CCS
did not diminish accuracy of genomic prediction. How-
ever, by contrast, for cane yield, the prediction accura-
cies were much less for the population in the advanced
stages of selection. The levels of prediction accuracy
obtained in most datasets (0.25–0.45) are encouraging
for developing applications of genomic prediction to
predict breeding values of yield and sugar content in
sugarcane breeding programs.
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Key message
• Genomic prediction of cane yield and sugar content in
populations of sugarcane in early and advanced stages of selection
using a range of models provide encouraging levels of accuracies
for developing practical applications in sugarcane breeding.
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Introduction

Sugarcane is an important crop in many tropical and
sub-tropical regions, grown in more than 100 countries.
Development of new cultivars through breeding has
been a high priority for nearly all sugarcane industries
and sugarcane breeding programs in at least 40 countries
for over 100 years (http://www.sugarcanevariety.org/).
High cane yield (expressed as tonnes of cane per
hectare) and commercially extractable sucrose content
(expressed as commercial cane sugar, CCS, in % fresh
weight of cane) are important for reducing cost of
production of sugar per tonne and are therefore two
key selection criteria in sugarcane breeding programs
(Jackson 2018).

Sugarcane breeding programs have made critical
contributions to productivity, particularly in relation to
disease resistance and improvement of ratooning perfor-
mance (i.e. regrowth after harvest) (Heinz 1987). How-
ever, reduced rates of improvement of productivity in
sugarcane in recent decades in many countries have led
to suggestions for major changes in sugarcane breeding
systems (e.g. Wei and Jackson 2017). In particular, it
seems likely that low narrow sense heritability for cane
yield and sugar content in modern breeding populations
and long generation intervals (> 8 years) between cross-
ing and parental selection are contributing factors to low
rates of genetic gain in cane yield and sugar content in
recent decades (Jackson 2018; Rattey et al. 2004).

Modern sugarcane cultivars and parents are complex
hybrid polyploids originally derived from several clones
of two species: the high sucrose, octaploid Saccharum
officinarum (2n = 80; x = 10) and the low sucrose
S. spontaneum (2n = 48–128; x = 8) (Arceneaux 1967;
Daniels and Roach 1987; Roach 1989). Previous studies
have suggested that this combination of relatively few
founders in breeding programs and small number of
cycles of inter-crossing (< 9) leads to considerable link-
age disequilibrium persisting in sugarcane breeding pro-
grams, making marker-assisted selection and breeding
approaches feasible despite the large genome and genet-
ic complexity of this crop (Jannoo et al. 1999; Raboin
et al. 2008; Wei et al. 2010).

Genomic prediction and selection is an approach
increasingly applied in animal and plant breeding pro-
grams. Genomic prediction commonly refers to meth-
odologies where all markers are used simultaneously in
a statistical model to predict genetic or breeding values
of candidate genotypes. This contrasts with other

marker-based strategies which focus mostly on individ-
ual markers or QTL with strong statistical evidence for
significant phenotypic effects. An extensive number of
studies have been published on assessing the prediction
accuracy of genomic selection in different crops (e.g.
Crossa et al. 2013; Pérez-Rodríguez et al. 2012). The
accuracy of genomic prediction may be affected by
many factors, including statistical models used, the size
of the training data, marker density, the heritability of
the trait, degree of linkage disequilibrium and the un-
derlying genetic architecture of the traits of interest.
Practical applications of genomic selection have been
led by studies in dairy cattle and have now been widely
reported in animals and crops (e.g. Hayes et al. 2009a;
Heffner et al. 2009; Matei et al. 2018; Meuwissen et al.
2001; Vélez-Torres et al. 2018). Most of the benefits of
genomic selection arise from obtaining accurate predic-
tions in early stages of the breeding cycle and shorter
breeding cycles.

Gouy et al. (2013) provided the first reported study of
genomic selection in sugarcane. They screened two
separate panels of 167 sugarcane clones with 1499
DArT markers. They found small to moderate levels
of accuracy (0.11 to 0.62), with large variation between
different traits. The study was encouraging with respect
to the potential for practical application in sugarcane
breeding, given the accuracy levels in some traits, and
some acknowledged limits of the study such as the
relatively small number of markers in relation to the
large genome size of sugarcane and the relatively small
training population size.

In developing genomic prediction models for appli-
cation in breeding programs, large numbers (e.g. >
1000) of genotypes are desirable for developing accu-
rate genomic prediction models (Hayes et al. 2009b;
Van Grevenhof and Van Der Werf 2015). However,
collection of accurate phenotypic data is often difficult
and expensive particularly for large plants like sugar-
cane. One option is to utilise data already being collect-
ed within commercial breeding programs (Poland 2015;
Rutkoski et al. 2015). However, several issues need
careful consideration with this approach. First, there
are possible advantages and disadvantages in using data
from different stages of the selection process. In the
early stages of selection, there are usually large numbers
of genotypes which have not yet undergone intense
selection pressure. In these populations, relatively high
genetic variation for most traits typically exist, and this
is desirable for training a robust model and developing
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accurate predictions. However, usually only small plots
are used and therefore experimental error variation and
inter-plot competition effects are typically large, espe-
cially for cane yield in the case of sugarcane (Jackson
and McRae 2001). By contrast, in the later stages of
selection, most poorly performing clones have already
been discarded (in the earlier stages of selection), but
measurements are more precise with larger plots, with
greater replication.

In this paper, we report the results of a study to assess
genomic selection in several populations of sugarcane
clones generated in a commercial sugarcane breeding
program for the key traits cane yield and commercially
extractable sugar content. This report adds to the study
of Gouy et al. (2013) in several respects: (i) it includes
the important commercial trait of cane yield (not studied
by Gouy et al. 2013), (ii) it assesses to what extent DNA
markers increase prediction accuracies compared with
that possible from using pedigree data, (iii) it compares
prediction accuracies using panels of genotypes
representing either early or later stages of selection in
breeding programs and (iv) it uses a larger number of
SNPmarkers. The results are discussed in relation to the
application of genomic selection models in sugarcane
breeding programs.

Materials and methods

Genetic material and collection of phenotypic data

Three different panels of sugarcane clones were used.
All panels represented genetic material derived from
and undergoing selection in the Australian sugarcane
breeding program of Sugar Research Australia (SRA).
The Australian sugarcane breeding program is similar to
most other sugarcane breeding programs worldwide in
that most parental clones trace back to a limited number
(approximately 20) key ancestral clones generated in
breeding programs in Indonesia and India in the early
1900s (Roach 1989).

The three panels of genotypes and the associated
phenotypic data collected on these were as follows:

(i). Panel 1 comprised 467 clones used in a previously
reported association mapping study (Wei et al.
2010). These clones and the phenotypic data col-
lected were described in detail by Wei et al. (2010).
In brief, about half of the genotypes in this panel

comprised commercially grown cultivars and/or key
parents typically used in the Australian sugarcane
breeding program, and the other half were unselect-
ed clones from 30 crosses (eight clones per cross)
derived from such cultivars and parents. Field trials
were established at three locations (Kalamia, Bran-
don, Victoria mill) in 2006 in Northern Queensland,
Australia. The first twowere in the Burdekin region,
and the latter in the Herbert region, both being
important sugarcane producing regions within Aus-
tralia. Approximately 80% of the 467 genotypes
were in common across all three sites with the other
clones planted at two of the three sites. At each site,
a randomised complete block design, with two rep-
licates per clone, was used. The unit plot size was
one row × 10 m, with an inter-row spacing of 1.5 m.
Cane yield was measured at approximately
12 months after planting at each site by mechanical
harvesting andweighing, and CCSwasmeasured as
a random three-stalk sample of stalks taken at the
same time at harvest and using procedures routinely
used in the Australian sugarcane breeding program
(BSES 1984).

(ii). Panel 2 comprised a total of 1146 clones planted
in a series of four field trials planted in 2013, with
one trial in each of the four major sugarcane
growing regions along the Australian east coast
at sites Meringa, Burdekin, Mackay and
Bundaberg. The experimental design consisted
of 1 row × 10 m long plots and the p-design
(Cullis et al. 2006) with 8–14% test clones repli-
cated. The number of clones tested in each region
varied but this study only used those clones com-
mon to all sites. Cane yield was estimated from the
weight of the 10 m plot and CCS by small mill
method (BSES 1984) or Spectra-Cane (Berding
and Marston 2010) based on a sample of five
randomly selected stalks. Apart from the trial in
Burdekin, data were collected from two crops in
each trial: plant crop harvested in 2014 and the
first ratoon crop in 2015.

(iii). Panel 3 comprised a total of 738 clones planted in
a series of trials in four regions in 2013. In each
region, the trials were planted in four to five
different locations (giving a total of 18 trials) as
final assessment trials of the SRA breeding pro-
gram. Each individual trial consisted of a p-
design with 4-row × 10 m plots with about 15%
of clones being replicated. The trials were
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harvested in 2014, from which cane yield was
estimated from the middle two plots and CCS by
the press method (BSES 1984) or Spectra-Cane
based on six randomly selected stalks.

Analysis of phenotypic data

A general linear mixed model was fitted to the data with
spatial variation effects using ASREML-R v3 (Butler
et al. 2009). Data analyses for each panel and trait
combination were carried out in two steps. First, a model
which accounted for spatial and competition effects
(Stringer et al. 2011) was developed for each site. Spa-
tial effects were accounted for by determining an opti-
mal model within each selection trial following the
methodology of Smith et al. (2007). Then, based on
the outcomes of the first step, a combined analysis over
all sites was conducted. BLUPs for the clones based on
the combined analyses were centred for each site and
then averaged over all trials and regions before being
used for genomic selection. A combined analysis over
all trials was carried out within each of the panel datasets
above to obtain BLUPs for each clone. It should be
noted that a combined analysis for the BLUPs of clonal
effects over all three panels in this study was not feasible
because of the poor connectedness between the different
panels.

Broad sense heritability was estimated for each trial ×
trait combination from:

Hb ¼ σg
2= σg

2 þ σe
2=r

� �

where σg
2, σe

2 and r are the genetic variance, error variance and
number of replicates per clone, respectively, within each trial.

Pedigree data

Pedigree data over three to ten generations for > 90% of clones in each
panel was retrieved from information on ancestors in a database owned
by SRA. A small proportion of clones (< 10%) lacked information on
ancestry. The total number of ancestor clones used was 438, 708, 880
and 1086, for panels 1, 2, 3 and 2 and 3 combined, respectively. The
kinship matrix was computed from the pedigree using the R package
‘kinship2’ (Sinnwell et al. 2014). The kinship matrix wasmultiplied by
two to obtain the numerator relationship matrix, A which gives the
covariance between relatives and was used as the pedigree-based
relationship matrix in the models discussed below.

Marker data

All clones were genotyped using an Affymetrix Axiom SNP array
developed for sugarcane containing 47,803 SNPs. The development of
this array was described by Aitken et al. (2016).
High-quality DNA was extracted from all clones using a standard

CTAB extraction method followed by a proteinase K digestion and
purification on a Qiagen column as recommended by Affymetrix. The
Axiom assay was performed on 96-sample Axiom array using the
Affymetrix GeneTitan system according to the procedure described by
Affymetrix (http://media.affymetrix.com/support/downloads/
manuals/axiom_2_assay_auto_workflow_user_guide.pdf). The final
sugarcane Axiom array contained 58,364 probe sets representing 47
,803 SNPs which were highly polymorphic and all clones were
screened across this array. Samples that had a dish quality control
(DQC) measure of less than 0.82 or a quality control (QC) call rate of
less than 97% were excluded from the analysis. Allele calling was
preformed using generated CEL files with Axiom Analysis Suite
(1.1.0.616) in order to obtain high-quality results the Axiom best practice
workflow was used (http://media.affymetrix.com/support/downloads/
manuals/axiom_genotyping_solution_analysis_guide.pdf).
Prior to analysis monomorphic SNP markers were removed. For

each polymorphic marker, all clones (genotypes) were given a
marker score of 1 if only the most frequent allele was present
(i.e. homozygous for this allele), 0 if both alleles were present
(i.e. heterozygous), and − 1 if only the minor allele was present.
Markers in which one of these three classes occurred for > 98% of
the clones were deleted. The number of SNP markers remaining
for the analysis after applying the described quality controls were
47,531 for panel 1 and 57,668 for both panels 2 and 3 and 57,675
for panels 2 and 3 when panels 2 and 3 were combined. For each
marker, missing values were imputed using observed allelic fre-
quencies. Markers were centered and standardised using sample
mean and sample standard deviation.

Analysis of marker effects and genomic predictions

The models described below were evaluated to assess the extent to
which use of marker data could provide better prediction accuracies
than the use of pedigree information alone. Models based on pedigree
data only, marker data only and both pedigree data and marker data
combined were considered in the analysis, and these are described
briefly below.

(i). Model using only pedigree data

The following model was fitted:

y ¼ μ1þ uþ e ð1Þ

where y is the vector of adjusted phenotypes of each clone,
μ is the general mean, u is a vector of random effects with
the assumption that u∼MN 0;σ2

aA
� �

with A the additive

relationship matrix derived from pedigree, σ2
a the variance

component associated to A, and e is the residual vector,
with the assumption that e∼MN 0;σ2

eI
� �

with σ2
e the

residual variance and I the identity matrix, u and e are
assumed to be distributed statistically independent.
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(ii). Models using marker data only

Several methods, namely, Bayes A, Bayes B, Bayes-
ian LASSO and Ridge Regression (equivalent to
GBLUP) (e.g. Crossa et al. 2010; Pérez and de los
Campos 2014) were used to model the marker data.
These methods differ based on assumptions on the prior
distribution assigned to marker effects. The methods are
based on the model:
y ¼ μ1þ Xβþ e ð2Þ
where y, μ and e were described previously, X is the
matrix for markers of dimension n × p which has been
centered and standardised, β is the vector of marker
effects, n = number of clones and p = number of
markers.

In addition to the above methods, the Reproducing
Kernel Hilbert Space (RKHS) kernel model (de los
Campos et al. 2010) was fitted. This aims to capture
non-additive genetic effects and generate variance co-
variance structures that are known as reproducing ker-
nels for individuals using the markers. There are several
reproducing kernels that can be used, for example
Gaussian, exponential, t, linear etc. (see for example
Tusell et al. 2014). In the case of the Gaussian kernel,
it is necessary to specify what is known as bandwidth h.
The kernels K1, K2 and K3 used three different band-

width parameters, that is h∈ 5
q0:05

; 1
q0:05

; 15 =q0:05
n o

(González-Camacho et al. 2012). We applied the meth-
od proposed by de los Campos et al. (2010) known as
RKHS-Kernel Averaging (RKHS-KA), in which pre-
dictions in the case of three kernels are obtained as
follows:

y ¼ μ1þ u1 þ u2 þ u3 þ e ð3Þ
where u1∼MN 0;σ2

1K1

� �
, u2∼MN 0;σ2

2K2

� �
and

u3∼MN 0;σ2
3K3

� �
, u1, u2 and u3 independent.

(iii). Models using both markers and pedigree data

The markers and the pedigree can be used
jointly in order to perform the prediction. The
model used for prediction based on the Ridge
Regression, Bayes A and Bayes B methods is
given by:

y ¼ μ1þ Xβþ uþ e ð4Þ
where all the terms were already described above.

The model used in the case of the RKHS method
is given by:

y ¼ μ1þ u1 þ u2 þ u3 þ u4 þ e ð5Þ
where u1, u2 and u3 where described above and
u4∼MN 0;σ2

aA
� �

, u1, u2, u3 and u4 distributed
independently.

The BGLR R-package (Pérez and de los Campos
2014) was used to fit all models with default values
provided by the software. Inferences were based on
30,000 samples with a burn-in period of 10,000
samples.

Assessing model accuracy

The accuracy of each model described above for
predicting cane yield and CCS for each panel of geno-
types was evaluated using a cross validation procedure.
Initially for each cross validation, 80% of the clones in a
particular panel were randomly selected and assigned to
a training (TRN) dataset. The remaining 20% of clones
in the panel were assigned to a test (TST) dataset. We
generated 50 random partitions with 80% of clones in
the training dataset and the remaining 20% in the testing
dataset. The prediction accuracy was evaluated using
the Pearson’s product-moment correlation coefficient
between the observed phenotype and predicted pheno-
type for the TST dataset. The average accuracy across
the 50 runs was then calculated per method per model.

Results

Analysis of phenotypic data

Figure 1 shows summary statistics from the analyses of
cane yield and CCS. Summary statistics were used to
evaluate the first, second and third panels of genotypes,
respectively. In most datasets, mean levels of both cane
yield and CCS were within ranges that are normally
expected in commercial production in the regions in
which the field trials were located. In panels 1 and 2,
the genetic coefficients of variation for cane yield were
considerably larger than panel 3. This is probably due to
(i) the single row plots used in panels 1 and 2 giving rise
to inflated estimates of genetic variance due to compe-
tition effects and (ii) clones in panel 3 were selected in
prior selection stages and most of the very low yielding
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clones were probably eliminated in these prior stages.
The genetic coefficients of variation for CCS were also
slightly larger for panels 1 and 2, but this difference was
not as large as for cane yield, probably reflecting the
much smaller impact of competition in single row plots
on sugar content than cane yield (Jackson and McRae
2001). For all three panels, the broad sense heritability
for both cane yield and CCS and the genetic correlations
between trials were moderate to high (> 0.6), indicative
of strongly repeatable genetic effects and accurate over-
all discrimination among genotypes. Even though the
field trials in panels 1 and 2 comprised smaller plots and
less replication than panel 3, the possible impact on
broad sense heritability due to greater error variance
was probably offset by higher genetic variation. Overall,
these phenotypic data for cane yield and CCS may be
considered typical of reasonable to good quality data
routinely generated in selection trials in the Australian
sugarcane breeding program, without any unusual fea-
tures, and suitable for examining the accuracy of geno-
mic selection approaches.

Accuracy of genomic prediction methods

For the first panel of genotypes for CCS, models using
pedigree information alone were similar to models using
marker data (Fig. 2). The combination of pedigree and
marker data was similar or slightly superior to where
marker data were used alone. For cane yield in the first
panel, use of marker data did not provide greater accu-
racy in prediction than the pedigree data alone, and the
combination of marker and pedigree data did not pro-
vide any superiority over the use of pedigree data alone,
and in fact, was slightly inferior in all cases. The Bayes
B method gave lower accuracies than the other methods
for the models using marker data.

For panel 2, all methods gave similar results except
for Bayes B which gave lower accuracies for models
including marker data (Figs. 2 and 3). The use of marker
data alone was superior to the use of pedigree data alone
for both CCS and cane yield, and the joint use of
pedigree and marker data provided greater accuracy in
the case of cane yield but not for CCS.

Fig. 1 Box plots showing median BLUPs, average predicted means, average broad sense heritability (Hb), genetic coefficient of heritability
(GCV) and average genetic correlation (rg mean) for panels 1, 2 and 3
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For panel 3 for CCS and cane yield, all methods gave
similar levels of prediction accuracy, except for Bayes B
which gave lower accuracy for models using marker data
(Figs. 2 and 3). However, accuracy levels for cane yield
overall in panel 3 were considerably lower than for the
other two panels (Fig. 3). The pedigree data alone gave
low levels of prediction accuracy particularly for cane
yield compared with the other datasets. By contrast for
CCS, all methods provided prediction accuracies based
on marker data which were similar or higher than for the
other datasets. For cane yield, the combination of marker
and pedigree data gave similar levels of accuracy to the
model where marker data were used alone while for CCS
the combination of marker and pedigree data provided a
similar accuracy compared with markers alone.

When panels 2 and 3 were combined, the accuracies
obtained were similar to what was obtained for panel 2
in respect to cane yield, and similar to panel 3, in respect
to CCS (Figs. 2 and 3). For both cane yield and CCS, the
use of marker data gave improved predictions compared
with use of pedigree data alone. The joint use of pedi-
gree and marker data gave improved predictions com-
pared with marker data alone for cane yield, but not for
CCS.

Discussion

The use of the same set of markers and prediction models
applied to different types of panels of genotypes allowed

Fig. 2 Box plots showing median accuracies of predictions for
commercial cane sugar (CCS) for models using only pedigree data
(A), models using only marker data (S) and models using both
marker and pedigree data (AS) for panels 1, 2, 2 and 3 combined

and 3. For each data × panel combination, accuracies are given
(from left to right) for Bayes A, Bayes B, Bayesian Lasso, Ridge
regression (GBLUP) and RHKS modelling methods
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prediction accuracies to be directly compared across sets of
genotypes and phenotypic data with different features.
Panels 1 and 2 consisted of relatively less selected clones,
and as expected, these appeared phenotypically more di-
verse compared with panel 3, as indicated by higher ge-
netic coefficients of variation especially for cane yield.
Genotypes in panels 1 and 2 were considered more repre-
sentative of those in early or middle stages of selection in
breeding programs, while genotypes in panel 3 were typ-
ical of those in advanced stages of selection.

For CCS, the prediction accuracies using DNA
markers were superior in panel 3 compared with the
other two panels. This indicates that the prior intensive
selection for CCS that would have occurred in selecting
the clones used in panel 3 did not diminish accuracy of

genomic prediction using DNA markers. However, by
contrast, for cane yield, the prediction accuracies were
much less for panel 3 compared with both panels 1 and
2. There are at least two explanations for this. First, one
factor contributing to the reduced genetic variation (as
measured by genetic coefficients of variation) in panel 3
was that bordered plots were used in contrast with
single-row plots in panels 1 and 2. Cane yield is known
to be strongly affected by competition effects in single-
row plots, in contrast with CCS which is mostly unaf-
fected (Jackson and McRae 2001). Thus, competition
effects would have contributed to the variation in cane
yield in panels 1 and 2, and genetic effects for compet-
itive ability may have been included in predictions in
panels 1 and 2. Second, prior selection of clones in panel

Fig. 3 Box plots showing median accuracies of predictions for
cane yield for models using only pedigree data (A), models using
only marker data (S) and models using both marker and pedigree
data (AS) for panels 1, 2, 2 and 3 combined and 3. For each data ×

panel combination, accuracies are given (from left to right) for
Bayes A, Bayes B, Bayesian Lasso, Ridge regression (GBLUP)
and RHKS modelling methods
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3, particularly discarding the most inferior genotypes
contributing to variation in panels 1 and 2, may have
reduced the capacity of the genomic prediction models.

Data from panels 2 and 3 were combined to assess
accuracy obtainable from combining data from two differ-
ent types of selection trials. Combining data from across
different stages of selection would be an option for
obtaining large training sets of phenotypic data from most
breeding programs. In this study, panel 2 was representa-
tive of relatively early (stage 2) trials and germplasm in a
commercial breeding program, with clones being evaluat-
ed in single row plots subject to higher inter-plot compe-
tition effects than in later stages. Panel 3, by contrast,
represented advanced stages of selection and clones that
had undergone prior rounds of effective selection and
which were evaluated in large plots mostly free from
competition effects. The results indicated prediction accu-
racies that were slightly superior to those obtained for the
other panels. This suggests a strategy of combining data
from different stages of selection for creation of large
training sets is an acceptable approach.

Resolution of the causes of reduced genomic prediction
accuracy for cane yield in panel 3 would seem important
for both future research and future practical application of
genomic prediction approaches in sugarcane breeding. If
the higher accuracies in panels 1 and 2 were largely due to
the influence of competition effects, it would mean that
genomic predictions of cane yield based on data subjected
to competition effects could be unreliable and ineffective
for application in breeding programs where the aim is
development of cultivars with high yield in pure
(commercial) stands, rather than with high competitive
ability in mixed plots. If this was the case, genomic pre-
diction models should be confined to panels where the
phenotypic data are obtained from multi-row plots. By
contrast, if the higher accuracies in panels 1 and 2 were
predominately due to the reduced genetic variation in the
highly selected clones used for panel 3, then genomic
prediction models from data obtained from panels 1 and
2, and other similar early-stage selection trials, would
clearly be superior and should be applied. However, reso-
lution of these two causes may not be easy because it
would seem to necessitate evaluation of a large population
of relatively unselected genotypes in both multi-row and
single row plots, and cross validation of genomic predic-
tions derived from the two types of plots. The use of multi-
row plots is expensive, and the evaluation of large numbers
of unselected genotypes in such plots is not done in
commercial breeding programs.

Determining prediction accuracy using marker data
with and without pedigree data included in the predic-
tion models was not reported previously for sugarcane
in the study by Gouy et al. (2013). However, this is
important in helping assess the value of marker data in
practice because most sugarcane breeding programs
have access to comprehensive pedigree data and can
utilise this for predicting breeding values. The additional
expense of obtaining marker data in breeding programs
is only justified if the use of markers could add to the
predictions significantly compared with using the al-
ready available pedigree data. In panels 2 and 3, the
use of marker data clearly added additional accuracy to
the model where pedigree data were used alone, al-
though in panel 1, the marker data did not provide any
advantage. The reason for the differences between
panels in this respect is not known, and no plausible
hypotheses were proposed.

Prediction accuracies reported in this study for CCS
were similar to those reported by Gouy et al. (2013) for
brix (a measure of soluble solids, which is known to be
usually strongly correlated with CCS). Gouy et al.
(2013) did not report on cane yield, but accuracies
which they found for yield components including stalk
number and stalk diameter were of a similar magnitude
as we found for cane yield. Gouy et al. (2013) suggested
that their accuracy levels in their study may have been
limited due to the small number of markers they used
(1499). The similar levels of accuracy obtained in our
study, despite the much larger number of markers used,
is suggestive that the importance of marker number may
not be as great as suggested by Gouy et al. (2013). This
may be at least in part due to the high level of linkage
disequilibrium persisting in sugarcane breeding pro-
gram populations.

The levels of prediction accuracy obtained in this
study, especially for cane yield, were relatively low
compared with a range of traits in other crops, particu-
larly when considering the relatively high broad-sense
heritability of our observed phenotypes in our study.
While highly variable, accuracies reported in a range
of traits in other crops, have been higher (e.g. Heffner
et al. 2009, 2011; Crossa et al. 2011, 2014; You et al.
2016). One explanation for the low or moderate propor-
tions of genetic variation predicted in our study is that
complex non-additive genetic effects, known to com-
prise a high proportion of genetic variance for a range of
traits in sugarcane, and particularly for cane yield (Wei
and Jackson 2017), were not explained in the prediction
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models. The RKHS method has been advocated as
having an advantage in being able to model non-
additive genetic effects. However, the five different
methods of genomic prediction tested in our study gave
very similar results in most cases. The fact that the
RHKS model had a similar accuracy to the other
methods suggests that it may have failed to adequately
model complex non-additive genetic effects in these
data. Another possible source of variation not accounted
for was additive effects due to variation in allele dos-
ages, because the SNP markers were called only as
being present or absent, but in a polyploid such as
sugarcane variation in numbers of copies of each allele
may be important. As discussed below, development of
genotyping methods that allow for accurate estimation
of marker dosages is a priority for future research.

The genomic prediction models used in our study did
not explicitly model genotype x environment interac-
tions, as has been done in some other studies (e.g.
Jarquín et al. 2017) for two reasons. Firstly, our goal
was to predict average genetic and breeding values
across all production environments rather than perfor-
mance in specific environments, which is in line with
the objective of the Australian sugarcane breeding pro-
gram. Secondly, genotype × environment interactions in
sugarcane in Australia are usually smaller than overall
genotypic effects, as indicated by reasonably high ge-
netic correlations between selection trials (Fig. 1). Sug-
arcane genotypes are still tested in selection trials across
multiple sites and crop-years in the Australian sugarcane
breeding program because this improves the accuracy of
estimating overall mean genotypic effects given that
genotype × environment interactions are usually signif-
icant. However, the relatively small magnitude of these
effects, which are often also not repeatable, in compar-
ison with overall genotypic effects, means that there is
usually little or no interest by breeders in predicting or
exploiting these effects in selection. This situation con-
trasts with some grain crops and environments, where
variation due to genotype × environment interactions
may be larger than overall genotype effects. This differ-
ence between sugarcane and some other crops may be
due to the impact in some crops of variation in time of
flowering interacting with some environmental factors
such as water stress having major impacts on grain
numbers and final yields, while this source of variation
is absent in sugarcane.

Marker data used in this study only depicted the
presence versus absence of alternative alleles, and not

dosage levels of alleles. Because variation in allele
dosage is likely to affect trait performance to some
extent this is expected to be an important limitation to
models used in this study. Methodology to estimate
allele dosage has been developed for SNP arrays in
autotetraploids (e.g. Schmitz Carley et al. 2017). Meth-
odology to undertake this in higher-level polyploids
such as sugarcane has been developed for analysis of
genotyping by sequencing data (e.g. Serang et al. 2012;
Garcia et al. 2013; Gerard et al. 2018; Mollinari and
Garcia 2019). This is also under active investigation for
SNP array data, and although progress in this area is
expected to occur in coming years, there are challenges
in calling accurate dosage levels using SNP array data in
higher-level polyploids (You et al. 2018). The estima-
tion of allele dosages and the incorporation of this
information in genomic prediction models is an area of
priority for ongoing research and in developing practical
breeding applications to breeding in sugarcane (as with
other higher-level polyploids) in the future.

Two main applications of genomic prediction are being
explored in plant breeding programs (Crossa et al. 2014).
Firstly, predicting total genetic value of individual geno-
types for possible release as cultivars. In this case, predic-
tion of both additive and non-additive effects is important.
The other application is focused on selection of parents and
rapid cycling of generations. This depends mainly on only
prediction of additive effects because these are the main
component of total genetic variation which is passed from
parents to offspring (Falconer and Mackey 1996). Our
results suggest that current models for genomic prediction
models are unlikely to offer practical value in sugarcane
breeding programs for prediction of genetic value, which is
required for selecting clones for commercial release. Large
improvements in prediction accuracy of genetic value may
only arise for models which effectively capture non-
additive genetic effects, given the likely high importance
of these effects.

However, application of models which use predom-
inately additive marker effects may have particular val-
ue for predicting breeding value in sugarcane breeding
programs. Genomic prediction accuracies obtained in
our study based on additive effects may correspond to
high accuracies for underlying additive genetic effects,
given that these effects comprise only a small proportion
of the total phenotypic variation being predicted.
Predicting breeding values and speeding up gains from
selection through shortening the generation interval
could be a major contribution of genomic prediction. It
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has been hypothesised that apparently limited gains in
sugarcane productivity and particularly in parental
breeding values could be at least partly attributable to
the high proportion of genetic variation present as non-
additive variation in sugarcane and long generation
interval between crossing and parent selection (Wei
and Jackson 2017). Even though selection for
favourable non-additive variance is obviously important
for selection of clones for cultivars, the high non-
additive genetic variation and low narrow sense herita-
bility clones in modern sugarcane breeding programs
means that selection based on phenotype poorly predicts
breeding value. It is possible that genomic prediction
based on predominately additive effects of DNA
markers may better predict breeding value than use of
phenotypic data, and some evidence for this has been
reported (Wei and Jackson 2017). This approach is not
dependent on methodology accounting for non-additive
genetic effects and is therefore perhaps more immedi-
ately available for application than applications relying
on prediction of total genetic effects.
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