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Abstract Micronutrients such as iron (Fe), copper
(Cu), manganese (Mn), and zinc (Zn) are integral to
living organisms for normal growth and reproduction.
In plants, these minerals are involved in various cellular
and molecular processes, such as chlorophyll synthesis
and photosynthesis (Cu, Fe, and Mn), respiration (Cu
and Fe), and stabilization of DNA and gene expression
(Zn). A deficiency or an excess of these minerals se-
verely impairs plant growth and development. When
soil pH is high, these elements are often present as

oxidized compounds, making their uptake extremely
difficult. Plants utilize complex mechanisms to acquire
these minerals from the rhizosphere, transport them
from roots to shoots, and deliver them to developing
tissues and edible parts of the plants. Uptake of these
metals is extremely complex and tightly regulated. Cad-
mium, which is toxic for all living organisms, signifi-
cantly interferes with the uptake of these metals. Here,
we review recent developments in understanding metal
transport in plants with a particular focus on rice and
discuss strategies for breeding crop plants suitable for a
diverse range of soils and climates, which will contrib-
ute to the production of healthier food for human
consumption.
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Introduction

Crop improvement is essential to feed the growing
human population (Hickey et al. 2019). One of the main
focuses of crop improvement is to improve mineral
acquisition from soil and mineral transport within
plants, so that plants may grow better and accumulate
more minerals in their edible parts. Plants acquire min-
erals from the rhizosphere and efficiently utilize these
minerals for various cellular processes. Among them, 14
minerals are classified as essential for plants because
plants fail to complete their life cycle in the absence of
these minerals (Marschner 1995). These minerals are
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essential for plants not only to complete their life cycle
and produce seeds but also to provide nutrition for
animals and humans. Metals such as iron (Fe), copper
(Cu), manganese (Mn), and zinc (Zn) are essential
micronutrients for all higher organisms (Marschner
1995). Fe serves as a cofactor for various enzymes that
perform diverse functions in biological systems. Fe is
critical for cellular respiration, chlorophyll biosynthesis,
and photosynthesis (Grotz and Guerinot 2006). Fe can
quickly change its oxidative state, which makes it a
good cofactor for cytochromes, catalases, and peroxi-
dase isozymes. In Fe–sulfur (Fe–S) proteins, Fe is asso-
ciated with cysteine and/or inorganic sulfur. Fe is also
essential for the synthesis and stabilization of chloro-
phyll; thus, Fe-deficient plants turn chlorotic owing to
decreased chlorophyll content, which affects plant
growth and development. Subcellular organelles, such
as chloroplasts and mitochondria, utilize Cu, Fe, Mn,
and Zn for several activities. Micronutrient deficiency
significantly inhibits the function of chloroplasts and
mitochondria, ultimately hindering plant growth and
development (Bashir et al. 2011a, c; Bashir et al. 2016;
Mori et al. 1991; Vigani et al. 2013). Like Fe, Cu
functions as a cofactor for numerous enzymes that are
involved in both photosynthesis and respiration. Cu is
also toxic when it accumulates at higher concentrations.
In plants, Zn exists only as Zn(II) and does not take part
in oxidoreduction reactions. For that reason, it is integral
to enzymes involved in carbohydrate, nucleic acid, pro-
tein, and lipid metabolism (Ishimaru et al. 2011b;
Broadley et al. 2007; Palmer and Guerinot 2009;
Suzuki et al. 2012). Mn serves as a cofactor or activator
of enzymes such as oxalate oxidase, Mn superoxide
dismutase, RNA polymerase, malic enzyme, isocitrate
dehyd rogenase , and phosphoeno lpy ruva t e
carboxykinase (Marschner 1995). Mn is also required
for photosynthetic oxygen evolution in chloroplasts
(Rutherford and Boussac 2004). Mn deficiency makes
plants more susceptible to pathogen infection and low-
temperature stress (Marschner 1995).

Problems in acquiring essential mineral elements not
only affect plant growth and reduce yield but also sig-
nificantly affect human health, as deficiency in certain
micronutrients and vitamins confers serious health prob-
lems (Nilson and Piza 1998). In recent years, the impor-
tance of micronutrient nutrition has been recognized and
different strategies have been developed to enrich food
crops with these micronutrients (Bashir et al. 2013c;
Welch and Graham 2004, 1999). In humans, Fe

deficiency results in anemia and has pathological con-
sequences (Hentze et al. 2004; Stoltzfus 2003). Fe is
required at higher concentrations during rapid growth
stages; thus, children, adolescents, and pregnant women
are at increased risk of Fe deficiency (Welch and
Graham 2004). Zn deficiency is a common nutritional
problem associated with growth retardation,
hypogonadism, immune dysfunction, and cognitive im-
pairment (Prasad 2009). Fe and Zn deficiencies affect
more than two billion people and cause more than 0.8
million deaths annually (Lopez et al. 2016; World
Health Organization 2009). Although less prevalent,
Mn deficiency may lead to severe birth defects and
asthma. Anemia and neutropenia are the most striking
hematologic abnormalities associated with Cu deficien-
cy (Williams 1983).

Cu deficiency during pregnancy may impair devel-
opment of the cardiovascular system or skeletal system,
and can result in immunologic abnormalities at infancy
or later stages of life (Bost et al. 2016). The combined
effects of these micronutrient deficiencies pose a signif-
icant threat to human health (World Health Organization
2003).

Deficiency or excess of these metals triggers toxic
symptoms in plants, and their uptake is therefore tightly
regulated through extremely complex mechanisms
(Kobayashi et al. 2014; Bashir et al. 2017, 2016;
Bashir et al. 2014). Fe, Cu, Mn, and Zn transport over-
laps in plant biological systems, and deficiency of these
minerals is particularly severe when plants are grown in
alkaline soils (Marschner 1995). Cadmium (Cd), which
is toxic for most living organisms (Kobayashi 1978),
significantly interferes with the uptake of these metals
because of the broad substrate specificity of proteins
responsible for their uptake and transport (Socha and
Guerinot 2014). Cd is a toxic metal (World Health
Organization 2003) that accumulates in the human body
over time and is responsible for severe health problems
such as “itai-itai” disease (Kobayashi 1978). Humans
acquire Cd through the food chain. In Asia, the main
source of Cd intake is from rice (Cheng et al. 2006), and
reducing Cd levels in rice is essential to ensure the
supply of safe food.

Developing crop plants with the ability to grow in
adverse soils requires an understanding of the molecular
mechanisms of metal uptake, transport, and storage
under conditions of varying metal availability (Bashir
et al. 2014, 2013a; Kobayashi and Nishizawa 2012).
Rice serves as a model crop for investigating the
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complex mechanisms of mineral uptake in plants. The
mechanisms of metal uptake can be divided into five
broad categories: (1) synthesis and/or secretion of metal
chelators, (2) mineral uptake from soil through metal
transporters, (3) metal storage in plant cells (through
expression of the Fe storage protein ferritin or in vacu-
oles), (4) cellular metal homeostasis within plant cells
and its implications for metal transport to edible parts,
and (5) transcriptional control of metal uptake and dis-
tribution. Category 5 plays a regulatory role for the first
four. Here, we comprehensively summarize the compo-
nents involved in the uptake and translocation of Fe, Zn,
Cu,Mn, and Cd in crop plants, with a particular focus on
rice. We briefly discuss strategies for developing crops
that efficiently regulate the uptake and storage of these
metals.

Acquisition of micronutrients from the rhizosphere

Mineral soils contain sufficient micronutrients for plant
cultivation. For example, the Fe concentration in soil is
typically > 6%. However, Fe is not easily available to
plants. Under aerobic conditions and in soils with high
pH, Fe exists largely in the form of insoluble ferric
chelates (Guerinot and Ying 1994). Although available
Fe concentrations in the range of 10–9–10–4 M are
considered optimal for plant growth, the free Fe3+ con-
centration in soils is estimated to be 10–17 M at neutral
pH, which is far below plant requirements (Guerinot
2010). The absorption of Fe, Zn, and Mn significantly
decreases in soils with a high pH, which comprise
approximately 30% of the world’s cultivated soils
(Guerinot and Ying 1994). By contrast, low soil pH
and anaerobic conditions, as found in lowland rice
fields, trigger the reduction of Fe3+ to Fe2+, which
ultimately enhances Fe and Mn absorption (Neue et al.
1998; Zhai et al. 2014). Fe toxicity is observed at pH <
6.5 under anaerobic conditions and pH < 5.8 under
aerobic conditions in flooded soils (Fageria et al. 2008;
Zhai et al. 2014). Like other metals, uptake of Cd is also
significantly influenced by rhizosphere conditions. In
plants grown under submerged conditions, such as low-
land rice, metal uptake is significantly different com-
pared with crop species grown under aerobic conditions
and is linked with the availability of other metals. Fe and
Zn phytotoxicity occurs in strongly acidic soils that
promote the uptake of Fe, Cd, and Zn by plants
(Chaney 2015; Fageria et al. 2008). Cd accumulation

in plants may also be controlled by regulating the Cd/Zn
ratio (Chaney 1993; Reeves and Chaney 2008).

The molecular mechanisms of mineral uptake from
the rhizosphere have been studied extensively (Ishimaru
et al. 2011c, a; Guerinot 2010; Guerinot and Ying 1994;
Kobayashi and Nishizawa 2012; Kobayashi 2019) and
are summarized in Fig. 1. Plants can be grouped into
two broad categories based on how they take up Fe (and
to some extent Zn, Mn, and Cu) from the soil—i.e.,
strategy I vs. strategy II plants (Marschner et al. 1986).
Strategy I plants (all higher plants with the exception of
graminaceous plants) first secrete protons to lower rhi-
zosphere pH and solubilize minerals; then, ferric-chelate
reductase (FRO) reduces Fe at the root surface. Finally,
the resulting Fe2+ is transported across the root plasma
membrane through IRT1 (Vert et al. 2002; Marschner
and Römheld 1994). Strategy I plants also release phe-
nolics and Fe(III)-chelating coumarins as part of their
acquisition machinery (Cesco et al. 2010; Rajniak et al.
2018; Tsai and Schmidt 2017). In Arabidopsis, sideretin
is a primary molecule secreted by roots in response to Fe
deficiency. Sideretin is derived from the coumarin
fraxetin, and the secretion of small-molecule reductants
by roots may be a widespread and previously underap-
preciated component of reduction-based iron uptake
(Rajniak et al. 2018). By contrast, strategy II plants
(e.g., graminaceous plants) synthesize and secrete
mugineic acids (MAs) that bind to and solubilize Fe,
Zn, Cu, or Mn, and the resulting metal–MA complexes
are readily taken up by the yellow stripe–like (YSL)
family of transporters at the root surface (Curie et al.
2001; Nozoye et al. 2011). Graminaceous plants also
utilize IRT transporters for metal uptake (Ishimaru et al.
2006; Pedas et al. 2008). However, the differences be-
tween strategy I and strategy II plants are not entirely
distinct, as IRT transporters and FRO genes are present
in strategy II plants, and MAs have been discovered in
strategy I plants (Suzuki et al. 2016; Pedas et al. 2008;
Kobayashi et al. 2014). Rice, a strategy II plant, secretes
deoxymugineic acid (DMA) to acquire soil Fe (Bashir
et al. 2017, 2006; Cheng et al. 2007). The genes related
to MA biosynthesis and secretion, as well as uptake of
metal–MA complexes, have been characterized in detail
(Kobayashi et al. 2014). The conversion of three mole-
cules of S-adenosylmethionine (SAM) to nicotianamine
(NA) through NA synthase (NAS) is conserved in all
plant species. In graminaceous plants, NA is further
converted to a 3′-keto intermediate by NA aminotrans-
ferase, and DMA synthase reduces this 3′-keto
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intermediate to DMA (Bashir and Nishizawa 2006;
Bashir et al. 2006). Transporter of MA family
phytosiderophores 1 (TOM1) effluxes this DMA into
the rhizosphere, whereas TOM2 plays a critical role in
DMA efflux within the plant body (Nozoye et al. 2011,
2015). Fe and Zn deficiencies significantly enhanceMA
biosynthesis and secretion in barley (Suzuki et al. 2006)
in a diurnal fashion, probably to avoid bacterial degra-
dation (Römheld and Marschner 1990).

NA, an intermediate and a structural analog of MAs, is
ubiquitously present in plants. It chelates Fe Zn, Mn, and
Cu (Shojima et al. 1989) and plays a significant role in Fe,
Zn, Mn, and Cu homeostasis (Hell and Stephan 2003;
Takahashi et al. 2003). Rice NAS2 localizes to particular
vesicles which are suggested to be involved in the synthe-
sis of MAs (Nozoye et al. 2014a, b). Although the main
role of NA is related to metal homeostasis within the plant
body, the Zn hyperaccumulator plant Arabidopsis halleri
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Fig. 1 Schematic diagram showing the various components of micronutrient transport in rice. The roles of different transporters
participating in metal uptake from roots, root-to-shoot translocation, and vascular loading and unloading



secretes NA from roots in response to excess Zn (Tsednee
et al. 2014). However, it is unclear whether rice secretes
NA into the rhizosphere to chelate metals. The expression
of genes related to MA biosynthesis is significantly upreg-
ulated by Fe and Zn deficiency (Suzuki et al. 2012;
Kobayashi and Nishizawa 2012). Transcriptional regula-
tion of these genes in response to Fe availability is medi-
ated by various combinations of cis-acting elements and
trans-acting factors (Kobayashi 2019).

DMA secreted by rice chelates Fe, Zn, Mn, and
Cu, and its role in Fe and Zn uptake is well
established in barley and rice (Suzuki et al. 2008;
Inoue et al. 2009; Bashir et al. 2012). In barley,
Zn(II)–DMA is preferentially taken up, whereas rice
prefers Zn2+ over Zn(II)–DMA (Suzuki et al. 2006,
2008). Maize ZmYS1 transports Fe(III), Zn(II),
Cu(II), and nickel(II) (Roberts et al. 2004). In rice,
OsYSL15 takes up Fe(III)–DMA from the rhizo-
sphere; however, the transporter participating in
Zn(II)–DMA uptake has not been characterized
(Ishimaru et al. 2011b).

The members of the Zn-regulated transporter/Fe-
regulated transporter-related protein (ZIP) family
play a significant role in Zn uptake and transport.
OsZIP3 and OsZIP4 specifically transport Zn,
whereas OsZIP7a and OsZIP8 transport Fe and Zn
(Yang et al. 2009; Ishimaru et al. 2005; Ramesh
et al. 2003). Based on their expression patterns,
OsZIP1, OsZIP3, OsZIP8, and to some extent
OsZIP5 seem important for Zn and/or Fe uptake
from soil. Uptake of Zn by OsZIP3 is significantly
inhibited in the presence of Mn, indicating that it
may also transport Mn (Ramesh et al. 2003). In rice,
OsNRAMP1 is a plasma membrane protein involved
in Fe and Cd transport (Takahashi et al. 2011),
whereas OsNRAMP5 transports Fe, Mn, and Cd
(Ishimaru et al. 2012; Sasaki et al. 2012; Ishikawa
et al. 2012). The rice phenolic efflux transporters
phenolic efflux zero 1 and 2 (PEZ1 and PEZ2) also
play a significant role in solubilizing apoplasmic Fe
(Bashir et al. 2011b; Ishimaru et al. 2011a, c).

Mn uptake in rice is mediated mainly by
OsNRAMP5, although its expression is not upregulated
under Mn-deficient conditions (Ishimaru et al. 2012;
Sasaki et al. 2012). However, the role of OsMTP9 in
Mn uptake has also been discussed (Shao et al. 2017;
Ueno et al. 2015). The transporters contributing to Cu
uptake from the rhizosphere in rice have not been char-
acterized yet.

Distribution of metals within the plant body

After uptake through roots, micronutrients are
transported to aerial parts through the xylem and phlo-
em. Within roots, micronutrients can move freely
through the plasmodesmata (symplast) and extracellular
space (apoplast); however, the latter route is blocked by
Casparian strips. In Arabidopsis, Casparian strips are
present as single-cell layers, whereas rice possesses
double-cell layers of Casparian strips. As a result, rice
is able to regulate the transport of minerals in roots more
precisely. As noted above, excess micronutrients can be
toxic; therefore, plants must strictly control their move-
ment from roots to vegetative organs and seeds. Plants
have evolved various strategies for this purpose (strictly
control the movement of micronutrients from roots to
vegetative organs and seeds), including the chelation of
free metals and vacuolar sequestration (Briat et al. 2015;
Kobayashi and Nishizawa 2012). Although the strategy
I and II classifications apply only to micronutrient up-
take from the rhizosphere, strategy II plants possess
MAs in addition to other metal chelators such as NA,
citrate, and phenolics. Strategy I plants utilize the latter
three chelators. Low-molecular-weight peptides may
also be utilized for the phloem transport of metals
(Yoneyama et al. 2015). The presence of coumarins
and other redox-active molecules has not yet been re-
ported in rice.

Micronutrient transport to new leaves occurs mainly
through the phloem, whereas micronutrient transport to
old leaves occurs mainly through xylem (Yamaji and
Ma 2014; Tsukamoto et al. 2009). As young leaves are
more sensitive to nutrient deficiency, xylem-to-phloem
transport is an extremely important step in maintaining
the flow of micronutrients, and nodes play an important
role in xylem-to-phloem micronutrient transport
(Yamaji and Ma 2014; Sasaki et al. 2015). The transport
of minerals to inflorescences and seeds is highly com-
plex. Minerals can be directly transported from soil to
flowers through the xylem, and are also relocated from
leaves through the phloem (Bashir et al. 2013b, 2015;
Kim et al. 2006; Tsukamoto et al. 2009; Zhang et al.
2012). At the grain-filling stage, Cd and other metals are
absorbed directly by the roots. They are then transported
to the panicles and accumulate in the grain (Ishikawa
et al. 2011; Fujimaki et al. 2010; Tsukamoto et al. 2006,
2009). Cd translocation via the xylem is the primary
physiological process determining Cd accumulation rate
in shoots and grains of rice plants (Uraguchi and
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Fujiwara 2012). It is suggested that at least two path-
ways may mediate root-to-shoot Cd translocation in
rice. One depends on Zn2+/Cd2+ loading to the xylem
by rice P1B-type heavy metal ATPase 2 (OsHMA2),
whereas the other may be Zn-insensitive (Fontanili et al.
2016). NA and MAs have been identified in the xylem
and phloem of rice and barley, and play an important
role in the long-distance transport of Fe and other metals
in graminaceous plants (Kakei et al. 2009; Yoneyama
et al. 2015). Concentrations of DMA and NA are similar
in xylem sap and are significantly lower than citrate
concentration. On the other hand, the concentration of
DMA is more than two times higher in phloem sap and
leaf extract compared with that of NA, whereas the
concentration of citrate is negligible in leaves and phlo-
em sap (Ando et al. 2013). In the xylem of rice plants, Fe
predominantly exists as Fe citrate, but DMA–Fe(III) is
also present in small amounts. Cu is predominantly
bound to DMA, whereas Zn and Cd are found as free
ions (Kakei et al. 2009; Yoneyama et al. 2015). In rice
phloem, Fe is predominantly present as Fe(III)–DMA,
and Fe-bound citrate and proteins are also present
(Nishiyama et al. 2012; Yoneyama et al. 2015). In the
phloem, Zn is bound to NA; Cu is bound to NA,
histidine, and proteins; and Cd is bound to specific
proteins and thiol compounds (Yoneyama et al. 2015).
In rice, Cu-containing compounds in phloem sap com-
prise a mixture of high- and low-molecular-weight com-
pounds, whereas Cu-binding compounds in the xylem
sap comprise low-molecular-weight compounds (Ando
et al. 2013). The concentrations of metals, MAs, citrate,
and NA in xylem also vary significantly among plant
species. Fe concentrations in xylem sap range from 9 to
40 μM. NA is present in the xylem sap of strategy I and
strategy II plants, with higher concentrations in non-
graminaceous plants. By contrast, DMA and MA are
predominantly present in graminaceous plants (Ariga
et al. 2014; Yoneyama et al. 2010). Recently the role
of rice vacuolar phytosiderophore transporter (OsVMT)
in sequestering DMA into the vacuoles has been de-
scribed.OsVMTexpresses in parenchyma cell bridges of
node I andOsVMT knockout plants accumulate more Fe
and Zn in polished rice grains as DMA increases solu-
bilization of Fe and Zn deposited in the node (Che et al.
2019). The concentration of free citrate also varies
greatly (from 4 to 2200 μM) among plant species. Fe
in the xylem sap of non-graminaceous plants may form
two types of Fe citrate (Ariga et al. 2014; Yoneyama
et al. 2010). In dicots, Fe is transported as ferric

complexes with citrate and malate (Rellán-Álvarez
et al. 2010). To solubilize these complexes, embryos
efflux ascorbate to chemically reduce Fe, and this step
is essential for the uptake of Fe(II). Ascorbate efflux is a
novel Fe transport mechanism in plants that can play a
major role in controlling Fe uptake by seeds in some
plant species (Grillet et al. 2014).

DMA is secreted into the xylem and phloem through
TOM1 and TOM2, where it can bind to free metals and
contribute to their transport (Nozoye et al. 2011, 2015).
Efflux transporter of NA (ENA1) is reported to partici-
pate in NA efflux in vascular tissue (Nozoye et al.
2019). Phenolics such as protocatechuic acid (PCA)
and caffeic acid (CA) also form complexes with Fe(III),
and thus play a role in Fe uptake and transport (Bashir
et al. 2011b; Ishimaru et al. 2011a, c; Jin et al. 2007).
PEZ1 and PEZ2 are reported to efflux PCA and CA into
the xylem to remobilize precipitated apoplasmic Fe
(Bashir et al. 2011b; Ishimaru et al. 2011a, c).
Arabidopsis FRD3 and rice OsFRDL1 efflux citrate into
the xylem, ensuring efficient Fe translocation to shoots
(Inoue et al. 2004; Yokosho et al. 2009; Durrett et al.
2007; Roschzttardtz et al. 2011). The expression of
OsFRDL1 is not regulated by Fe deficiency and is
observed in cells involved in long-distance transport
(Kobayashi et al. 2014; Yokosho et al. 2009).OsFRDL1
is also expressed in reproductive organs and is sug-
gested to play a major role in Fe distribution to grains
through nodes (Inoue et al. 2004; Yokosho et al. 2016).

Various transporters are involved in loading and
unloading micronutrients to and from the xylem and phlo-
em, contributing to micronutrient homeostasis in plants
(Fig. 1). OsHAM2 effluxes Zn and Cd into the xylem
and phloem (Yamaji et al. 2013b; Takahashi et al.
2012b), OsHMA5 and OsHMA9 play a role in xylem
loading of Cu, and OsHMA9 may also play a role in Zn
and Pb efflux from cells (Lee et al. 2007; Deng et al. 2013).
In rice, several members of the YSL family have been
characterized. OsYSL2, OsYSL9, OsYSL15, OsYSL16,
and OsYSL18 regulate micronutrient transport in vegeta-
tive tissues and facilitate metal transport to seeds. The role
of OsYSL13 in Fe distribution in rice has also been
discussed (Zhang et al. 2018b). OsYSL2 is expressed in
the phloem under Fe-sufficient conditions, as well as in the
cortex and stele under Fe-deficient conditions, whereas
OsYSL16 expression is observed in the vascular bundle
of leaves (Kakei et al. 2012). Thus, OsYSL2 facilitates
phloem Fe and Mn transport (Koike et al. 2004; Ishimaru
et al. 2010), which are extremely important for plant
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growth. As OsYSL2 transports Fe in the form of Fe(II)–
NA, and as Fe is predominantly found as Fe(III)–DMA in
the phloem, OsYSL16 may play a major role in phloem
Fe(III)–DMA transport (Kakei et al. 2012; Lee et al. 2012).
Rice OsYSL9 transports Fe(II)–NA and Fe(III)–DMA in
plants, and appears to play an important role in transporting
Fe from the endosperm to the embryo in developing seeds
(Senoura et al. 2017). Apart from its major role in Fe
uptake from soil, OsYSL15 expression is also observed in
shoots, suggesting that it is involved in micronutrient
distribution within the plant body and to developing seeds
(Inoue et al. 2009; Lee et al. 2009). OsYSL16 and
OsYSL18 play a significant role in Fe(III)–DMA
distribution/translocation in plants (Aoyama et al. 2009;
Kakei et al. 2012; Lee et al. 2012). Phylogenetic analysis
suggests that the YSL family is composed of four sub-
groups. Among the 18 YSLs identified in rice to date,
OsYSL-1,OsYSL-3,OsYSL-4,OsYSL-7,OsYSL-8,OsYSL-
17, andOsYSL-18 are specific to rice and may be involved
in transporting metal–DMA complexes (Aoyama et al.
2009). Among the six members of this subgroup, only
OsYSL18, which is a Fe(III)–DMA transporter, has been
characterized thus far. OsYSL2 and OsYSL18 are in-
volved in transporting Fe to developing seeds (Aoyama
et al. 2009; Ishimaru et al. 2010; Koike et al. 2004).
OsYSL16 is expressed at the root epidermis and vascular
bundles of roots and shoots. In the vascular bundles of
non-elongated nodes,OsYSL16 is expressed in the phloem
of new leaves and the xylem of old leaves (Kakei et al.
2012). OsYSL16 also transports Cu-NA and is important
for Cu distribution in rice, where it preferentially delivers
Cu to floral organs (Zhang et al. 2018a; Zheng et al. 2012).
OsHMA4 controls root-to-shoot translocation of Cu and
its accumulation in rice grains by sequestering Cu into root
vacuoles (Huang et al. 2016). A single amino-acid substi-
tution makes a significant difference in grain Cu accumu-
lation (Huang et al. 2016). In addition,OsYSL2,OsYSL15,
TOM1, and TOM2 are expressed in the vascular tissues of
shoots (Inoue et al. 2009; Koike et al. 2004; Nozoye et al.
2011, 2015). OsYSL6 transports Mn–NA complexes and
plays an important role in detoxifying excess Mn in rice
(Sasaki et al. 2011). OsNRAMP3 is localized at nodes and
is believed to serve as a switch in response to changes in
Mn levels (Shao et al. 2018). Rice accumulates high levels
of Mn in leaves without exhibiting phenotypic abnormal-
ity. Metal tolerance protein 8.1 (MTP8.1), a member of the
Mn-cation diffusion facilitator (CDF) family, has been
shown to play a central role in Mn tolerance by sequester-
ingMn into vacuoles (Chen et al. 2013). Furthermore, rice

MTP11 is a trans-Golgi-localized Mn transporter involved
in intracellular Mn compartmentalization, leading to Mn
tolerance (Tsunemitsu et al. 2018). MTP11 is also respon-
sible for maintaining high fertility in rice (Tsunemitsu et al.
2018).

In rice, OsZIP4, OsZIP5, OsZIP7, and OsZIP8 appear
to play an important role in Zn distribution in shoots and
inflorescences (Ishimaru et al. 2005; Yang et al. 2009;
Ricachenevsky et al. 2018; Tan et al. 2019; Lee et al.
2010a, b), while OsZIP6 transports Fe, Cd, and cobalt
(PG et al. 2015). These transporters could be utilized to
enhance Zn uptake and/or distribution to improve crop
plants. In addition to ZIP family transporters, HMAs are
also involved in Zn translocation in rice. OsHMA2 is
expressed mainly in the mature zone of the roots at the
vegetative stage, and in nodes at the reproductive stage. Its
expression does not change based on Zn availability.
OsHMA2 contributes to Zn and Cd transport, particularly
to developing tissues (Takahashi et al. 2012b; Yamaji et al.
2013b). As discussed above, OsHMA5 and OsHMA9
play a role in the xylem loading of Cu and Zn, and may
also be involved in the transportation of Cu and/or Zn to
the developing embryo in rice (Lee et al. 2007; Deng et al.
2013).

OsNRAMP5 contributes to Mn distribution in shoot
tissue and is also involved in Mn, Fe, and Cd uptake from
soil (Yang et al. 2014). OsIRT1 and OsNRAMP1 are
involved in Fe and Cd distribution in shoots (Ishimaru
et al. 2007a; Lee and An 2009; Takahashi et al. 2011).

Subcellular metal homeostasis

Distribution of minerals among different cellular com-
partments to regulate cellular metabolism is considered
a key factor for crop improvement (Bashir et al. 2016).
The precise control of storage to mitigate mineral defi-
ciency or toxicity is important not only for maintaining
cellular function but also for regulating mineral trans-
port to seeds. Here, we briefly review subcellular min-
eral transport in rice, which remains incompletely un-
derstood (Fig. 2). Mitochondrial iron transporter (MIT)
transports Fe to mitochondria, where it is essential for
plant growth and development (Vigani et al. 2016;
Bashir et al. 2011a, c). OsVIT1 and OsVIT2 contribute
to Fe, Mn, and Zn transport to tonoplasts (Zhang et al.
2012). ENA1 is suggested to play a critical role in the
intracellular trafficking of Fe (Nozoye et al. 2011,
2019). ENA1 is also thought to be involved in recycling
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NA in the plasma membrane and cellular compartments
through vesicular transport (Nozoye et al. 2019).

MTP8.1 and MTP8.2 contribute to Mn sequestration
into the vacuole (Takemoto et al. 2017; Chen et al.
2013), and CAX1a and CAX3 have also been suggested
to play a role in Mn sequestration into the vacuole with
broader substrate specificity (Kamiya et al. 2005). Rice
HMA3 deposits Cd and Zn into vacuoles (Sasaki et al.
2014), whereas HMA1 may be involved in Zn efflux
from chloroplasts into the cytosol (Takahashi et al.
2012a). Thus, regulating these transporters may be a
useful approach to crop improvement.

Potential of plant transporters for improvement
of crop plants

Biotechnology has great potential to significantly
advance the biofortification of cereals and other crop
plants. In rice, efforts have been focused on increas-
ing the Fe content of rice endosperm with different
approaches, such as overexpressing ferritin and
genes involved in NA and MA biosynthesis to in-
crease metal uptake and translocation. Several re-
ports have comprehensively summarized the prog-
ress that has been made in developing various strat-
egies for biofortification (Bashir et al. 2013a, c;
Masuda et al. 2013; Ludwig and Slamet-Loedin
2019). Therefore, we do not discuss these strategies
here, and instead focus on the role of metal trans-
porters in biofortification and crop improvement.

Plants may be improved for sustainable crop produc-
tion using membrane transporters to increase the con-
centration of micronutrients in edible parts (Schroeder

et al. 2013), decrease toxic elements in the food chain,
and extract toxic heavy metals from soil (Takahashi
et al. 2014). Increased uptake and translocation of
micronutrients have the potential to significantly in-
crease seed micronutrient concentration. However, it is
logistically difficult to achieve this goal owing to issues
associated with the regulation of transporters at the
protein level, poor discrimination of substrates by metal
transporters, and the complexity of root-to-shoot
transport.

Rice plants with enhanced OsIRT1 expression are
tolerant of Fe deficiency under field conditions (Lee
and An 2009). Overexpression ofOsIRT1 also increases
the accumulation of Fe and Zn in seeds (Lee and An
2009). However, overexpression of OsZIP4, OsZIP5,
OsZIP7, OsZIP8, and OsYSL2 results in increased ac-
cumulation of metals in roots instead of shoots
(Ishimaru et al. 2007b, 2010; Lee et al. 2010a, b). This
problem could be solved by regulating the expression of
these transporters by a suitable promoter. For example,
plants expressing OsYSL2 under the control of the pro-
moter of the phloem-specific sucrose transporter
OsSUT1 exhibit up to a 4.4-fold increase in seed Fe
concentration compared with wild-type plants. These
results indicate that gene regulation has the potential to
significantly increase Fe flow to rice seeds (Ishimaru
et al. 2010). Root-to-shoot Zn translocation may also be
increased under optimal Zn availability. Thus, overex-
pression of HvZIP7, a low-affinity Zn transporter in
barley, specifically increases Zn uptake under moderate-
ly high Zn concentrations, with no measurable increase
in Fe, Mn, Cu, or Cd (Tiong et al. 2014, 2015, ).
Transgenic plants overexpressing OsYSL15 accumulate
up to 29% more Fe than wild-type plants (Lee et al.
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2009). Expressing multiple genes regulated by different
promoters such as two copies of ferritin (one under the
control of the promoter of glutelin b1 and 2nd under the
control of the promoter of the globulin b1) withHvNAS1
(under the control of the promoter of actin) and OsYSL2
(under the control of the promoter of the OsSUT1 and
globulin b1) significantly increases Fe, Zn, and Cu
contents in rice seeds without any yield penalty
(Masuda et al. 2012, 2013; Aung et al. 2013). These
results indicate that the strict control of gene expression
through tissue- and organ-specific promoters, as well as
sufficient availability of micronutrients, is extremely
important for successful micronutrient biofortification.

Several ZIP and NRAMP transporters exhibit very
poor ability to discriminate among divalent metal cat-
ions, and as a result, they transport Cd along with
essential micronutrients (Clemens et al. 2013). For
example, AtNRAMP3 transports Fe, Mn, and Cd;
AtNRAMP4 transports Fe, Mn, Zn, and Cd; and
AtNRAMP6 specifically transports Cd (Oomen et al.
2009; Thomine et al. 2000; Cailliatte et al. 2009;
Molins et al. 2013). AtNRAMP3 and AtNRAMP4
mobilize Fe stores during germination, and the failure
of this process triggers Fe-deficiency responses that
specifically affect plastids, but not mitochondria
(Bastow et al. 2018). OsZIP1, OsIRT1, and OsIRT2
also transport Cd along with Fe (Nakanishi et al. 2006;
Ramesh et al. 2003). Thus, overexpressing these trans-
porters to achieve biofortification targets would also
increase the risk of Cd accumulation in rice grains,
especially when rice is grown in Cd-contaminated
soils. Similarly, in PEZ1 and PEZ2 mutants, several
genes related to metal uptake are upregulated, which
lead toCdaccumulation in seeds (Ishimaru et al. 2011a,
c; Bashir et al. 2011b). Plant growth is significantly
compromised in PEZ1-overexpressing plants, likely
due to increased Fe accumulation (Ishimaru et al.
2011a, c; Bashir et al. 2011b). There are only few
exceptions among NRAMPs, such as rice OsNRAT1
and OsNRAMP3, which specifically transport Al3+

and Mn2+, respectively (Xia et al. 2010; Yamaji et al.
2013a). Similarly, OsZIP3 does not transport Cd
(Ramesh et al. 2003; Sasaki et al. 2015) and OsZIP4
specifically transports Zn (Ishimaru et al. 2005).

Developing mutated versions of these proteins that
do not transport Cd while still transporting beneficial
metals is one approach to addressing these constraints.
For example, replacing specific amino acids changes the
substrate specificity of IRT1 in Arabidopsis (Rogers

et al. 2000). The histidine-rich loop and residues within
transmembrane domain 3 can influence metal selectivity
in the CDF family, possibly through conformational
changes induced at the cation transport site located
within the membrane or at the cytoplasmic C-terminal
domain (Podar et al. 2012). Despite the strong homolo-
gy between AtNRAMP3 and AtNRAMP4, only
AtNRAMP4 can transport Zn2+, suggesting that differ-
ences of a few residues in the primary sequence modu-
late substrate range (Lanquar et al. 2004). Arabidopsis
NRAMP3 and NRAMP4 also play a significant role in
exporting vacuolar Fe in germinating seeds (Bastow
et al. 2018). Mutations in AtNRAMP4 proteins selec-
tively modify Cd2+ and Zn2+ accumulation without
affecting Fe transport mediated by NRAMP4 in planta
(Pottier et al. 2015). These results are of particular
importance because NRAMP plays a major role in Cd
uptake. The results also emphasize that modification of
transporters could be effectively utilized for
biofortification while minimizing the risk of toxic metal
accumulation (Podar et al. 2012; Pottier et al. 2015).

Rice plasmamembrane low-affinity cation transporter 1
(OsLCT1) is strongly expressed in leaf blades and nodes
during the reproductive stage. In OsLCT1-knockdown
plants, phloem-mediated Cd transport significantly de-
creases; as a result, these plants accumulate significantly
less Cd in the grains compared with wild-type plants
(Uraguchi et al. 2011). Regulating the expression of
OsHMA3, which is a Cd and Zn transporter, significantly
reduces root-to-shoot Cd translocation by sequestering Cd
into the root vacuole, and the expressions of OsZIP4,
OsZIP5, OsZIP8, OsZIP9, and OsZIP10 significantly in-
crease in OsHMA3-overexpressing plants (Sasaki et al.
2014; Ueno et al. 2010; Cai et al. 2019). Thus, grain Cd
content may be significantly reduced by regulating the
expression of OsHMA3 and OsLCT1, which could con-
tribute to the elimination of Cd from the food chain.

In rice, the plasma membrane transporter OsNRAMP5
is reported to be the main pathway for Cd2+ influx. Com-
plete knockout of OsNRAMP5 significantly reduces Cd
uptake from soil, enabling the development of rice lines
with minimal Cd in grains (Ishikawa et al. 2012; Ishimaru
et al. 2012; Sasaki et al. 2012). Ishikawa et al. (2012)
produced NRAMP5-knockout mutants through ion-beam
irradiation. When grown on Cd-contaminated soils, these
non-transgenic mutants accumulated extremely low levels
of Cd in their rice grains. Thus, the mutants may be easily
adopted by farmers with low biosafety risk, significantly
contributing to the development of healthier foods.
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Although Cd uptake is significantly reduced in
OsNRAMP5 RNAi plants, root-to-shoot translocation sig-
nificantly increases (Takahashi et al. 2014). Root-to-shoot
translocation of Cd in knockdown rice in the cultivar
Anjana Dhan was more efficient than in the corresponding
wild type, which is one of the highest Cd-accumulating
cultivars, suggesting that these knockdown plants are
promising candidates for Cd phytoremediation. As
discussed above, Cd uptake and translocation are mediated
in part by Fe transporters such as OsIRT1, OsIRT2, and
OsNRAMP1 (Takahashi et al. 2011; Nakanishi et al. 2006;
Ishimaru et al. 2006). The expressions ofOsIRT1,OsIRT2,
and OsNRAMP1 increase significantly in OsNRAMP5-
knockdown plants, which may be responsible for enhanc-
ing Cd translocation to shoots (Ishimaru et al. 2012;
Takahashi et al. 2014). Thus, carefully regulating the ex-
pression of NRAMP family genes may facilitate the devel-
opment of safer foods and soil improvement programs
based on Cd extraction. Carefully regulating the expres-
sion of genes, such as OsVIT1 and OsVIT2, and MIT and
MIR, which are essential for maintaining cellular levels of
available Fe and other metals, may significantly improve
plant growth and support biofortification (Bashir et al.
2016).

Future prospects

Various strategies have been developed to breed crop
plants able to grow on poor soils with low metal availabil-
ity and/or with improved accumulation of beneficialmetals
in edible parts. These plants could be cultivated on a
diverse range of soils. These successes have been achieved
through regulating the expressions of metal chelators, en-
zymes, and/or transporters. There is still great potential to
further exploit such strategies by devising better combina-
tions of promoters and genes. For example, newly discov-
ered genes could be transformed alone or in combination
with other genes. In addition to the known genetic net-
works, several new aspects of metal translocation have
been discovered in recent years. These include peptides
that regulatemetal accumulation bymanipulating substrate
specificity and gene expression in response to varying
metal availability. Regulating the expression of small pro-
teins or peptides may be a promising approach for crop
improvement. Cd accumulation in leaf 1 (CAL1) encodes
a defensin-like protein that specifically binds to Cd, facil-
itating Cd secretion to extracellular spaces and lowering
cytosolic Cd concentration while driving long-distance Cd

transport via the xylem (Luo et al. 2018). CAL1 regulates
Cd translocation from roots to shoots in a direction oppo-
site to that of OsHMA3; hence, CAL1 does not contribute
to Cd accumulation in grains (Zhao and Huang 2018). In
Arabidopsis, the FEP1 peptide functions in iron homeo-
stasis by activating bHLH38 and bHLH39. Interestingly,
IRT1 and FRO2 are activated by bHLH39 without the
involvement of FIT (Hirayama et al. 2018). Similarly,
Arabidopsis IRON MAN (IMA), which seems to be con-
served across species, plays an integral role in Fe uptake
and transport by regulating the expression of related genes.
IMA1 is predominantly expressed in the phloem, prefer-
entially in leaves. Grafting experiments revealed that the
IMA1 peptide in shoots positively regulates Fe uptake in
roots (Grillet et al. 2018). In rice, the expression of several
small open reading frames (sORFs; putatively encoding
small functional peptides) is regulated bymetal availability
(Bashir et al. 2014). These results indicate that small
peptides may play an important role in regulating metal
metabolism in plants. Integrated efforts are required to
elucidate the molecular mechanisms of these effects.

Few studies have focused on the crystal structure of
metal transporters to highlight the interactions between
these proteins and metals in plants. Recently, the crystal
structure of Eucalyptus grandis (rose gum) VIT1 was
determined. VIT1 adopts a novel protein fold, forming a
dimer of five membrane-spanning domains. A second
transmembrane helix protrudes from the lipid membrane
and connects to a three-helix bundle within a triangular
cytoplasmic domain, which binds to and solubilizes the
substrate metal ions (Kato et al. 2019). Understanding the
binding of proteins to metals creates unique opportunities
to manipulate the selectivity of metal transport in plants.
Developing mutated versions of NRAMPs, HMAs, VITs,
IRTs, and other transporters may facilitate the development
of plants with increased Fe/Zn/Mn/Cu transport without
affecting Cd uptake, improving food safety.

The use of new technologies such as CRISPR/Cas9
could significantly contribute to the development of
crop plants with enhanced beneficial minerals while
limiting Cd accumulation (Tang et al. 2017). Regulating
the synthesis of phytohormones could also contribute to
the mineral use efficiency along with enhanced toler-
ance to other stresses in plants enabling these plants to
grow under diverse environmental conditions (Bashir
et al. 2019; Rasheed et al. 2016; Lei et al. 2014; Zhao
et al. 2014; Matsuoka et al. 2013). Although many
studies have elucidated the various factors regulating
plant homeostasis and metal uptake from the

168 Page 10 of 17 Mol Breeding (2019) 39: 168



rhizosphere, only a few have focused on epigenetic
regulation of metals (Liu et al. 2019; Feng et al. 2016).
Exposure to Cd significantly changes CG and non-CG
methylation patterns in rice (Feng et al. 2016). OsZIP1
is upregulated by excess Cu, Cd, and Zn (but not by Fe
or Mn), and the mechanism for this effect is DNA
methylation/demethylation of histone H3K9me2 in re-
sponse to Cd exposure (Liu et al. 2019). Understanding
epigenomic regulation in response to metal deficiency
or excess may provide additional opportunities to breed
crop plants with more favorable nutritional qualities.
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