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Abstract Aflatoxin is a mycotoxin produced by the
fungus Aspergillus flavus (Link:Fr), an opportunistic
ear-rot pathogen of maize (Zea mays L. ssp. mays).
Pre-harvest contamination of maize grain with aflatoxin
is a chronic problem worldwide and particularly in the
Southeastern US. Quantitative trait loci (QTL) were
mapped by multiple interval mapping (MIM) in a pop-
ulation consisting of 250 F2:3 lines derived from the
cross Mp715 × Va35. Mp715 is resistant to the accumu-
lation of aflatoxin and Va35 is susceptible. The popula-
tion was genotyped with 1200 single-nucleotide poly-
morphism (SNP) and simple sequence repeat (SSR)
molecular markers and phenotyped for the accumulation
of total aflatoxins under artificial inoculation in four

environments. Both parents contributed resistance al-
leles. Two QTL in bins 6.06 and 7.03 were the most
promising for the marker-assisted introgression of
the resistance present in Mp715. They were the
most consistent across individual environments and
together were responsible for nearly 30% of the
phenotypic variance when data was combined
across all four environments. In addition to those
two QTL, Mp715 was also the source of the
beneficial aflatoxin-reducing allele for several
smaller effect QTL. Once their effect is validated
in further experiments, the identification of these
relatively large effect QTL should facilitate the
utilization of this aflatoxin accumulation-resistant
germplasm in applied maize breeding programs.
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Introduction

Mycotoxins are toxic secondary metabolites produced
by filamentous fungi (Bennett and Klich 2003). They
are important contaminants of foods and feeds and cause
diseases (mycotoxicoses), including carcinomas, in
humans and in animals (CAST 2003; Reddy et al.
2010; Wu et al. 2014). Over 100 countries have regula-
tions in place to limit mycotoxin contamination with the
majority of those regulations focused on aflatoxins
(FAO 2004; van Egmond and Jonker 2004; van
Egmond et al. 2007). Aflatoxins are the major class of
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mycotoxins produced by Aspergillus spp. and are the
most toxic of the known mycotoxins (Payne 2016). The
US Food and Drug Administration sets Baction levels^
for aflatoxin in maize grain: 20 ng g−1 for grain used in
human food and varying levels, ranging from 20 to
300 ng g−1, for different classes of animal feed (Park
and Liang 1993; USFDA 2010). In the USA, aflatoxin-
contaminated maize is estimated to cost growers, on
average, $163 million (Wu 2006) to $225 million
(CAST 2003) every year while the annual cost of afla-
toxin testing and mitigation is $20–50 million (Robens
and Cardwell 2003; Schmale andMunkvold 2009). Due
to the enforcement of regulations, the aflatoxin-
contaminated grain is largely an economic problem in
most developed countries, but it remains a human health
problem in many developing countries (Payne and Yu
2010). Aflatoxin is associated with both acute and
chronic toxicities (aflatoxicoses) in humans and in ani-
mals, with the liver, the primary target organ in both
cases (Bennett et al. 2007). Acute aflatoxicosis causes
death while chronic exposure to aflatoxin causes liver
cancer and immune suppression (Williams et al. 2004;
Bennett et al. 2007; Kew 2013). Aflatoxins are classi-
fied as group 1 human carcinogens (IARC 2012).

Several species of Aspergillus are capable of produc-
ing aflatoxins (Frisvad et al. 2005), but the economically
important species are A. flavus and A. parasiticus
(CAST 2003; Klich 2007). They are capable of coloniz-
ing most food products during storage but are also pre-
harvest pathogens of oilseed crops including maize,
peanut, cottonseed, and tree nuts (Scheidegger and
Payne 2003; Klich 2007). In maize, A. flavus is much
more common than A. parasiticus (Payne 2016). Asper-
gillus flavus is a ubiquitous, saprophytic, soil-borne
fungus capable of acting as a weak, opportunistic, ear-
rot pathogen of maize during periods of heat and
drought stress (Payne and Yu 2010; White 2016). As-
pergillus ear rot rarely causing economically significant
reductions in yield or losses in grain quality, but
A. flavus remains an important pathogen of maize due
to pre-harvest aflatoxin contamination (White 2016).

Pre-harvest aflatoxin contamination of maize is a
chronic problem in the Southeastern US and can reach
epidemic proportions in some years (Payne 1992;
Widstrom 1996). Over 90% of the Southeastern corn
harvest was contaminated by aflatoxin in 1977 after a
severe drought and increased insect pressure (Zuber and
Zuber and Lillehoj 1979). In 1988, after a drought in the
Midwest, one-third of the test samples in the Corn Belt

exceeded FDA limits (Payne 1992; Clements andWhite
2004). A severe outbreak occurred across the Southeast
in 1998 due to drought and unusually high temperatures
(Windham and Williams 1999). That year in Mississip-
pi, 20% of corn was sold at reduced prices and 4%
abandoned completely due to aflatoxin contamination
(Robens and Cardwell 2003).

Strategies to reduce pre-harvest aflatoxin contamina-
tion of maize grain have centered on both agronomic
practices and the development of host plant resistance.
Pre-harvest contamination is associated with biotic and
abiotic stresses, such as drought and insect damage, and
agronomic management of aflatoxin is aimed at mitigat-
ing those sources of stress (Bruns 2003). There are also
biological control strategies that utilize non-toxin pro-
ducing strains of A. flavus (Cotty 2006; Dorner 2010).
Host plant resistance is widely considered a promising
approach to reducing aflatoxin contamination (Moreno
and Kang 1999;Williams et al. 2003, 2015; Brown et al.
2013), but current commercial hybrids lack adequate
resistance (Abbas et al. 2002, 2006; Daves et al.
2010). Sources of resistance have been identified, and
publicly developed germplasm and breeding lines have
been registered and released (Scott and Zummo 1990,
1992; McMillian et al. 1993; Williams and Windham
2001, 2006, 2012; Llorente et al. 2004; Guo et al. 2007,
2011; Menkir et al. 2008; Mayfield et al. 2012; Scully
et al. 2016).

The resistant breeding lines that have been released
were bred from tropical sources or from older Southern
US germplasm (Mayfield et al. 2012; Williams et al.
2003, 2015). Originating outside the Corn Belt dent
maize populations, these breeding lines are considered
exotic. They are un-adapted because, despite contribut-
ing stable resistance to aflatoxin accumulation in test-
crosses, they also contribute undesirable agronomic
characteristics: late flowering, high ear and plant height,
increased lodging, late maturity, high grain moisture at
harvest, and poor combining ability for yield (Brooks
et al. 2005; Mayfield et al. 2012). These traits are typical
of exotic maize when used in temperate US maize
breeding (Hallauer 1978; Holland and Goodman
1996). Germplasm lines are intended to contribute fa-
vorable alleles to breeding populations, and host plant
resistance is the most common use of exotic germplasm
in US maize breeding (Goodman 1999; Betran et al.
2006). Unfortunately, transferring resistance to aflatoxin
accumulation has proven difficult due to the highly
quantitative nature of the trait: polygenic control, low
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heritability, and large genotype by environment interac-
tion effects (Warburton et al. 2013). Mapping quantita-
tive trait loci (QTL) and identifying closely linked mo-
lecular markers for use in marker-assisted selection
(MAS) should allow for the Btargeted introgression^ of
QTL from exotic germplasm to elite, adapted lines
(Edwards 1992).

In order to identify molecular markers for use in
marker-assisted selection, several bi-parental QTL map-
ping studies have been conducted on maize host plant
resistance to pre-harvest aflatoxin accumulation (Paul
et al. 2003; Widstrom et al. 2003; Busboom and White
2004; Brooks et al. 2005; Alwala et al. 2008; Warburton
et al. 2009, 2011; Mayfield et al. 2011; Willcox et al.
2013; Yin et al. 2014; Dhakal et al. 2016). A meta-QTL
analysis of some of those studies has been conducted
(Mideros et al. 2014) and there have also been three
genome-wide association (GWAS) mapping studies
published (Warburton et al. 2013, 2015; Farfan et al.
2015; Zhang et al. 2016). Mp715, the resistant parent
included in the present study, was the subject of two
previous bi-parental QTL mapping studies (Warburton
et al. 2011; Dhakal et al. 2016), and Va35, the suscep-
tible parent, was included in another study in which
Mp313E was the resistant parent (Willcox et al. 2013).
By mapping the resistance alleles in Mp715 using a
different genetic background, we can find which QTL
are consistent across backgrounds as well as find novel
QTL not detected in the previous studies. The present
study also aims to map QTL with more precision than
the previous studies ofMp715 through a combination of
larger population size and greater marker density. The
present study includes 250 families, genotyped with
1200 markers and phenotyped in four environments,
as opposed to 225 families genotyped with 103 markers
and phenotyped in four environments (Warburton et al.
2013) and 210 families genotyped with 136markers and
phenotyped in two environments (Dhakal et al. 2016).
Using Va35 as the susceptible parent should allow for a
comparison of the alleles for resistance being contribut-
ed by Mp715 and Mp313E.

Materials and methods

Population formation

An F2:3 mapping population was derived from the cross
Mp715 × Va35. Mp715 is an aflatoxin accumulation-

resistant breeding line developed from open-pollinated
Tuxpan through eight generations of selfing and
selecting for reduced aflatoxin accumulation after field
inoculation (Williams and Windham 2001). Va35 is a
Southern US adapted, non-Stiff Stalk inbred, developed
in Virginia by selfing out of the backcross [(C103 × T8)
× T8] (Gerdes et al. 1993). T8 is an inbred from Ten-
nessee derived from open-pollinated Jarvis Golden Pro-
lific, and C103 is derived from open-pollinated Lancas-
ter Sure Crop (Gerdes et al. 1993). Va35 is susceptible to
aflatoxin accumulation and is routinely used as a tester
and as a susceptible check in aflatoxin research (e.g.,
Williams et al. 2008) as well as serving as the suscepti-
ble parent in a previous bi-parental QTL mapping study
(Willcox et al. 2013). Va35 has also been used in breed-
ing crosses to improve the agronomics of resistant germ-
plasm lines (Williams and Windham 2012). Seed from
one ear of a single self-pollinated F1 plant was planted
as an F2 population. F2 plants were self-pollinated and
individually harvested, creating 250 ear-to-row F2:3

families. Families were sib-mated to increase seed while
maintaining within family variation.

Field conditions and experimental design

The study was planted in four environments: 2015,
2016, and 2017 at the R.R. Foil Plant Science Research
Center, Mississippi State, Mississippi (MS) and 2017 at
the Quaker Research Farm, Texas A&M AgriLife Ex-
tension Center, Lubbock, Texas (TX). Test entries in-
cluded the 250 F2:3 families and 5 checks: the inbred
parents (Mp715 and Va35), their F1 hybrid, and two
inbreds (Mp718 and Mp719) derived from the cross
Mp715 × Va35 (Williams and Windham 2012). Entries
were grown in a randomized complete block design
with three replications. All 250 F2:3 families were
planted in the 2015 test, but only 244 families were
included in the 2016 test, 237 in the MS 2017 test, and
241 in the TX 2017 test due to a shortage of seed for
some families. The experimental unit consisted of a plot.
Each plot was a single 5.1-m row planted to a single
entry with 0.96-m row spacing. Rows were overplanted
and thinned to 20 plants row−1. Management of test
plots followed standard agronomic practices.

Phenotyping

Inoculum preparation and in-field inoculation of devel-
oping ears were performed using the side-needle
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technique according to Zummo and Scott (1989) and
Windham and Williams (2002). Aflatoxigenic A. flavus
strain NRRL 3357 (ATCC 200026) was used. The fun-
gal inoculum was increased on sterile corn-cob grits
(size 2040, Grit-O-Cobs, The Anderson Co., Maumee,
OH) in 500-mL flasks, each containing 50 g of grits and
100 mL of sterile, distilled water, and incubated at 28 °C
for 3 weeks. Conidia from each flask were washed from
the grits using 500-mL sterile distilled water containing
20 drops L−1 of Tween 20 (Atlas Chemical Industry,
Inc., London, UK) and filtered through four layers of
cheesecloth. Concentrations of conidia were determined
with a hemacytometer and adjusted with sterile distilled
water to 9 × 107 conidia mL−1. Inoculum not used im-
mediately was stored at 4 °C. The top ear of each plant
was inoculated with the A. flavus conidial suspension
10 days after mid-silk (50% of the plants in a plot had
emerged silks). A 3.4-mL suspension containing 3 × 108

conidia was injected through the husk with an Idico tree
marking gun (Idico Products Co., New York, NY) fitted
with a 35-mm 14-gauge needle. Inoculated ears in each
plot were harvested by hand at kernel maturity, bulked
by plot, and dried at 53 °C for 7 days in order to reach a
uniform 13–15% moisture concentration. Ears (bulked
by plot) were machine shelled and the grain mixed by
pouring through a sample splitter twice. The entire grain
sample was ground using a Romer subsampling mill
(Romer Industries Inc., Union, MO) and a 50-g sample
of ground grain was used for analysis. Total aflatoxin
concentration was determined using the VICAM
AflaTest (VICAM,Watertown,MA) in compliancewith
the USDA test protocol (USDA 2002).

Statistical analysis of phenotypes

Aflatoxin concentrations were log transformed using
ln(y + 1) to normalize the distribution, and the trans-
formed aflatoxin concentrations were the response var-
iables for each plot. The five check genotypes were
subjected to analysis of variance (ANOVA) and means
were separated by pairwise t tests (α = 0.05) using type
III analysis in the Proc Mixed function of SAS 9.4 (SAS
Institute, Cary, NC). The effect due to genotype, envi-
ronment, and genotype × environment interaction were
all treated as a fixed effect, while block nested in the
environment was treated as a random effect. When
presenting the results of the multiple comparisons, phe-
notypes were transformed back to the original scale

using antilogs and presented as geometric means of the
original data (Steel and Torrie 1980).

The F2:3 family means, within and across environ-
ments, were calculated as best linear unbiased predictors
(BLUPs) using restricted maximum likelihood (REML)
in the PROCMixed function of SAS 9.4. When analyz-
ing data within a single environment, genotypes and
blocks were treated as random effects. When analyzing
data combined across all four environments, genotypes,
environments, genotype × environment interactions,
and blocks nested in environments were all treated as
random effects. The significance of model terms was
determined by likelihood ratio tests (LRT, α = 0.05)
(Isik et al. 2017). Each family’s BLUP was used as its
phenotype during QTL analysis. Variance components
were estimated by REML in PROC Mixed and family
mean heritabilities, within and across environments,
were calculated as the immediate response to selection
(Holland et al. 2003).

Genotyping

Leaf tissue was bulk collected from all F2:3 plants in a
plot from the first replication of the test in 2015. Tissue
samples were frozen in liquid nitrogen, lyophilized
(Freezone Benchtop System, Labconco, Kansas City,
MO), and ground using a Tecator Cyclotec-1093 sample
mill (FOSS, Inc., Eden Prairie, MN). DNAwas extract-
ed by the CTABmethod (Murray and Thompson 1980).
The DNA concentration was quantified using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Inc., Wilmington, DE) and samples were
diluted to a common stock concentration in TE buffer.
Genotyping was conducted using simple sequence re-
peat (SSR) and single-nucleotide polymorphism (SNPs)
markers. The SNP markers were run as KASP assays
(LGC Genomics, Teddington, UK) and as whole-
genome genotyping assays on a custom designed
Infinium array (Illumina, San Diego, CA). The custom
array was run by Corteva Agriscience (Agriculture Di-
vision of DowDuPont, Johnston, IA) and was created by
combining assays from the Maize 768 plex (Jones et al.
2009) and MaizeLD BeadChip (Rousselle et al. 2015).

The SSR primer pairs were synthesized by Integrated
DNA Technologies (IDT Inc., Coralville, IA). Markers
were amplified via polymerase chain reaction (PCR) in
thin-walled 96 well plates using RedTaq ReadyMix
PCR reaction mix and its recommended protocols (Sig-
ma-Aldrich Co., Saint Louis, MO). The PCR products
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were separated by electrophoresis in × 1 TBE agarose
gels (4% w/v) and visualized with ethidium bromide
using an AlphaImager Gel Imaging System (Alpha
Innotech, San Leandro, CA). Marker genotypes were
scored visually from imaged gels.

For the KASP SNP assays (Semagn et al. 2014), a
polymerase chain reaction was performed in 384-well
plates loaded with an epMotion 5073m automated liq-
uid handling system (Eppendorf AG, Hamburg, Germa-
ny). Template DNA (25.0 ng) was loaded into the wells
and allowed to dehydrate on the benchtop overnight.
2.5-μL molecular grade H20 (Sigma-Aldrich Co., Saint
Louis, MO), 2.5-μL KASP master mix, and 0.7-μL
KASP SNP assay (LGC Genomics Limited,
Teddington, UK) were added to each well pre-loaded
with dehydrated template DNA. Prior to PCR, the plates
were sealed with an optically clear seal in a K-seal heat-
based plate sealer (KBioScience, Beverly, MA). The
PCR was performed in a 65–57 °C touchdown protocol
according to LGC Genomics’ KASP thermal cycling
conditions manual (Teddington, UK). The assay’s
allele-specific fluorescent signal was read on a
FLUOstar Omega microplate reader (BMG-Labtech,
Ortenberg, Germany) and the resulting data was proc-
essed inMARSData Analysis software (BMG-Labtech,
Ortenberg, Germany). The MARS output was imported
into KlusterCaller software (LGC Genomics,
Teddington, UK) and interpreted as allele calls.

The Infinium whole-genome genotyping assay is
designed to interrogate a large number of SNPs at many
loci simultaneously. Genotyping was performed as per
Illumina’s protocol (Steemers and Gunderson 2007).
Template DNA (200 ng) was amplified using the re-
agents supplied by Illumina and incubated overnight at
37 °C. Amplified DNA was enzymatically fragmented
to around 300 base pairs using end point fragmentation
followed by precipitation using 2-propanol. The DNA
was resuspended and hybridized to the BeadChips and
incubated in a humidified chamber overnight at 48 °C.
Unhybridized and non-specifically hybridized DNA
samples were washed from the BeadChips. Labeled
nucleotides were added to the hybridized DNA. Allele
specificity is conferred by enzymatic base extension.
Products were immunohistochemically stained in
TeFlow chambers on Tecan liquid handlers (Illumina,
San Diego, CA). BeadChips were coated for protection
and imaged on the iScan system using a two-color
confocal laser system (0.8-μm resolution). The iScan
reader uses a laser to excite the fluor of the single-base

extension product on the BeadChip. Light emissions
from these fluors are then recorded in high-resolution
images of the BeadChip sections. Data from these im-
ages were analyzed using Illumina’s Genome Studio
genotyping module which is based on the cluster file
created from a set of reference samples. The allele calls
were made for each sample and marker combination.

Linkage map construction

Genotypic data were analyzed in JoinMap 4 mapping
software (van Ooijen 2006) in order to calculate segre-
gation distortion, determine linkage groups, and esti-
mate linkage distances within groups. Linkage groups
were determined using the LOD value of the test for
independence. Recombination frequencies within link-
age groups were calculated using JoinMap’s Monte
Carlo maximum likelihood mapping algorithm (Jansen
et al. 2001) and converted to centimorgans (cM) by the
Haldane mapping function. Locus order was confirmed
according to the markers’ physical position in version 3
of the maize reference genome in MaizeGDB (Andorf
et al. 2015).

QTL analysis

Quantitative trait locus mapping was conducted using
QTL Cartographer version 2.5 (Wang et al. 2012).
Composite interval mapping (CIM) (Jansen 1993;
Jansen and Stam 1994; Zeng 1993, 1994) was imple-
mented to locate QTL that were then used as the initial
model terms in multiple interval mapping (MIM) (Kao
et al. 1999; Zeng et al. 1999). For the CIM procedure,
LOD thresholds were empirically estimated for each
trait by 1000 permutations (Churchill and Doerge
1994; Doerge and Churchill 1996) in order to maintain
a genome-wide 0.05 level of significance. Forward and
backward stepwise regression was used for cofactor
selection with a 10-cM window size for the genome
scans. Tests to add and to remove markers from the set
of cofactors were conducted at α = 0.1 level of signifi-
cance. The walk speed, the grid of positions to be tested
for putative QTL, was set at 0.5 cM. The LOD score at
each test position is the log10 of the ratio of the likeli-
hood of the full model to the likelihood of the reduced
model (Jansen 2007). The reduced model included only
cofactor effects, while the full model included cofactor
effects and the additive and dominance effects of a
putative QTL (Silva et al. 2012). The QTL peaks with
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LOD scores clearing the permutation-based threshold,
with a minimum of 5 cM between QTL, were declared
significant, and the significant QTL from CIM were
used as initial model terms in MIM. The MIM models
were refined by stepwise testing according to the guide-
lines of Silva et al. (2012): (1) search for newmain effect
QTL, (2) search for epistatic interactions between iden-
tified QTL, (3) test for the significance of epistatic
terms; (4) test for the significance of main effect QTL
without interactions, and (5) optimize the positions of
the final QTL. After each cycle of testing, new terms
(main effect QTL or epistatic interactions) were added to
the model only if they decreased the Bayesian informa-
tion criterion (BIC) (Schwarz 1978). The BIC favors
models with higher likelihoods but avoids overfitting by
including a penalty for each additional parameter added.
After the final model was chosen, all QTL effects (ad-
ditive, dominance, and epistasis) were simultaneously
estimated and the partitioning of the genotypic variance
calculated (Kao and Zeng 2002). Overfitting was then
further avoided by not allowing the proportion of the
total variation due to genetic effects to exceed the heri-
tability. When this occurred, QTL making the least
contribution to the genetic variance were removed from
the model, and the remaining terms were re-estimated
(Robertson-Hoyt et al. 2006).

Results and discussion

Phenotypes

Five genotypes were planted as checks in each environ-
ment: the resistant parent (Mp715), the susceptible par-
ent (Va35), their F1, and two inbreds derived from
Mp715 × Va35 used as a breeding cross (Mp718 and
Mp719). Although the five checks were planted in all
four environments, too many inbred plots were missing
in MS 2016 to include in the ANOVA. Consequently,
data from the check genotypes were only analyzed in
MS 2015, MS 2017, and TX 2017. Across those three
environments, block nested in the environment was not
a significant source of variance (p = 0.4886; Table 1).
The effect of the interaction between genotype and
environment was significant (p = 0.0030; Table 1).
Due to the significant interaction, genotype means were
contrasted as simple effects by the environment, not as
main effects (Table 2). In all three environments ana-
lyzed, the resistant parent (Mp715) had significantly

lower aflatoxin levels than the susceptible parent
(Va35), but their performance relative to the F1,
Mp719, and Mp718 varied by the environment
(Table 2).

Prior to transforming the data, mean aflatoxin con-
centrations plot−1 for the F2:3 families were 40.6 ±
3.6 ppb (x̅ ± s.e.) in MS 2015, 397.8 ± 27.4 ppb in MS
2016, 131.1 ± 8.6 ppb in MS 2017, and 204.9 ± 9.1 ppb
in TX 2017. The lower levels of aflatoxin observed in
MS 2015 were not explained through obvious weather
patterns. Daily temperatures and precipitation were not
appreciably different in MS 2015 than in MS 2016 or
MS 2017 (Supplemental Fig. 1). In addition to having
the lowest mean aflatoxin concentration, MS 2015 was
also the environment with the largest coefficient of
variability (Table 3).

The F2:3 family means were calculated as BLUPs
within and across all four environments (Supplemental
Table 1), and these BLUPs were used as the phenotypes
during QTL analysis. The models used to calculate the
BLUPs treated all terms, other than the overall mean, as
random effects and the significance of the model terms
were tested in LRTs.When data was combined across all
four environments, all terms were significant
(Supplemental Table 2).When data was analyzed within
environments, the variance due to genotype was always
significant but the significance of blocking varied by the
environment (Supplemental Table 3). Variance compo-
nents were estimated and used to calculate family mean
heritabilities within and across environments (Table 4).
The heritability across all four environments was 0.69,
while the within environment heritabilities ranged from
0.48 in MS 2015 to 0.70 in MS 2017 (Table 4). The
family mean heritabilities were calculated as the imme-
diate response to selection (Holland et al. 2003).

Table 1 ANOVA results of five check genotypes across three
environments

Source df† Mean square F value p value

Environment 2 44.6341 55.21 0.0001

Block (environment) 6 0.8081 0.94 0.4886

Genotype 4 21.2269 24.58 < 0.0001

Genotype* environment 8 3.6787 4.26 0.0030

Error 23 0.9177

†df, degrees of freedom
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Genotyping and linkage map construction

Ten linkage groups corresponding to the ten chromo-
somes of maize were identified at a LOD of 4 and all
ten groups remained unbranched at the most stringent
threshold tested (LOD = 10). The final map
(Supplemental Table 4) consisted of 1200 markers:
25 SSRs, 73 KASP SNPs, and 1102 modified
MaizeLD Beadchip SNPs. The map spanned a total
length of 1367 cM with an average distance of 1.15 cM
between markers. Of the 139 markers mapped to chro-
mosome 3, the first 124 showed significant segregation
distortion (α = 0.05), with fewer than expected homo-
zygous genotypes for the Va35 allele (Supplemental
Table 4). This region of segregation distortion included
bins 3.01–3.09. Bins 3.03–3.07 are known to include
segregation distortion regions in other maize popula-
tions (Lu et al. 2002). Segregation distortion regions
are no less likely to contain QTL, but the segregation

distortion will generally decrease the power of QTL
mapping (Xu 2008).

QTL analysis

Composite interval mapping was conducted within and
across all four environments and the significant QTL
(Supplemental Table 5) were used as the initial model
terms in MIM. The QTL included in the final MIM
models along with their estimated additive, dominance,
and epistatic effects and their contribution to the pheno-
typic variance are presented in Table 5. The MIM
models explained between 35% (TX 2017) and 55%
(MS 2017) of the phenotypic variance within environ-
ments and 61% of the phenotypic variance when all four
environments were combined.

When MIM was conducted within individual envi-
ronments, every chromosome except chromosome 9
contained at least one significant QTL in at least one

Table 2 Multiple comparisons of the mean aflatoxin centration of five check genotypes

Mississippi 2015 Mississippi 2017 Texas 2017

Ln(Afl + 1)† Aflatoxin‡ Ln(Afl + 1) Aflatoxin Ln(Afl + 1) Aflatoxin
ppb ppb ppb

Va35 4.565a 96.09 Va35 6.622a 751.69 Mp718 5.924a 374.03

F1 0.928b 2.53 Mp718 3.537b 34.36 Va35 5.729a 307.76

Mp718 0.709b 2.03 Mp715 3.000b 20.09 Mp719 4.501ab 135.18

Mp719 0.0b 0.0 F1 2.637b 13.97 F1 4.465ab 86.92

Mp715 0.0b 0.0 Mp719 0.494c 1.64 Mp715 3.049b 21.11

†Ln(Afl + 1) = natural log of (total aflatoxin content + 1). Means followed by the same letter are not significantly different at α = 0.05

‡Total aflatoxin concentrations expressed in ppb (ng g−1 ) are geometric means of the original data

Table 3 Summary statistics for the raw and log transformed aflatoxin concentration data for the F2:3 families by year

Env† N Obs Variable Mean Std Err Min Median Max Std Dev CV

MS 2015 750 Aflatoxin (ppb) 40.59 3.63 0 6.8 1100.0 99.53 245.2

Ln(Afl + 1)‡ 2.17 0.07 0 2.1 7.0 1.82 83.9

MS 2016 708 Aflatoxin (ppb) 397.82 27.37 0 220.0 9600.0 673.28 169.2

Ln(Afl + 1) 5.20 0.06 0 5.4 9.2 1.41 27.1

MS 2017 711 Aflatoxin (ppb) 131.11 8.63 0 59.0 2480.0 230.03 175.5

Ln(Afl + 1) 3.76 0.07 0 4.1 7.8 1.76 46.9

TX 2017 723 Aflatoxin (ppb) 204.95 9.07 0 130.0 2520.0 242.62 118.4

Ln(Afl + 1) 4.66 0.05 0 4.9 7.8 1.42 30.4

†Env, environment; N Obs, number of observations; Std Err, standard error; Min, minimum; Max, maximum; Std Dev, standard deviation;
CV, coefficient of variability

‡Ln(Afl + 1), natural log of (total aflatoxin content + 1)
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environment. In every environment, both parents con-
tributed beneficial (aflatoxin-reducing) alleles, but
Mp715 (the resistant parent) always contributed more
beneficial alleles than Va35 and the QTL for which the
Mp715 alleles were beneficial always accounted for a
larger cumulative share of the phenotypic variance than
the QTL for which the Va35 alleles were beneficial. In
all four environments, at least one QTL for which Va35
was the source of the beneficial allele was identified on
the short arm of chromosome 1. These QTL were locat-
ed in bins 1.01, 1.02, 1.03, and 1.05. This was consistent
with a previous QTL mapping study in which Va35
served as the susceptible parent and contributed the
beneficial allele for a QTL in bin 1.02 (Willcox et al.
2013). In that study, the QTL in bin 1.02 was the only
QTL for which the Va35 allele was beneficial when the
data was averaged across environments, although Va35
was the source of the resistance alleles for other QTL
that were significant in individual environments. In the
present study, Va35 also contributed beneficial alleles on
chromosomes 2, 3, 7, and 10 but none of these QTL
were significant in more than one environment.

In Mississippi 2016 and Texas 2017, no individual
QTL accounted for more than 10% of the phenotypic
variance (Table 5). In Mississippi 2015 and 2017, one
QTL in bin 6.06 was responsible for more than 10% of
the phenotypic variance (17.9% and 13.7%, respective-
ly). A QTL in bin 7.03 was observed in all four envi-
ronments and explained a range of 6.7% (MS 2016) to
8.6% (TX 2017) of the phenotypic variance. Mp715
was the source of the beneficial allele for the QTL in
bins 6.06 and 7.03. A significant QTL for whichMp715
contributed the resistance allele was detected on chro-
mosome 10 in all 3 years, the study was conducted in

Mississippi, but no significant QTL was detected on
chromosome 10 in Texas.

When the data was combined across all four environ-
ments, eight QTL and two epistatic interactions were
identified (Table 5). The QTL were present on every
chromosome except 2, 5, and 9. Va35 contributed the
beneficial allele for two of the eight QTL: a QTL on the
short arm of chromosome 1 (bin 1.03) that was respon-
sible for nearly 10% of the phenotypic variance and a
QTL in bin 7.05 of chromosome 7. The QTL in bin 7.05
had a very small effect but was important to the model
due to its interaction with the QTL in bin 1.03. Both of
the epistatic terms were composed of interactions be-
tween the two QTL contributed by Va35. The QTL, for
which Va35 was the source of the beneficial allele, and
the interactions between those QTL, accounted for
12.8% of the phenotypic variance and 20.8% of the
genotypic variance as modeled in the MIM.

The QTL in bins 6.06 and 7.03, discussed above, had
the largest effect size when the data was combined
across environments (Table 5). They accounted for
14.3% and 15.4% of the phenotypic variance, respec-
tively. Since the MIM model explained 61.4% of the
phenotypic variance, the combined effect of these two
QTL accounted for nearly half (23.3% and 25%, respec-
tively) of the genotypic variance, as modeled, present in
the population. They are therefore the most logical
targets for marker-assisted introgression of the resis-
tance to aflatoxin accumulation present in Mp715.

The QTL in bins 4.08 and 10.05 were responsible for
6.1% and 7.2% of the phenotypic variance, respectively
(11.1% and 11.7% of the genotypic variance). These
QTL could also be targeted in marker-assisted introgres-
sion. The QTL in bin 3.03 had a larger effect size but a

Table 4 REML variance components and heritability estimates within and across environments

Var. Comp. 4 Envs.† Var. Comp.† MS 2015† MS 2016† MS 2017† TX 2017†

Genotype 0.5454 Genotype 0.7478 0.6278 1.3742 0.6280

Environment 1.7405 Block 0.1805 0.0929 0.0079 0.0108

Gen × Env 0.2999 Error 2.4574 1.2948 1.7311 1.3717

Block (Env) 0.0723

Error 1.7415

H2‡ 0.6942 H2‡ 0.4772 0.5256 0.7043 0.5752

†Envs., environments; Var. Comp., variance components; MS, Mississippi; TX, Texas

‡Heritability across environments was calculated asH2 = VG/(VG + (VGxE/eh) + (Verror/ph)); where eh is the harmonic mean of the number of
environments per F2:3 family and ph is the harmonic mean of the number of plots per family. Heritability within environments was calculated
as H2 =VG/(VG + (Verror/ph))
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Table 5 Multiple interval mapping results across and within environments

Environment† Bin Position Effect % phenotypic variance

Peak 2-LOD support interval Additive‡ Dominance§
cM cM–cM

MS 2015 1.01 19.8 13.5–25.3 0.172 − 0.210 6.94

3.04 89.3 78.8–93.4 − 0.379 − 0.262 5.46

6.06 67.8 63.6–70.7 − 0.363 0.104 17.92

7.03 59.0 53.9–60.5 − 0.220 − 0.129 8.59

10.02 37.5 22.4–41.8 − 0.091 0.141 2.44

10.05 60.0 46.3–66.3 − 0.149 − 0.159 5.11

6.06 × 10.02 − 0.023 (D × A)# 0.10

% phenotypic variance explained by model: 46.56

MS 2016 1.03 59.9 48.9–67.2 0.247 − 0.007 7.96

2.01 10.9 2.6–14.9 0.233 − 0.129 6.45

2.08 114.7 101.3–140.6 − 0.076 − 0.133 2.18

3.05 115.7 110.4–120.2 0.084 − 0.172 2.95

5.01 29.1 10.3–34.5 − 0.146 0.165 5.54

6.05 49.6 47.1–51.2 − 0.179 − 0.141 5.99

7.03 57.4 46.7–64.6 − 0.191 0.115 6.67

10.03 47.3 41.6–50.6 − 0.219 0.044 6.94

10.07 97.6 86.3–108.1 0.021 − 0.182 2.05

1.03 × 10.03 0.154 (A × A) 1.08

% phenotypic variance explained by model: 47.81

MS 2017 1.03 60.3 50.9–65.5 0.318 0.134 6.33

3.07 137.5 133.5–141.9 − 0.279 − 0.063 3.04

4.01 18.3 15.3–30.4 − 0.190 − 0.017 1.14

4.08 95.5 90.4–99.9 − 0.233 0.364 7.52

4.09 109.9 102.7–112.8 − 0.237 − 0.175 3.77

6.06 65.2 59.0–68.0 − 0.467 − 0.193 13.73

7.03 58.2 40.8–62.9 − 0.375 − 0.017 7.71

8.05 57.6 39.8–67.4 − 0.241 0.084 3.72

10.05 62.7 59.4–66.1 − 0.337 0.189 6.14

4.09 × 6.06 0.601 (D × D) 1.54

% phenotypic variance explained by model: 54.64

TX 2017 1.02 49.0 42.2–50.7 0.210 − 0.100 6.68

1.05 72.6 65.4–84.8 0.061 0.172 3.65

1.11 169.6 160.8–172.5 − 0.156 − 0.021 2.78

5.04 63.2 55.6–68.7 − 0.230 0.139 6.70

7.00 12.6 0–25.8 − 0.040 0.051 0.94

7.03 59.0 49.1–63.5 − 0.268 0.054 8.60

7.05 103.8 100.5–110.2 0.187 0.107 1.45

5.04 × 7.03 − 0.123 (A × A) 1.55

7.00 × 7.05 0.213 (A × A) 2.34

% phenotypic variance explained by model: 34.69

Combined 1.03 59.9 50.1–64.4 0.273 0.026 9.89

3.03 63.9 58.6–76.8 − 0.295 − 0.245 2.44
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smaller component of the phenotypic variance than the
QTL in bins 4.08 and 10.05. This lack of agreement
between relative effect size and relative impact on the
variance is due to the segregation distortion present on
chromosome 3. At position 63.9 cM on chromosome 3,
there were 215 homozygotes for the Mp715 allele, eight
heterozygotes and five homozygotes for the Va35 allele
(Supplemental Table 4). This extreme segregation dis-
tortion makes the estimate of effect size unreliable for
this locus, but also means that even if the locus has a
large effect on the phenotype, we would expect very
little phenotypic variance in the population to be due to
the locus since most individuals have the same genotype
at this locus. Based on its effect size, one could choose
to target this QTL during marker-assisted introgression
despite its small contribution to the phenotypic variance.
However, this effect size is estimated from a skewed
sample and is therefore unreliable.

Comparison with previous QTL analyses

Mp715 was previously mapped using T173 (Warburton
et al. 2011) and B73 (Dhakal et al. 2016) as susceptible
parents. In those two previous studies and in the present
study, aflatoxin-reducing alleles were contributed by
both Mp715 and the susceptible parent. In the present

study and in Warburton et al. (2011), the majority of
beneficial alleles was contributed by Mp715, while in
Dhakal et al. (2016), the susceptible parent contributed
as much of the resistance as Mp715. All three studies
report QTL for aflatoxin accumulation on the short arm
of chromosome 1. In the present study, Va35 was con-
sistently the source of the beneficial alleles in that re-
gion. In the previous work, Mp715 was the source of the
aflatoxin-reducing alleles in that region when mapped
against T173 (Warburton et al. 2011) and it was the
source of the beneficial allele for one of two QTL on
the short arm of chromosome 1 when mapped against
B73 (Dhakal et al. 2016). It is possible that different
alleles are being contributed by the four parents so that
the Mp715 alleles were beneficial relative to the T173
and B73 alleles but not the Va35 alleles. A QTL was
detected in bin 10.05 in the present study and in Dhakal
et al. (2016) and one in 10.04 in Warburton et al. (2011)
but again, the three studies did not all agree on the
Mp715 allele being the beneficial allele.

The QTL with the largest and most consistent effects
in the present study were found in bins 6.06 and 7.03.
No QTL was found on chromosomes 6 or 7 in any
environment in Warburton et al. (2011) and only a small
effect QTL was detected on chromosome 7, though not
in bin 7.03, in Dhakal et al. (2016). Whether this

Table 5 (continued)

Environment† Bin Position Effect % phenotypic variance

Peak 2-LOD support interval Additive‡ Dominance§
cM cM–cM

4.08 92.2 87.1–100.1 − 0.228 0.110 6.80

6.06 66.2 59.3–68.8 − 0.316 − 0.048 14.33

7.03 58.8 55.3–62.5 − 0.369 − 0.027 15.35

7.05 103.8 100.5–109.7 0.146 − 0.002 0.39

8.05 55.1 39.7–65.2 − 0.133 0.048 2.59

10.05 62.7 57.6–68.3 − 0.251 0.078 7.16

1.03 × 7.05 − 0.181 (A × A) 0.38

1.03 × 7.05 0.202 (D × A) 2.11

% phenotypic variance explained by model: 61.44

†Environments: MS, Mississippi; TX, Texas

‡Negative additive QTL effects indicate Mp715 is the source of the beneficial (aflatoxin-reducing) allele, and positive effects indicate the
resistance allele is contributed by Va35

§A negative dominance effect indicates that dominance is in the direction of the aflatoxin-reducing allele, no matter which parent is the
source of the favorable allele, and positive dominance effects indicate that dominance is in the direction of the aflatoxin-increasing allele

#Epistatic interactions: A × A, additive × additive effect; A × D, additive × dominance effect; D × A, dominance by additive effect; D × D,
dominance × dominance effect
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inconsistency is due to differences in genetic back-
ground, marker density, or test environment is not
known. Also, whether to view this as an inconsistency
versus the Bdetection of novel^ QTL between studies is
open to interpretation. When Va35 served as the suscep-
tible parent in across withMp313E, the resistance alleles
contributed byMp313Ewere on chromosomes 2, 3, and
4 (Willcox et al. 2013). One of those QTL was at
98.8 cM on chromosome 4 and is possibly the same
locus detected in bin 4.08 at position 92.2 cM in the
present study. Otherwise, the resistance alleles contrib-
uted by Mp313E and by Mp715 do not co-locate. This
suggests that the alleles for resistance in Mp313E and
Mp715 could potentially be pyramided in a common
background to further increase resistance to aflatoxin
accumulation.

Potential for marker-assisted selection

The results of the present analysis, specifically the iden-
tified QTLs’ location and magnitude, need to be refined
and validated before they can be utilized in practical
marker-assisted breeding. A breeder must be confident
that a QTL has a large enough effect to warrant marker-
assisted introgression and must know how large and
precisely which region of a chromosome to introgress.
However, the effect size is often overestimated in QTL
analysis (Beavis 1994; Schon et al. 2004) and a single
term in a statistical QTL model may in fact be the result
of multiple biological QTL (Jansen 2007). One method
for testing the effect size is to create near-isogenic lines
(NILs) through marker-assisted backcrossing using the
susceptible parent (Va35) as the recurrent parent and
Mp715 as the donor parent. While creating those same
NILs, the region of chromosome possessing the QTL
can be refined by selecting different sets of marker
haplotypes. It is customary to report the location of
QTL as the 2-LOD interval around the peak of a LOD
profile, but it is possible that the detected effect is the
result of multiple QTL, and there is no reason to assume
they all fall into that 2-LOD region (Jansen 2007). The
2-LOD interval is more akin to a statistical confidence
interval around the peak position (Jansen 2007) than a
biological description of the region of chromosome
possessing the causal polymorphisms. If one studies
the LOD profiles for the QTL reported in this study
(Supplemental Fig. 2), one finds that the regions of the
chromosome with a high likelihood of containing QTL
are generally wider than the 2-LOD support intervals

(Table 5). Assuming the effect size is validated, the
region of chromosome necessary for that effect is an
empirical question. Using the susceptible parent as the
recurrent parent is appealing since that is the genetic
background in which the marker-trait associations were
identified. However, if the analysis is to be useful in
practical breeding, it must be possible to achieve similar
effects when introgressing the QTL into genetic back-
grounds not included in the QTL analysis. Additional
NILs must also be created using additional recurrent
parents. The present study is the first step in the genetic
analysis necessary to support the marker-assisted intro-
gression of the resistance to aflatoxin accumulation
present in Mp715.

Conclusion

Beneficial, aflatoxin-reducing alleles were contributed
by both parents in the cross Mp715 × Va35. Multiple
QTL for which the alleles for resistance were contribut-
ed by Va35 were found on the short arm of chromosome
1 in every environment tested. A QTL for which the
allele for resistance was contributed by Mp715 was
found in bin 7.03 in every environment tested. A QTL
in bin 6.06 was the only QTL to account for more than
10% of the phenotypic variance in any test environment,
doing so in two of four. When the data was analyzed
across environments, the QTL in bins 6.06 and 7.03
together caused nearly 30% of the phenotypic variance
and nearly 50% of the genotypic variance. These two
QTL could be targeted for marker-assisted introgression
of the resistance to pre-harvest aflatoxin accumulation
present in maize inbred Mp715. Other smaller effect
QTL in bins 10.05, 4.08, and possibly 3.03 could also
be targeted depending on the breeding objectives.
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