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Abstract Kernel number per spike (KNPS) is one of the
key factors affecting wheat yield, which can be signifi-
cantly reduced by lower fertility or sterility of the apical
and basal spikelets. In this study, the spikelet number per
spike (SNPS), thousand kernel weight (TKW), KNPS,
total grain numbers of the top three apical spikelets
(GNAS), and total grain numbers of the bottom three
basal spikelets (GNBS) of 212 wheat lines were recorded
from five different environmental conditions. These 212
accessions were genotyped using the 9K iSelect SNP
Beadchip. A total of 3269 SNP markers were used for

genome-wide association analysis (GWAS). One hun-
dred twelve significant marker-trait associations
(MTAs) were identified. Twenty-two MTAs were identi-
fied in at least two environments and two of them
showed association with two or more grain setting
properties. Different loci showed an additive effect
with both GNAS and GNBS being much higher in
the lines with more favorite alleles. Two SNP loci,
w s n p _ E x _ c 3 1 7 9 9 _ 4 0 5 4 5 3 7 6 a n d
wsnp_BF293620A_Ta_2_3, showed the largest ef-
fects on increasing KNPS through improved fertil-
ity of apical and basal spikelets, respectively.
These MTAs have the potential to be used in
future marker-assisted selection.
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Introduction

Wheat is the most important food crop and ranks first in
harvested area, total production, and traded volume
worldwide (Hawkesford et al. 2013; Tripathi et al.
2016). Wheat production largely contributes to food se-
curity, socioeconomic development, and living standards
(Piao et al. 2010). Kernel number per spike (KNPS) is
one of the key factors affecting yield (Fischer 2008;
Reynolds et al. 2009; Gao et al. 2017). An unbalanced
distribution of grains per spikelet along the spike (top,
center, and bottom of a spike) has been widely reported
and the fertility of the apical and basal spikelets showed
greater effects on KNPS than the middle spikelets in
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wheat spikes (Ferrante et al. 2013a; Guo and
Schnurbusch 2015). Therefore, breeding wheat with
higher fertility of the apical and basal spikelets could
increase KNPS and thus yield (Acreche et al. 2008;
Zheng et al. 2016).

Lower fertility or sterility of apical and basal spike-
lets is commonly observed in cereal crops such as wheat
and rice (Satoh-Nagasawa et al. 2006; Meng et al. 2007;
Gallavotti et al. 2011; Guo and Schnurbusch 2015).
Genetic variations have been found in different geno-
types with most varieties showing a lower fertility of the
apical and basal spikelets. To understand the mechanism
of this phenomenon, many morphological and physio-
logical studies of spike development have been conduct-
ed (Bancal 2009; Shitsukawa et al. 2009; González et al.
2011; Ferrante et al. 2013b; González-Navarro et al.
2015). Langer and Hanif (1973) found unsynchronized
development of spikelets dependent on the position
within the spike, where the two basal spikelets devel-
oped much slower leading to lower fertility or complete
sterility of basal spikelets. It was also found that spikelet
fertility was largely affected by environmental factors
such as planting density (Mishra and Mohapatra 1987),
trace element (Rerkasem and Jamjod 1997), sowing
time (Saifuzzaman et al. 2008), and drought
(Dencic et al. 2000). A good crop management is
essential to maximize the number of fertile florets
and improve grain set numbers in apical and basal
spikelets (Ferrante et al. 2010, 2012; Dreccer et al.
2014; Zheng et al. 2014).

Many studies have been conducted in cereal crops to
identify genes or quantitative trait loci (QTL) control-
ling the fertility of apical and basal spikelets (Yamagishi
et al. 2004; Li et al. 2009; Tan et al. 2011; Cheng et al.
2011; Akter et al. 2014). In rice, Yamagishi et al. (2004)
located three QTL affecting pre-flowering basal floret
abortion on chromosomes 1, 10, and 11, respectively. A
candidate gene Short panicle1 was isolated and muta-
tion of this gene could cause significant reductions in
basal floret numbers (Li et al. 2009). An interactive
effect was also found between different QTL for apical
spikelet fertility (Tan et al. 2011). qPAA8, a gene con-
trolling panicle development in rice, has been fine
mapped to the 68 kb zone on chromosome 8 (Cheng
et al. 2011). There are limited studies in wheat on the
inheritance of grain set in apical and basal spikelets
(Guo et al. 2015; Guo et al. 2017). After performing
genome-wide association studies (GWAS) of 16 floret
fertility traits in 210 European winter wheat accessions,

Guo et al. (2017) proposed a genetic network underlying
floret fertility and related traits, nominating determi-
nants for improved yield performance. A full under-
standing of the genetics of grain setting at the molecular
level is needed for breeders to improve apical and basal
floret fertility.

The aim of this study was to identify MTAs for the
fertility of three apical and basal floret. The grain num-
bers in apical and basal spikelets of 212 wheat varieties
were collected from five environmental conditions
(years/locations). Genome-wide association studies re-
vealed several MTAs controlling grain numbers in api-
cal and basal spikelets. These MTAs have the potential
to be used in future fine mapping, cloning, and marker-
assisted selection.

Materials and methods

Plant materials

The materials consisted of 212 wheat varieties, includ-
ing 200 from China, 3 from Italy, 1 from Japan, 1 from
Pakistan, and 7 with unknown origins (Table S1). The
Chinese varieties were from Jiangsu (63), Henan (22),
Shaanxi (21), Shandong (19), Sichuan (15), Beijing
(12), Anhui (11), Hunan (9), Hebei (7), Hubei (6),
Shanxi (4), Fujian (4), Gansu (3), Guizhou (2), Jiangxi
(1), and Zhejiang (1).

Phenotyping

All genotypes were planted at three locations (Jingzhou
(JZ) in Hubei province; Yangzhou (YZ) in Jiangsu; and
Xinxiang (XX) in Henan) in three growing seasons
(2013–2014 (14), 2014–2015 (15), and 2015–2016
(16)). The environments were designated as 14JZ,
14YZ, 15JZ, 15YZ, and 16XX, respectively. Field ex-
periments used randomized block designs with three
replications. Each line was planted in five 2-m-long
rows with a row spacing of 0.2 m. Forty seeds were
planted in each row that were thinned back to 30 per row
after germination giving a final plant density of 75
plants/m2. Field management followed local practices.
Seedling numbers were thinned to about 30 per row at
early seedling stage. The traits recorded included spike-
let number per spike (SNPS), thousand kernel weight
(TKW), KNPS, grain numbers of the top three apical
spikelets (GNAS), and grain numbers of the bottom
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three basal spikelets (GNBS). Grain numbers in the
three apical spikelets were designated as GNAS1,
GNAS2, and GNAS3 from the apex downwards,
and three basal spikelets were designated as
GNBS1, GNBS2, and GNBS3 from the base
upwards.

Genotyping and statistical analysis

Genomic DNA extraction was carried out accord-
ing to CTAB method (Sharp et al. 1989).
Descriptive statistical analysis and analysis of var-
iance (ANOVA) of phenotypic data and G × E
interaction were calculated by using SAS 9.4
(https://www.sas.com/en_us/software/sas9.html). The
best linear unbiased prediction (BLUP) method was
used to calculate the mean values of each trait
(Bernardo 1996a, b; Bernardo et al. 1996). The broad
sense heritability (h2) was calculated according to the
formula h2 = σg

2/(σg
2 + σe

2), where σg
2 is genetic vari-

ance and σe
2 is the residual variance.

SNP genotyping was performed on the BeadStation
and iScan instruments and conducted at the Genome
Center of the University of California at Davis accord-
ing to the manufacturer’s protocols (Illumina, USA)
(Cavanagh et al. 2013). Data correction, input, and
output were performed using GenomeStudio v2011.1
(Wang et al. 2014). Information on chromosome
location of polymorphic SNPs was obtained from
Cavanagh et al. (2013).

PowerMarker V3.25 was used to estimate ge-
netic diversity of SNPs (Liu and Muse 2005).
Population structure of the 212 cultivars was eval-
uated with 3792 SNP markers distributed on all 21 chro-
mosomes using Structure 2.3.4 (Pritchard et al. 2000).

The subpopulation number was estimated using the ΔK
model (Evanno et al. 2005).

The average data from five environments were used
for GWAS. The unified mixed model approach (Q + K
model) was applied to the data using TASSEL 5.0
to estimate marker-trait associations (MTAs) (Yu
et al. 2005; Bradbury et al. 2007; Zhang et al. 2010).
After exclusion of SNP loci with frequencies < 0.05, a
uniform suggestive genome-wide significance threshold
(1 /3271 = 3 .06 × 10− 4 , o r P < 3.06 × 10− 4 , -
LogP > 3.51) was given.

Markers with significant association with the traits
were converted to 1 (favorable allele) and 0 (unfavor-
able allele) and were used for regression analysis. Trait
values of different genotypes were predicted with these
markers and compared with the actual values.

Results

Phenotypic assessment

All eleven traits (SNPS, TKW, KNPS, GNAS1,
GNAS2, GNAS3, GNAS, GNBS1, GNBS2, GNBS3,
and GNBS) were assessed in five environments (14JZ,
14YZ, 15JZ, 15YZ, and 16XX). The average coeffi-
cients of variation for these traits ranged from 6.06 to
164.29%, indicating that grain set in the materials was
significantly affected by environments, especially
GNBS1. The mean values of GNAS1, GNAS2,
GNAS3, and GNAS across the five environments were
1.45, 1.58, 1.82, and 4.85, respectively. All three apical
spikelets showed similar fertilities with the uppermost
spikelets showing slightly less fertilities. In contrast, the
three basal spikelets showed much greater differences in

Table 2 Analysis of variance of 11 traits in five environments of 212 wheat cultivars

Source of variation SNPS TKW KNPS GNAS1 GNAS2 GNAS3

df SS df SS df SS df SS df SS df SS

Genotypes 211 5025.4*** 211 64,902.9*** 211 117,979.2*** 211 230.7*** 211 190.0*** 211 196.7***

Environments 4 817.5*** 4 17,722.1*** 4 21,324.8*** 4 16.6*** 4 23.1*** 4 27.8***

G × E interaction 844 1332.8*** 844 13,516.2*** 844 51,837.7*** 844 143.5*** 844 125.4*** 844 123.4***

Source of variation GNAS GNBS1 GNBS2 GNBS3 GNBS

df SS df SS df SS df SS df SS

Genotypes 211 1608.9*** 211 503.2*** 211 1340.1*** 211 961.3*** 211 7065.9***

Environments 4 147.8*** 4 58.2*** 4 230.0*** 4 111.5*** 4 1095.0***

G × E interaction 844 779.7*** 844 329.4*** 844 742.9*** 844 507.2*** 844 3100.0***

*** Indicate significance level at P < 0.001
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floret fertilities with the average grain number for
GNBS1, GNBS2, and GNBS3 being 0.41, 1.43, and
2.62, respectively (Table 1).

Table 1 shows that SNPS showed the highest h2

(50.52–55.43%), followed by TKW (47.56–49.34%).

Among the traits associated with grain setting, KNPS
had the highest h2 (38.76–48.51%). The heritability for
grain number of apical and basal spikelets was 30.27–
43.62% and 30.00–41.63%, respectively. Significant
differences (P < 0.0001) were found among genotypes

Fig. 1 Manhattan and Q-Q plots of eight phenotypic traits with
3778 genome-wide SNP markers shown as dot plots of com-
pressed MLM at P < 3.06 × 10−4. Red horizontal line corresponds
to the threshold value for significant association. Green and orange

colors separate different chromosomes. a GNAS1. b GNAS2. c
GNAS3. d GNAS. e GNBS1. f GNBS2. g GNBS3. h GNBS. i
KNPS. j TKW

Table 3 Pearson’s correlation coefficients between phenotypic traits in the BLUPs

TKW KNPS GNAS1 GNAS2 GNAS3 GNAS GNBS1 GNBS2 GNBS3 GNBS

SNPS − 0.067 0.356** − 0.256** − 0.270** − 0.355** − 0.309** − 0.268** − 0.231** − 0.249** − 0.264**
TKW − 0.344** − 0.201 − 0.220 − 0.230 − 0.228 − 0.115 − 0.125 − 0.134 − 0.135
KNPS 0.417** 0.398** 0.406** 0.506** 0.424** 0.455** 0.556** 0.590**

GNAS1 0.837** 0.845** 0.946** 0.344** 0.266** 0.320** 0.326**

GNAS2 0.871** 0.949** 0.347** 0.264** 0.266** 0.306**

GNAS3 0.952** 0.395** 0.283** 0.290** 0.336**

GNAS 0.381** 0.286** 0.309** 0.340**

GNBS1 0.829** 0.671** 0.876**

GNBS2 0.861** 0.975**

GNBS3 0.923**

** Significant at P < 0.01

Mol Breeding (2018) 38: 146 Page 5 of 12 146



Table 4 Stable MTAs and phenotypic effects of favorable alleles revealed by GWAS consistently identified in at least two environments

Trait SNP name Chr. cM Favorable alleles Freq. (%) Environ. Allele effect P value R2

TKW wsnp_Ex_c3130_5790163 3B 132.09 AA 75.00 16XX 0.57 2.03 × 10−4 9.12

BLUP 0.67 2.23 × 10−4 10.42

KNPS wsnp_Ku_rep_c101175_88380491 1A 36.81 CC 29.08 14JZ 3.02 4.52 × 10−6 12.22

14YZ 3.64 4.78 × 10−6 14.88

wsnp_Ex_c2025_3799847 1B 48.22 GG 32.19 15JZ 2.20 6.00 × 10−5 8.48

16XX 2.15 7.27 × 10−5 7.90

wsnp_Ex_c20786_29875033 2B 76.37 TT 39.22 14YZ 3.06 1.00 × 10−5 8.85

BLUP 2.10 1.18 × 10−5 7.46

wsnp_JD_c43971_30568640 3A 123.35 TT 37.75 14YZ 3.21 5.00 × 10−6 14.47

15YZ 3.00 6.15 × 10−6 12.70

wsnp_Ex_c6065_10623213 3B 66.39 AC 30.05 14JZ 2.95 5.30 × 10−6 15.96

16XX 3.05 7.52 × 10−6 12.50

wsnp_Ex_c28092_37240192 4A 140.47 GG 90.82 16XX 1.20 1.03 × 10−5 8.17

BLUP 0.24 1.52 × 10−5 6.60

wsnp_Ex_c5731_10066430 6B 84.83 CC 40.00 16XX 2.67 1.02 × 10−4 7.20

BLUP 1.85 1.30 × 10−4 7.44

wsnp_Ku_rep_c101817_88911480 6B 94.68 CC 61.38 16XX 1.31 1.10 × 10−5 8.10

BLUP 1.79 2.08 × 10−5 7.36

wsnp_Ra_c35321_43882919 7A 143.91 GG 44.30 15JZ 2.39 2.18 × 10−4 6.54

15YZ 1.80 2.40 × 10−4 6.92

wsnp_BF200891B_Ta_2_1 7B 40.62 TC 35.64 14JZ 2.52 4.10 × 10−5 8.00

15JZ 3.10 5.12 × 10−5 7.20

wsnp_Ex_c1790_3378771 7B 50.22 GG 35.42 15YZ 2.19 1.26 × 10−4 6.50

BLUP 1.35 1.85 × 10−4 7.10

GNAS1 wsnp_Ex_c32500_41144083 4B 71.98 GG 14.15 15YZ 0.17 2.20 × 10−4 8.56

16XX 0.20 2.80 × 10−4 7.10

wsnp_Ex_c31799_40545376 5A 69.07 TT 7.11 14JZ 0.21 1.76 × 10−6 18.18

15JZ 0.26 1.76 × 10−6 12.01

GNAS2 wsnp_Ex_c31799_40545376 5A 69.07 TT 7.11 14JZ 0.37 1.76 × 10−6 13.20

16XX 0.31 1.76 × 10−6 10.16

GNAS wsnp_BG606986B_Ta_2_1 1B 86.13 CC 50.00 14YZ 0.16 3.00 × 10−4 6.30

BLUP 0.14 3.40 × 10−4 7.84

wsnp_Ex_c31799_40545376 5A 69.07 TT 7.11 14YZ 1.36 1.00 × 10−4 12.46

BLUP 0.69 3.10 × 10−4 9.91

GNBS1 wsnp_Ra_c9755_16199734 4B 14.80 TT 93.50 15JZ 0.11 1.03 × 10−4 8.10

15YZ 0.17 2.23 × 10−4 7.38

wsnp_BF293620A_Ta_2_3 5A 64.81 CC 12.43 14JZ 0.46 1.08 × 10−4 13.50

15JZ 0.33 1.82 × 10−4 10.08

16XX 0.39 2.33 × 10−4 16.73

GNBS2 wsnp_BF293620A_Ta_2_3 5A 64.81 CC 12.43 14YZ 0.20 1.43 × 10−4 11.20

15YZ 0.23 1.62 × 10−4 11.60

BLUP 0.10 1.73 × 10−4 12.10

GNBS wsnp_RFL_Contig2550_2175772 1A 173.72 AA 88.61 15JZ 0.28 1.51 × 10−4 6.37

15YZ 0.10 3.77 × 10−5 7.08
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(G), environments (E) for all 11 phenotype traits. G × E
interactions were also significant (Table 2).

KNPS showed significant correlations (P < 0.01)
with both GNAS and GNBS. Significant positive cor-
relations were also found between GNAS and GNBS.
However, SNPS showed a negative correlation with
GNAS and GNBS. TKW showed insignificant negative
correlations with all other traits but only significant with
KNPS (Table 3).

Allelic diversity and genetic structure

Genotyping of the 212 wheat cultivars using the 9K
SNP array identified 3778 polymorphic SNPs. Among
them, 1793 were in the A genome chromosomes, 1778
were in the B genome, and 207 were in the D genome
(Table S2). The values of gene diversity and polymor-
phism information content (PIC) ranged from
0.009 to 0.500 and from 0.009 to 0.375, with
averages of 0.318 and 0.255, respectively. Major
allele frequencies ranged up to 0.995 with an average of
0.765 (Table S2), indicating that the germplasm was
highly diverse.

The number of subpopulation (K) was plotted
against the ΔK calculated from the Structure, and
the peak of the broken line graph was observed at K = 2
(Fig. S1a, b), indicating that the population was basical-
ly divided into two subpopulations.

GWAS of grain set-related traits and their phenotypic
effects

Of the 3778 SNP markers, 3269 had frequencies above
0.05. Association analyses between the 11 traits and
SNP markers showed that there were 112 significant
associations (P < 3.06 × 10−4), with 4, 32, 33, and 43
for TKW, KNPS, apical, and basal grain set numbers,
respectively (Fig. 1, Table S3). The associated loci were
distributed on all chromosomes except 1D, 3D, 4D, and
5D (Table S3). Twenty-two SNP loci were significantly
associated in at least two environments with phenotypic
explanation rates (R2) ranging from 6.24 to 18.18%

(Table 4). Frequencies of favorable alleles at these asso-
ciated loci ranged from 7.11 to 93.50%.

Most of GNAS-associated loci were distributed
o n s i x c h r o m o s o m e s , t w o o n 5 A
( w s n p _ E x _ c 2 7 0 2 _ 5 0 1 3 1 8 8 a n d
wsnp_Ex_c31799_40545376 ) , one on 4B
(wsnp_Ex_c32500_41144083), and one on 2A
(wsnp_Ex_rep_c103167_88181968). Two other loci
with minor genetic effect were on 3B and 5B, respec-
tively (Table S3). These six loci determined more than
30% phenotypic variation. The total GNAS predicted
from these six markers showed very significant correla-
tion with the actual numbers (Fig. 2a) with an increased
number of favorable alleles increasing the total number
of GNAS (Fig. 2b).

The SNP wsnp_BF293620A_Ta_2_3 on 5A showed
the largest effects on grain numbers in basal spikelets.
Three other minor QTL were found on 1A, 2A, and 6B,
respectively (Table S3). Similarly, the total GNBS pre-
dicted from these four markers showed a significant
correlation with the actual GNBS (Fig. 3a) and an
increased number of favorable alleles increased the total
number of GNBS (Fig. 3b).

Stable SNPs for GNAS and GNBS

Two in 22 stable MTAs were significantly associ-
ated with two or more grain setting properties
under various environmental conditions, including
wsnp_Ex_c31799_40545376-5ATT (GNAS1, GNAS2,
and GNAS) and wsnp_BF293620A_Ta_2_3-5ACC

(GNBS1, GNBS2, and GNBS) (Table 4, Fig. 4a). The
f r e q u e n c i e s o f f a v o r a b l e a l l e l e s o f
wsnp_Ex_c31799_40545376-5ATT (GNAS1, GNAS2,
and GNAS) and wsnp_BF293620A_Ta_2_3-5ACCwere
7.11% and 12.43%, respectively (Fig. 4b). The favor-
able allele at SNP locus wsnp_Ex_c31799_40545376-
5A in 14JZ and 15JZ improved the grain set in the first
apical spikelet by 0.21 and 0.26, increased the grain set
of the second apical spikelet in 14JZ and 16XX by 0.37
and 0.31, and increased the grain set of the top three
apical spikelets in 14YZ and BLUP by 1.36 and 0.69,

Table 4 (continued)

Trait SNP name Chr. cM Favorable alleles Freq. (%) Environ. Allele effect P value R2

wsnp_BF293620A_Ta_2_3 5A 64.81 CC 12.43 16XX 0.41 2.03 × 10−4 6.24

BLUP 0.94 2.14 × 10−4 6.31
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respectively (Fig. 4c). Among the favorable alleles for
basal grain setting, wsnp_BF293620A_Ta_2_3-5ACC

increased the grain sets of the first [0.46 (14JZ), 0.33
(15JZ), 0.39 (16XX)], the second [0.20 (14YZ), 0.23
(15YZ), 0.10 (BLUP)], and the bottom three [0.41
(16XX), 0.94 (BLUP)] basal spikelets (Table 4, Fig. 4d).

Discussion

KNPS is a fundamental yield component comprised of
apical, basal, and middle spikelets. Assuming all other
yield-determining factors are fixed, an increase in grain
set in apical and basal spikelets could modestly but
significantly improve the yield of wheat (Arisnabarreta
and Miralles 2006; Acreche et al. 2008). However, not
enough effort has been made to improve the fertility of
apical and basal spikelets in breeding program. Both

GNAS and GNBS were positively correlated with
KNPS (P < 0.01) with only weak but insignificant neg-
ative correlations with TKW (Table 3). Our study also
showed a large variation in both GNAS (2.1–7.1) and
GNBS (0.5–9.2), indicating a great potential for improv-
ing the fertility of both basal and apical spikelets, thus
increasing the total number of grains per spike.

ManyMTAs for GNAS andGNBSwere identified in
this study. Most of them are in similar positions to those
for grain yield and yield components (Table 5). The
wsnp_Ku_rep_c68318_67259259 for GNAS1 on chro-
mosome 4B was associated with grain yield (Ain et al.
2015). The SNPs wsnp_RFL_Contig4134_4692458
and wsnp_Ex_c2288_4293430 associated with GNBS
on chromosome 2D and 4Awere mapped to QTL inter-
val Kukri_c14902_1112–RAC875_c77816_365 and
Kukri_rep_c106490_583–RAC875_c29282_566 that
affected KNPS (Gao et al. 2015). A QTL for spike

Fig. 3 Linear regression of predicted and actual numbers of
GNBS (a); boxplot among the 212 wheat cultivars in BLUP
between number of favored alleles and GNBS (b). The predicted
GNBS are calculated from the following equation: y = 1.25x1 +

0.76x2 + 0.93x3 + 0.67x4 + 2.45, where y is the predicted GNBS;
x 1 i s w s n p _ E x _ c 5 4 1 9 3 _ 5 7 1 5 5 6 3 2 ; x 2 i s
wsnp_Ra_c4850_8698731; x3 is wsnp_Ex_c15595_23910900;
and x4 is wsnp_Ex_c8588_14419007

Fig. 2 Linear regression of predicted and actual numbers of
GNAS (a); boxplot among the 212 wheat cultivars in
BLUP between number of favored alleles and GNAS (b). The
predicted GNAS are calculated from the following equation: y =
0.82x1 + 0.58x2 + 0.60x3 + 0.36x4 + 0.43x5 + 3.80, where y is the

predicted GNAS; x1 is wsnp_Ex_c2702_5013188; x2 is
w s n p _ C A P 7 _ c 1 4 0 5 _ 7 0 6 1 4 2 ; x 3 i s
w s n p _ K u _ c 3 5 3 8 6 _ 4 4 5 9 8 9 3 7 ; x 4 i s
w s n p _ E x _ r e p _ c 6 8 5 9 9 _ 6 7 4 4 7 8 8 0 ; a n d x 5 i s
wsnp_Ex_c3130_5789791
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numbe r /m 2 ( SN ) i n t h e ma r k e r i n t e r v a l
BS00032003_51-BS00070871_51 (Gao et al. 2015)
was in a similar position to wsnp_Ex_c607_1204733
which was found to be associated with GNBS in this
study. The SNPwsnp_Ex_c11446_18468102 associated
with GNBS on chromosome 6Awas located in a pleio-
tropic region, affecting TKWand SN (Gao et al. 2015).
Another SNP marker wsnp_Ex_c32500_41144083 as-
sociated with GNAS1, GNAS2, and GNAS on chromo-
some 4B was close to QTL interval (IWB67166–

IWB25207) that affected days to maturity (Milner et al.
2016). However, its physical location on chromosome
4B is 574.9 Mb, which is far from the Rht-B1 gene
(30.8 Mb) (Table S4).

Gene pyramiding has been proved to be an effective
approach in improving not only a plant’s tolerance to
biotic stresses (Zheng et al. 2017) and abiotic stresses
(Zhou 2011) but also other agronomic traits and yield
components (Mirabella et al. 2015). Among allMTAs for
different traits, the SNPs wsnp_Ex_c31799_40545376

Fig. 4 Effect of favorable allele wsnp_Ex_c31799_40545376-5A
and wsnp_BF293620A_Ta_2_3-5A. a Associated loci identified in
the germplasm set by a mixed linear model (P < 3.06 × 10−4); green
and orange colors separate different traits. b Allelic frequencies of
wsnp_Ex_c31799_40545376-5A and wsnp_BF293620A_Ta_2_3-

5A in the germplasm set; blue columns represent favorable alleles
TT and CC , r e s p e c t i v e l y. c Gene t i c e f f e c t s o f
wsnp_Ex_c31799_40545376-5ATT in selected environments. d
Genetic effects of wsnp_BF293620A_Ta_2_3-5Acc in selected
environments
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and wsnp_BF293620A_Ta_2_3 on 5A showed consis-
tent significant association with all grain setting proper-
ties under various environmental conditions
(Table 4, Fig. 2). The corresponding overlapping
genes related to these two loci have not been
reported for either spikelet fertility or yield-related
genes according to the published sequence of the hexa-
ploid wheat genome (Table S4, Fig. S2). Interestingly,
Vrn-B gene was found in the 4.5-Mb region, and its
physical distance to wsnp_Ex_c31799_40545376 and
wsnp_BF293620A_Ta_2_3 was 2 Mb and 1.1 Mb, re-
spectively. Therefore, the new markers can be po-
tentially used in breeding programs to improve the
fertility of both basal and apical spikelets. Further
studies should be conducted using a segregating popu-
lation to identify the gene and verify their roles in
spikelet fertility in wheat.

In our study, apart from the MTAs on 5A, several
other MTAs were identified for GNAS and GNBS. The
combination of the favorable alleles from different
MTAs significantly improved the fertility of both
GNAS and GNBS (Figs. 2 and 3). From the 212 wheat
accessions used in this study, less than 10% of acces-
sions have favorable allele on 5A and just around 10%
of accessions have favorable allele for the other signif-
icant MTA on 4B, suggesting that less effort has been
made in improving the fertility of GNAS andGNBS. No
accessions were found to have favorable alleles from
both significant MTAs, i.e., 5A and 4B MTAs, which

opens the door for breeders to improve the fertility of
GNAS and GNBS by pyramiding those two loci.

In conclusion, two newMTAs were identified for the
fertility of basal and apical spikelets, respectively.
Both of loci were located on chromosome 5A and
not found to be associated with any grain setting
properties in previous studies. The combination of
these loci with other MTAs for spikelet fertility
could improve the grain setting in both basal and
apical spikelets.
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