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Abstract Genomic selection (GS) is expected to in-
crease the rate of genetic gain in oil palm. In a GS
scheme, breeding cycles with progeny tests (phenotypic
selection, PS) used to calibrate the GS predictive model
and for selection alternate with GS cycles, making it
possible to train the GS model with aggregated data
from several cycles. To evaluate this possibility, we
simulated four cycles of hybrid breeding for bunch
production and compared two methods of calibrating
the GS model, one using aggregated data from the two
most recent cycles (Tr2Gen), the other using data from
the last cycle (Tr1Gen). We also compared a GS scheme
with two PS cycles and two GS cycles (2PT-2noPT),
and a scheme with PS every other cycle and GS other-
wise (PT-noPT). We showed that Tr2Gen had a 10.7%
higher genetic gain per cycle than Tr1Gen, mostly due
to increased selection accuracy, particularly in across-

cycle selection, despite the decreased relationship be-
tween training individuals and selection candidates. Af-
ter four cycles, Tr2Gen had a 5% higher cumulative
genetic gain than Tr1Gen, with a lower coefficient of
variation. PT-noPT benefited more from the advantages
offered by Tr2Gen than 2PT-2noPT. Over four breeding
cycles, combining PT-noPT and Tr2Gen largely
outperformed conventional reciprocal recurrent selec-
tion (RRS), with an increase in annual genetic gain
ranging from 37.6 to 57.5%, depending on the number
of GS candidates. This study confirms the advantages of
GS over RRS and indicated that oil palm breeders
should train GS models using all data from past breed-
ing cycles.
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Background

Oil palm (Elaeis guineensis Jacq.) is the world’s number
one oil crop, with current annual production at > 60 Mt
(USDA 2017). It is a diploid, perennial, and naturally
cross-pollinated species cultivated in humid tropical
zones. Palm oil is extracted from the mesocarp of the
fruits constituting the bunches. Bunch production is a
major component of oil yield, and the hybrid oil palm
cultivars display heterosis for this trait (Gascon and de
Berchoux 1964). Bunch production is the mathematical
product of bunch number (BN) and average bunch
weight (BW), two quantitative traits with mostly addi-
tive inheritance and a strong negative genetic correlation
(Gascon et al. 1966; Corley and Tinker 2016). Oil palm
bunch production therefore illustrates the case of heter-
osis resulting from the multiplicative interaction be-
tween additive and negatively correlated components
(Schnell and Cockerham 1992; Gallais 2009, pp. 68–
71), like for crop yield, as the product of fruit weight and
number, or plant height, as the product of internode
number and length. In such cases, the heterosis in the
multiplicative trait can appear even in the absence of
dominance at the gene level. Oil palm populations can
be organized in heterotic groups that show complemen-
tarity for these BN and BW. The cultivars are thus
interpopulation hybrids, selected in a reciprocal recur-
rent selection (RRS) scheme. This approach has been
applied since the 1950s (Gascon and de Berchoux 1964;
Meunier and Gascon 1972), andmany oil palm breeding
programs now rely on it (Corley and Tinker 2016).
Populations with a small number of big bunches consti-
tute the group A. The major population in this group is
the Deli population, which originated from four oil
palms planted in Indonesia in 1848. The populations
with a large number of small bunches constitute the
group B. This comprised African populations from dif-
ferent countries. In particular, the La Mé population,
which originated from a survey made in the 1920s in
the Bingerville region of Côte d’Ivoire, has been exten-
sively used in the breeding programs of several coun-
tries. Both Deli and La Mé populations have been the
subject of several generations of selection and inbreed-
ing (Corley and Tinker 2016; Soh et al. 2017a). In the
current RRS scheme, 100 to 150 individuals belonging
to group A and group B are evaluated in A × B hybrid
progeny tests. Statistical analysis using a pedigree-based
mixed model accurately estimates the general combin-
ing ability (GCA, i.e., half their breeding value in hybrid

crosses) of the progeny-tested individuals (Soh et al.
2017b). This breeding scheme enables an estimated
annual genetic progress of 1% (Durand-Gasselin et al.
2010).

The development of new breeding approaches, com-
bining large-scale high-throughput genotyping and sta-
tistical methods able to take advantage of these large
amounts of data, is expected to further increase annual
genetic progress. For quantitative and complex traits
such as BN and BW, the most promising approach is
currently genomic selection (GS) (Meuwissen et al.
2001). GS uses a mixed model approach that gives the
genomic estimated genetic value (GEBV) of selection
candidates usually without phenotypic data records, but
genotyped at high marker density. The prediction model
is calibrated with the phenotypic data records and the
genotypes of individuals that constitute the Btraining
set.^ Existing literature on genomic selection in oil palm
(Wong and Bernardo 2008; Cros et al. 2015a, b, 2017;
Marchal et al. 2016; Kwong et al. 2017) indicates it has
potential advantages over the current phenotypic RRS,
due to the ability of GS to provide GEBV for immature
individuals (for instance, plantlets at the nursery stage).
These GEBV can be used to make a preselection before
progeny tests, thereby increasing selection intensity
(Cros et al. 2017). They can also be used to make the
final selection directly (i.e., avoiding progeny tests),
which reduces the generation interval, as the sexual
maturity of oil palm is reached at 3 years old, while
the results of the progeny tests are obtained when the
progeny-tested individuals are 13 to 15 years old. In
addition, if the number of selection candidates is higher
than the number of individuals that are usually progeny
tested in conventional RRS, this increases selection
intensity.

In a previous study (Cros et al. 2015a), our team
compared RRS and different reciprocal recurrent geno-
mic selection (RRGS) schemes. This was done over four
cycles and, in RRGS, the phenotypic evaluations (i.e.,
progeny tests, used for both training the GS model and
for selection) were made at varying frequencies, from
only in the first cycle to in every cycle. It was concluded
that the best option was RRGS with progeny tests every
other cycle, which appeared as a good compromise
between increased annual genetic gain compared to
RRS, low risk around the expected gain, increase in
inbreeding and cost. In addition, such a breeding scheme
made it possible to train the GS model using aggregated
data from several cycles. This was not investigated in
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our previous study, but we expect this could increase
selection accuracy and annual genetic progress, as GS
accuracy is positively correlated with the size of the
training data set (Lorenz et al. 2011; Grattapaglia 2014).

The goal of the present oil palm breeding in silico
study was to compare two methods to train the GS
model, i.e., using aggregated data from the two most
recent breeding cycles versus data from the single last
breeding cycle. For this purpose, we adapted the simu-
lation program of Cros et al. (2015a) and used two oil
palm breeding populations simulated based on the actu-
al genetic data of current Deli and La Mé populations.
The comparison was made in terms of genetic gain for
bunch production in Deli × LaMé hybrids, and selection
accuracy and additive variance in parental populations.

Material and methods

Simulation overview

Based on the known history of actual Deli and La Mé
populations, we simulated two oil palm breeding popu-
lations, with a simulation procedure calibrated so that
the genetic parameters in the simulated populations
were close to the actual values obtained in empirical
datasets and the literature. As the true number of QTLs
(quantitative trait loci) (nQTL) and the percentage of
pleiotropic QTLs (pQTL) were not known, we considered
a range of values for these two parameters. We simulat-
ed nQTL = 100, 500, and 1000 QTLs per trait and pQTL =
60, 75, and 90%. Six initial breeding populations were
generated for each combination of nQTL and pQTL and,
for each combination, the simulation was launched five
times, starting with randomDeli and LaMé individuals.
This led to a total of 270 replicates.

Using these simulated populations, we compared
RRGS schemes over four breeding cycles using a GS
model trained using aggregated data from the two most
recent breeding cycles (Tr2Gen) or only data from the
last breeding cycle (Tr1Gen). In addition, two RRGS
schemes were compared. First, we defined a 2PT-2noPT
scheme that started with two cycles including progeny
tests, used to calibrate the GS model that made it possi-
ble to select among the progeny-tested individuals, and,
if any, their non-progeny-tested sibs. The 2PT-2noPT
scheme then ended with two cycles with no progeny
tests, i.e., with selection only based on markers. Second,
the PT-noPT scheme alternated one cycle with progeny

tests and one cycle with selection based only on markers
(Fig. 1). Tr2Gen and Tr1Gen were compared at each
cycle among the four cycles investigated. In particular,
we distinguished between within-cycle GS and across-
cycle GS. Traditional RRS was also simulated and used
as a benchmark method. The aim of all the breeding
schemes is to improve the hybrid performance of inter-
population crosses for bunch production.

This study was conducted with R software version
3.2.5 (R Core Team 2016). The scripts were adapted
from the ones used in Cros et al. (2015a), where detailed
information on the simulation process can be found. All
the modifications to the original scripts are explained in
the following paragraphs.

Simulation of the initial breeding populations

The simulated genome had a length of 17 M and 16
chromosomes, corresponding to the actual values in oil
palm (Billotte et al. 2005). Prior to the simulation of the
initial Deli and La Mé populations, i.e., the individuals
used as a starting point in this study (corresponding to
the Bparental generation 0^ in Fig. 1 in Cros et al.
(2015a)), an equilibrium base population was simulated.
The QTLs controlling BWand BNwere assigned in this
base population, assuming additive architecture. The
base population was then divided into two independent
populations which gave, after generations of selection
and drift with population specific parameters based on
their known history (see details in Cros et al. (2015a)),
the initial Deli and La Mé breeding populations. In
particular, a different selection regime was applied to
obtain divergent evolution: increasing BW to create the
initial Deli population and increasing BN for La Mé. As
a result, the initial Deli and La Mé populations differed
in allele frequencies at QTLs and SNPs. The mutation
rate was 10−5 per base pair per meiosis, with mutations
generating new SNPs (i.e., no causative mutations).
Haplotypes and meiosis were simulated with the
Haplosim package in R (Coster and Bastiaansen 2010).

The initial Deli and La Mé populations were calibrat-
ed on the following parameters: Weir and Cockerham
fixation index (Fst) and complementarity for BW and
BN between the two populations, linkage disequilibri-
um (LD) profiles, narrow-sense heritabilities (h2) and
additive variances for BWand BN, and genetic correla-
tions between BW and BN. The mean values and stan-
dard deviations obtained for these genetic parameters in
the different combinations of nQTL and pQTL are
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summarized in Supplementary Table 1. The target
values used to calibrate the simulations were obtained
from real data of the Deli and La Mé breeding popula-
tions used in the breeding program of PalmElit and its
partners, and from the literature. The target values are
given in Supplementary Table 1. The data, methods of
computations, and associated references used to obtain
these target values can be found in Cros et al. (2015a),
except for Fst and additive variances for which better
values were obtained with more recent datasets. Thus,
the target Fst used in the present study was computed
using the SNPs with no missing data in the Deli and La
Mé individuals of Cros et al. (2017), with the R package
Geneland (Guillot et al. 2005). The value obtained was
0.55, i.e., 12.2% higher than the value used in Cros et al.
(2015a), which had been computed from SSR data.
Also, the target interpopulation additive variances used
here were mean values obtained from pedigree-based
mixed model analyses made on two datasets involving
Deli × La Mé hybrid progeny tests (Cros et al. 2015b,
2017). These estimates of additive variances were asso-
ciated with the individuals that appeared as founders in

the pedigrees used in the analysis, i.e., with the Bgener-
ation -2^ in Cros et al. (2015a). The simulation was
therefore calibrated so that the additive variance in
Bgeneration -2^ of the simulated populations matched
the actual values obtained with the real datasets.

Breeding schemes

Three breeding schemes were simulated: conventional
RRS, 2PT-2noPT RRGS, and PT-noPT RRGS.

For RRS and RRGS, the progeny tests involved 120
individuals per parental population, with a mean number
of 2.25 hybrid crosses per parent and 40 hybrid individ-
uals per cross. This led to a total of 10,800 hybrid
individuals per progeny test (Fig. 1). We considered that
a breeding cycle including a progeny test required
20 years. In all breeding cycles (i.e., regardless of the
existence of progeny test, and, for RRGS, regardless of
the number of selection candidates), the 18 best individ-
uals were selected in each parental population. The
following generation of individuals was obtained by
mating, in each parental population, the selected

Fig. 1 Reciprocal recurrent genomic selection breeding schemes between Deli and La Mé oil palm populations investigated in this study
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individuals. Mating was performed according to an
incomplete diallel design in which one sixth of the 182

possible crosses were randomly made (i.e., 54 full-sib
families produced).

In RRS, the selection candidates in a given cycle
were the individual progeny tested in this cycle, and
progeny tests were conducted in each cycle.

With RRGS, it was possible to avoid progeny tests in
some generations. The first cycle necessarily included a
progeny test as the phenotypic data used to train the GS
model were collected on the hybrid individuals. In the
2PT-2noPT scheme, the two first cycles included prog-
eny tests, whereas the two last cycles did not. This made
it possible to compare training on one generation versus
two in cycles 2, 3, and 4. In cycle 2, all the selection
candidates had full-sibs among the individual progeny
tested in the same cycle (within-cycle GS). By contrast,
cycles 3 and 4 represented across-cycle GS, where the
selection candidates were descendants (i.e., direct prog-
enies, grand-children, or great grand-children, depend-
ing on the cycle) of the individual progeny tested to train
the GS model (Supplementary Table 2). In the PT-noPT
scheme, progeny tests were conducted every other cycle
(i.e., in cycles 1 and 3, while cycles 2 and 4 only relied
on GS). This made it possible to measure the effect of
training on one generation versus two in cycles 3
(within-cycle GS) and 4 (across-cycle GS). A breeding
cycle without a progeny test requires 6 years. As a
consequence, with the PT-noPT and 2PT-2noPT GS
schemes studied here, it only takes 52 years to complete
the four breeding cycles, versus 80 years with RRS (−
35%).

In addition, with RRGS, the set of selection candi-
dates could differ from that in RRS, as GS allows
selection among individuals that have not been progeny
tested. Here, we considered nc = 120, 250, and 500
selection candidates per population and per breeding
cycle. The set of selection candidates could then include
only progeny-tested individuals (in cycles with progeny
tests and nc = 120), or only individuals that were not
progeny tested, or a mixture of the two (in cycles with
progeny tests and nc > 120).

Models for prediction of breeding values

For computational reasons, we used univariate models
rather than the bivariate models used in Cros et al.
(2015a). We thus predicted the breeding values for BN
and BW for one trait after another.
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For RRS and RRGS, the mixed model used to predict
the GCAs of the Deli and La Mé individuals took the
form:

Y ¼ 1μþ ZDaD þ ZLaL þ e

where Y is the vector of the phenotypes of the hybrid
individuals, μ is the overall mean, 1 is a column vector
of 1 s, aD and aL are the vectors of GCA of Deli and La
Mé parents, respectively, ZD and ZL their incidence
matrices (with 0 s and 1 s, to connect the phenotypes
to the parents of the corresponding cross), and e is the
vector of residual effects. The random genetic effects
followed the model of Stuber and Cockerham (1966) for
hybrid crosses, with aD ~N(0, σ2

aD×ΓD) and aL ~N(0,

σ2
aL×ΓL). σ2

aD and σ2
aL are the additive variances associ-

ated with the Deli and La Mé breeding populations,
respectively; and ΓD and ΓL are the matrices of known
constants used to define the covariance among GCAs of
the Deli and La Mé, respectively. In RRS, we used
ΓD = 0.5AD and ΓL = 0.5AL, with AD and AL, the
genealogical relationship matrices computed from the
pedigree of the corresponding parental population, with
elements 2fxy, where fxy is the coefficient of coancestry
between individuals x and y. In RRGS, matrices of
additive relationships AD and AL were replaced by mo-
lecular relationship matrices GD and GL computed from
parental genotypes, using observed allele frequencies
(VanRaden 2007; Habier et al. 2007). This corresponded
to the RRGS_PAR method described in Cros et al.
(2015a). The errors e followed N(0, σ2

e× I), where σ2
e

is the residual variance and I is the identity matrix. For
RRGS, when training included two breeding cycles, a
supplementary fixed effect related to the breeding cycle
was included.

The genomic matrices GD and GL were computed
with 2500 random non-causal SNPs with minor allele
frequency (MAF) ≥ 5%. MAFs were computed sepa-
rately for the two parental populations.

Variance parameters were estimated by restricted
maximum likelihood (REML) and the solutions of the
mixed models were obtained by resolving Henderson’s
mixed model equations (Henderson 1975) using
R-ASReml version 3.0 (Gilmour et al. 2009).

Analysis of results

For a given cycle (n), the genetic gain was defined as the
difference between bunch production (BN × BW) by the



hybrids between the progenies of the Deli and La Mé
individuals selected at the end of the cycle (bn + 1) and
bunch production by the hybrids between the Deli and
La Mé individuals used as selection candidates at the
beginning of the cycle (bn). This per cycle genetic gain
was expressed as the percentage of bunch production by
hybrid crosses at the beginning of the cycle (100 × (bn +
1 − bn)/bn). At the end of cycle 4, we also measured the
cumulative genetic gain, which is expressed as the per-
centage of hybrid production in the initial generation
(100 × (b4 − b0)/b0). The risk concerning the genetic
gain (i.e., the variation in genetic gain among replicates
in a given breeding scheme) was quantified by the
coefficient of variation (CV) of the genetic gain per
cycle of the 270 replicates. The annual genetic gain
was computed as the genetic gain obtained after four
breeding cycles divided by the number of years required
to carry out the four cycles.

Selection accuracy was computed for BN and BW
traits in the two parental populations as the Pearson
correlation between the true and estimated GCAs. The
additive variances were defined according to the quan-
titative genetic model of Falconer and Mackay (1996).
The mean additive relationship between the training
individuals and the selection candidates was computed
from the pedigrees.

Two-tailed paired sample Wilcoxon tests were used
to compare the Tr2Gen and Tr1Gen effect on four
parameters: genetic gain after four cycles, genetic gain
per cycle, additive variances, and the relationship be-
tween training parents and selection candidates. For
selection accuracies, the comparison was made using
paired t tests after Fisher’s Z transformation. An analysis
of variance was performed to compare the annual ge-
netic gain of RRS and of the PT-noPT/Tr2Gen GS
breeding schemes, with multiple comparisons of breed-
ing schemes using Tukey’s test.

Results

Genetic gain per cycle

RRGS with two-cycle training sets (Tr2Gen) per-
formed better than RRGS with single-cycle training
sets (Tr1Gen) in almost every cycle, and this was
significant in 80% of the situations (Fig. 2). In the
generations in which Tr1Gen and Tr2Gen were com-
pared, the genetic gain per cycle with Tr2Gen was
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on average 10.7% higher than with Tr1Gen (increase
ranging from 3.4 to 34.9%), with a mean genetic
gain per cycle of 3.6% with Tr2Gen, versus 3.3%
with Tr1Gen. In the case of within-cycle selection
(generation 2 of 2PT-2noPT and generation 3 of
PT-noPT), the genetic gain increased by an average
of 6.9% (range 4.5 to 11.2%) with Tr2Gen and was
always significant. The increase obtained with 120
candidates indicated that Tr2Gen was advantageous
for the evaluation of progeny-tested individuals (i.e.,
the training parents). In the case of across-cycle
selection, bigger increases in genetic gain per cycle
were achieved, as it was on average 13.3% higher
(range 3.4 to 34.9%, although not always signifi-
cant). Tr2Gen was therefore also advantageous for
selection among non-progeny-tested candidates.

Another desirable feature of Tr2Gen over Tr1Gen
was its ability to reduce the risk concerning genetic gain.
Indeed, Tr2Gen reduced the CVof genetic gain per cycle
(Supplementary Fig. S. 1). The CV in the generations in
which Tr1Gen and Tr2Gen were compared was on
average 66.1% with Tr2Gen, versus 75.3% with
Tr1Gen, leading to a − 11.0% decrease (− 4.5 to −
31.1%).

Genetic gain after four cycles and annual genetic gain

Tr2Gen increased the genetic gain obtained after
four cycles in the two breeding schemes 2PT-
2noPT and PT-PT (Fig. 3). Tr1Gen led to an average
genetic gain of 16.6 versus 17.4% with Tr2Gen.
This corresponded to a 5.0% increase, ranging from
2.6 to 8.4%, depending on the breeding scheme and
on the number of candidates, always highly signifi-
cant (P < 0.001).

The genetic gain was significantly higher with
PT-noPT than with 2PT-2noPT (P < 0.001). The genetic
gain with PT-noPT was 5.7% higher than with
2PT-2noPT when Tr2Gen was used, and 9.7% higher
when Tr1Gen was used. As expected, the genetic gain
increased with the number of selection candidates.

The genetic gain of RRS after four cycles was
18.6%, which is similar to the highest genetic gain
obtained with RRGS. However, as the number of
years required to complete the four RRGS cycles
was 35% lower than with RRS, the annual genetic
gain of the GS schemes was finally much higher
than with RRS, for all numbers of candidates, num-
bers of generations in the training set, and breeding
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schemes. PT-noPT with Tr2Gen, which was the best
breeding scheme, enabled an annual genetic gain
ranging from 37.6 to 57.5% over RRS, depending
on the number of selection candidates used in GS
(Table 1).

Selection accuracy

Two-cycle training sets increased selection accuracy
for both BN and BW traits in Deli and La Mé
parental populations, with an average increase of
4.9%, ranging from − 0.4 to 13.8%, depending on
the cycle, trait, population, number of candidates,
and breeding scheme (see Fig. 4 for the example
of BW in Deli and Supplementary Fig. S. 2, Sup-
plementary Fig. S. 3, and Supplementary Fig. S. 4
for the other results). In the case of within-cycle
selection, accuracy increased by an average of
2.0% (range − 0.4 to 4.8%, with mean decreases
observed for BN with 120 candidates in PT-noPT).
The effect of the number of training generations on
the selection accuracy of the progeny-tested individ-
uals could be evaluated with 120 candidates in gen-
eration 2 of 2PT-2noPT and in generation 3 of
PT-noPT. This indicated that, although the selection
accuracy of progeny-tested individuals was already
very high (> 0.9), on average, Tr2Gen further in-
creased this value, with a mean increase of 0.49%
(although it was not always better than Tr1Gen, as it
ranged from − 0.36 to + 1.52%). For the non-
progeny-tested selection candidates, Tr2Gen also in-
creased selection accuracy compared to Tr1Gen, but
with higher magnitude than for progeny-tested indi-
viduals. The increase was thus significant and, in
across-cycle selection, reached 6.7% on average
(range 3.0 to 14.3%), with the maximum value ob-
tained when selection was applied two generations
after training.

Fig. 2 Genetic gain per breeding cycle according to the number of
generations used to train the GSmodel (Tr1Gen: one, Tr2Gen: two),
breeding scheme (PT-noPT: GS with progeny tests every two
generations, 2PT-2noPT: GS with two generations using progeny
tests and two generations with no progeny tests), and the number of
selection candidates. Genetic gain is expressed as a percentage of
hybrid production in the previous generation. Values are means of
270 replicates. Significance of two-tailed paired sample Wilcoxon
tests: *0.05 >P ≥ 0.01; **0.01 >P ≥ 0.001; ***P < 0.001; ns not
significant

R



Additive variances

Two-cycle training sets also slowed down the decrease
in additive variance over cycles for both BN and BW
traits in Deli and La Mé parental populations (data not
shown). However, the extra additive variance with
Tr2Gen was small; on average, only 1.6% of the addi-
tive variance with Tr1Gen (ranging from − 0.5 to 5.6%)
and Tr2Gen yielded a significantly higher additive var-
iance in only about 50% of the situations observed (i.e.,
combinations of cycle, number of candidates, trait, pa-
rental population, and breeding scheme).

Relationship between training parents and selection
candidates

The Tr2Gen strategy decreased the mean additive rela-
tionship between the training individuals and the selec-
tion candidates compared to Tr1Gen. In the Deli popu-
lation, the decrease was on average 10.8% (range 5.7 to
17.7%, depending on the breeding scheme, cycle, and

number of candidates). In the La Mé population, the
mean decrease reached 26.6% (range 18.0 to 36.1%)
(see Supplementary Table 3 for details).

Discussion

When selecting among Deli and La Mé parental popu-
lations for hybrid performance regarding bunch produc-
tion, training the GS model with data aggregated from
the two most recent breeding cycles (Tr2Gen) led to an
average genetic gain per cycle 10.7% higher compared
to training using only the single most recent cycle
(Tr1Gen). This was the result of an increase in selection
accuracy and, to a lesser extent, to a slower decrease in
additive variance over cycles. The highest increases in
genetic gain per cycle and in selection accuracy were
obtained in across-cycle selection, although Tr2Genwas
also advantageous for within-cycle selection, and even
for progeny-tested individuals. After four cycles,
Tr2Gen had a cumulative genetic gain on average 5%

Fig. 3 Genetic gain after four cycles according to the number of
generations used to train the GS model (Tr1Gen: one, Tr2Gen:
two), breeding scheme (PT-noPT: GSwith progeny tests every two
generations, 2PT-2noPT: GS with two generations using progeny
tests and two generations with no progeny tests), and number of

selection candidates. Annual genetic gain is expressed as a per-
centage of hybrid production in the initial generation (generation
0, i.e., the breeding population used as starting point for cycle 1)
per year. Values are means of 270 replicates. Significance of paired
t tests: ***P < 0.001

Table 1 Annual genetic gain after four breeding cycles with the
best GS breeding scheme (PT-noPT with Tr2Gen and different
numbers of selection candidates) and RRS. PT-noPT, progeny

tests every two generations; Tr2Gen, two generations to train the
GS model. Values are means of 270 replicates. Values with the
same letter are not significantly different at P = 0.001

Breeding scheme Number of candidates Annual genetic gain (%) Extra annual gain in % RRS

PT-noPT, Tr2Gen (GS) 500 0.37a + 57.5%

PT-noPT, Tr2Gen (GS) 250 0.35b + 50.0%

PT-noPT, Tr2Gen (GS) 120 0.32c + 36.6%

RRS 120 0.23d
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higher than Tr1Gen, and a lower risk concerning the
genetic gain. In addition, alternating one cycle with
progeny tests with one cycle with only GS (PT-noPT
breeding scheme) was a more efficient way to benefit
from the advantages offered by Tr2Gen, compared to
alternating two cycles of progeny tests and two cycles of
GS alone (2PT-2noPT). Finally, over the four breeding
cycles, combining the PT-noPT scheme and the Tr2Gen
training method led to a large increase in annual genetic
gain, ranging from 37.6 to 57.5%, compared to RRS,
depending on the number of selection candidates used in
GS.

Our results confirmed the simulation study by Denis
and Bouvet (2013) in eucalyptus and the empirical
results obtained by Auinger et al. (2016) in rye, which
also showed that accumulating data over cycles to train
the GS model was beneficial. Although our increase in
accuracy could be considered weak in comparison to
doubling the size of the training set, Auinger et al.
(2016) obtained a similar result. Thus, they reported that
Tr2Gen increased across-cycle GS accuracy by 5 to
20%, depending on the trait, which is comparable with
our 4.9% increase. However, in the simulation scenarios
of Denis and Bouvet (2013) that were close to our study
(i.e., their scenarios with lowest dominance to additive
variance ratios (0.1)), much higher increases in GS
accuracy were noted when using two-cycle training sets.
Although the GS accuracy they obtained using a
one-cycle training set to predict the breeding values in
the following generation was close to ours (approxi-
mately 0.45 with H2 = 0.1 and 0.70 for H2 = 0.6, versus
0.70 in our study), with two-cycle training sets, GS
accuracy increased by 60% for H2 = 0.1 and 25% with
H2 = 0.6, versus only 4.9% here. There are three possi-
ble explanations for this discrepancy. First, the simulat-
ed initial generation of Denis and Bouvet (2013) had an
effective size (Ne) of 100. By contrast, Ne was small in
our study (< 10 in the oil palm populations used to
calibrate our simulations (Cros et al. 2014, 2015b))
and in Auinger et al. (2016). As a result of these low
Ne, the size of the training sets in Tr1Gen here and in

Fig. 4 Selection accuracy for BW in Deli, according to the number
of generations used to train the GS model (Tr1Gen: one, Tr2Gen:
two), breeding scheme (PT-noPT: GS with progeny tests every two
generations, 2PT-2noPT: GS with two generations using progeny
tests and two generations with no progeny tests), and the number of
selection candidates. Values are means of 270 replicates.
Significance of paired t tests: ***P < 0.001; ns not significant
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results of Neyhart et al. (2017) with rye simulated data
suggest that this is not of concern in oil palm, nor in
perennial crops in general. Indeed, they showed that
aggregating even as many as 15 generations in the
training set only decreased accuracy in a negligible
way (0.02–0.04) compared to when aggregating only
the most recent generations. For species with long
breeding cycles where it will only be possible to aggre-
gate a few generations in the training set, using all the
available data is therefore reasonable, and we recom-
mend that oil palm breeders use all data from past cycles
to train the GS models.

We expect that the interest of cumulating data from
several breeding cycles when implementing GS in this
species will vary according to the trait. Indeed, Denis
and Bouvet (2013) showed that low h2 and high propor-
tion of dominance variance in total genetic variance
increased the relative interest of cumulating data in the
training set. Here, we focused on BN and BW, with a
simulated h2 of around 0.4, but, for instance, the fruit to
bunch ratio, another major component of oil palm yield,
has a mean h2 of around 0.2 (Corley and Tinker 2016, p.
180). In addition, the proportion of dominance variance
between crosses in total genetic variance between
crosses, although generally low, is actually significant
for some traits, with a value as high as 30% for the fruit
to bunch ratio (Cros et al. 2017). Cumulating data from
several cycles is therefore expected to generate a greater
increase in genetic gain per cycle for fruit to bunch ratio.
This would be of great interest, because for this trait, GS
so far fails to reach better accuracy in non-progeny-
tested individuals than a control PBLUP prediction
model (where the genomic relationship matrices used
in the mixed model are replaced by genealogical
coancestries) (Cros et al. 2017), while Auinger et al.
(2016) noted that cumulating data from several cycles
had a negligible effect on PBLUP accuracy.

In the present study, the individuals of the parental
populations that were genotyped and made up the train-
ing set were not phenotyped directly, as phenotypic data
were collected on their hybrid progenies. Based on the
experimental designs generally used in oil palm, this
results in large datasets of phenotypic data with tens of
thousands of hybrid individuals phenotyped. Thus, with
progeny tests, in each generation, we disposed here of
the phenotype of 10,800 hybrid individuals. Aggregat-
ing data from several generations therefore multiplies
the size of the dataset, which slows down the mixed
model analysis. In our study, using a 64-bit Linux on a
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Auinger et al. (2016) (208 lines) might have been close
to their optimum, thus limiting the impact of doubling
the training size. Indeed, in a canola population with
Ne ≤ 11, Jan et al. (2016) showed that GS accuracy
plateaued for almost all traits with 333 lines in the training
set. In a maize population with small Ne, GS accuracy
increased by only 20%when the training set was doubled
from 172 to 344 lines and increased even less (7%) when
the training set was again doubled (Albrecht et al. 2011).
Second, Denis and Bouvet (2013) used the least recent
cycle for training in Tr1Gen, while we used the most
recent. In their study with Tr1Gen, there were therefore
two generations between the training individuals and the
selection candidates, versus only one in our study. This
reduced the accuracy of Tr1Gen in their study compared
to ours, and thus led to a relatively bigger advantage of
Tr2Gen over Tr1Gen in Denis and Bouvet (2013) than in
our study. Third, they showed that the higher dominance
to additive variance ratio, the greater the benefit of using
Tr2Gen. Thus, their simulation was more advantageous
to Tr2Gen than was our simulation, where no dominance
effects were considered.

The relatively low increase in GS accuracy obtained
in the present study with Tr2Gen compared to Tr1Gen
also resulted from the fact that aggregating data from
two breeding cycles decreased the relationship between
the training individuals and the selection candidates,
which is detrimental to GS accuracy (see, for example,
Pszczola et al. 2012; Daetwyler et al. 2013; Gowda et al.
2014; Lorenz and Smith 2015). The decrease in the
relationship was expected from the composition of the
training sets (Supplementary Table 2). The pattern of
change over cycles in the mean relationship between the
training individuals and the selection candidates resulted
from the effect of selection and depended on selection
intensity and selection accuracy, thus producing con-
trasting results depending on the selection method (GS
or phenotypic selection) and on the number of candi-
dates. Although breeding cycles in oil palm require
many years when progeny tests are implemented, in
the long-term, it will be possible to aggregate data from
more than two cycles. This is of interest as the more
cycles, the larger the size of the training set, which
benefits GS accuracy. However, as we observed here,
each time a new cycle is added, the oldest cycles be-
come less related to the new selection candidates. There-
fore, we can question the extent to which the oldest
cycles remain useful in the training set, or if they may
become detrimental to GS accuracy. However, the



6-core Intel Xeon W3690 at 3.47 GHz machine with
24 Gb RAM, Tr2Gen increased the computation time
required to run the mixed model analysis (time cumu-
lated for the two traits) by 36 to 49%. This also increased
computer memory requirements. This is problematic in
a simulation study like ours, where the analyses are
conducted many times due to the numerous replicates
considered. However, in our study, the mean mixed
model computation time cumulated for the two traits
for GBLUP with Tr2Gen and 500 selection candidates
was only 18 s, and therefore, cumulating data in the
training set will not be a problem in practical breeding
where the analyses are conducted a limited number of
times.

Conclusion

When selecting amongDeli and LaMé oil palm parental
populations for hybrid performance in bunch produc-
tion, aggregating data from the twomost recent breeding
cycles to train the GS model increased the selection
response per cycle (+ 10.7%), mostly under the effect
of increased selection accuracy (+ 4.9%), and despite a
decrease in the relationship between the training indi-
viduals and the selection candidates. This method also
reduced the risk concerning the expected genetic gain,
another desirable feature for breeders. This study con-
firms the advantage of GS over conventional RRS, and
we thus recommend that when making genomic predic-
tions, oil palm breeders include all available data from
past cycles in their training set.
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