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Abstract The advantages of open-pollinated (OP) fam-
ily testing over controlled crossing (i.e., structured ped-
igree) are the potential to screen and rank a large number
of parents and offspring with minimal cost and efforts;
however, the method produces inflated genetic parame-
ters as the actual sibling relatedness within OP families
rarely meets the half-sib relatedness assumption. Here,
we demonstrate the unsurpassed utility of OP testing
after shifting the analytical mode from pedigree-
(ABLUP) to genomic-based (GBLUP) relationship

using phenotypic tree height (HT) and wood density
(WD) and genotypic (30k SNPs) data for 1126 38-
year-old Interior spruce (Picea glauca (Moench) Voss
x P. engelmannii Parry ex Engelm.) trees, representing
25 OP families, growing on three sites in Interior British
Columbia, Canada. The use of the genomic realized
relationship permitted genetic variance decomposition
to additive, dominance, and epistatic genetic variances,
and their interactions with the environment, producing
more accurate narrow-sense heritability and breeding

Mol Breeding (2018) 38: 26
https://doi.org/10.1007/s11032-018-0784-3

O. G. El-Dien : B. Ratcliffe : J. Klápště : I. Porth :
Y. A. El-Kassaby (*)
Department of Forest and Conservation Sciences, Faculty of
Forestry, University of British Columbia, Vancouver, BC V6T
1Z4, Canada
e-mail: y.el-kassaby@ubc.ca

O. G. El-Dien
e-mail: omnia.gamal@alumni.ubc.ca

B. Ratcliffe
e-mail: b.ratcliffe@gmail.com

J. Klápště
e-mail: klapste.j@gmail.com

I. Porth
e-mail: porth@mail.ubc.ca

O. G. El-Dien
Pharmacognosy Department, Faculty of Pharmacy, Alexandria
University, Alexandria, Egypt

J. Klápště
Department of Genetics and Physiology of Forest Trees, Faculty of
Forestry and Wood Sciences, Czech University of Life Sciences
Prague, Kamycka 129, 165 21 Prague 6, Czech Republic

C. Chen
Department of Biochemistry and Molecular Biology, Oklahoma
State University, Stillwater, OK 74078-3035, USA
e-mail: charles.chen@okstate.edu

Present Address:
J. Klápště
Scion (New Zealand Forest Research Institute Ltd.), 49 Sala
Street, Whakarewarewa, Rotorua 3046, New Zealand

Present Address:
I. Porth
Départment des Sciences du Bois et de la Forêt, Faculté de
Foresterie, de Géographie et Géomatique, Université Laval,
Quebec City, QC G1V 0A6, Canada

http://orcid.org/0000-0002-4887-8977
http://crossmark.crossref.org/dialog/?doi=10.1007/s11032-018-0784-3&domain=pdf


value estimates as compared to the pedigree-based
counterpart. The impact of retaining (random folding)
vs. removing (family folding) genetic similarity be-
tween the training and validation populations on the
predictive accuracy of genomic selection was illustrated
and highlighted the former caveats and latter advan-
tages. Moreover, GBLUP models allowed breeding val-
ue prediction for individuals from families that were not
included in the developed models, which was not pos-
sible with the ABLUP. Response to selection differences
between the ABLUP and GBLUP models indicated the
presence of systematic genetic gain overestimation of 35
and 63% for HT and WD, respectively, mainly caused
by the inflated estimates of additive genetic variance and
individuals’ breeding values given by the ABLUP
models. Extending the OP genomic-based models from
single to multisite made the analysis applicable to
existing OP testing programs.

Keywords Open-pollinated families . Interior spruce .

Multienvironment . Genetic variance decomposition .

Pedigree- andmarker-based relationships

Introduction

Traditional quantitative genetics analyses are mainly ped-
igree dependent utilizing the genealogical relationships
among individuals for genetic parameter estimation (i.e.,
the average numerator relationship matrix (A-matrix;
Wright 1922)). Thesemethods were effective as evidenced
by the gains attained for a substantial number of plant and
animal genetic improvement programs (Allard 1999; Lush
2013). However, this paradigm is changing with the avail-
ability of dense single nucleotide polymorphism (SNP)
panels through whole-genome sequencing (Bentley
2006) and various high-throughput next-generation se-
quencing (NGS) technologies (Schuster 2008). Dense se-
quencing data permit the accurate determination of the
actual fraction of alleles shared between individuals, relat-
ed or otherwise, and the estimation of their genomic
pairwise-realized relationship (Santure et al. 2010). The
resulting genomic relationship between any pair of indi-
viduals is more accurate than their expected pedigree-
based relationship as genomic data capture their known
contemporary and unknown historic pedigree (Powell
et al. 2010). When the genomic pairwise additive relation-
ship is estimated for a group of individuals, the outcome is
known as the realized additive genomic relationshipmatrix

(G-matrix) which can be used as a substitute to the A-
matrix in quantitative genetics analyses (VanRaden 2008).
Also, SNP data can be used to construct all types of
relationship matrices such as dominance and epistasis
genomic relationship matrices regardless of the mating
design (Wang et al. 2014). The advantage of the
genomic- over pedigree-based relationship is the ability
of the former to adjust for the Mendelian sampling term,
while the latter ignores the existing variation among single
half- or full-sib family members and treats them equally;
thus, the G-matrix provides more accurate genetic co-
variances among relatives (Visscher et al. 2006; Hill and
Weir 2011). Additionally, the genomic-based relationship
is capable of detecting inbreeding and hidden relatedness
among members of a specific family. The use of the
genomic relationship matrix in disentangling full-sib fam-
ilies’ genetic variance components (i.e., additive and non-
additive) has been thoroughly investigated theoretically
(Denis and Bouvet 2013; Vitezica et al. 2013; Motohide
and Satoh 2014; Azevedo et al. 2015; de Almeida Filho
et al. 2016) and empirically (Vitezica et al. 2013; Zapata-
Valenzuela et al. 2013; Motohide and Satoh 2014; Muñoz
et al. 2014; Kumar et al. 2015; Bouvet et al. 2016; de
Almeida Filho et al. 2016); however, with the exception of
Gamal El-Dien et al. (2016), a study that was based on
open-pollinated (OP) families growing on a single site, OP
families have not received much attention.

The success of forest trees recurrent selection
programs is dependent on the identification of supe-
rior individuals for their inclusion in subsequent
breeding cycles and/or seed production populations
(i.e., seed orchards) (El-Kassaby 1995). Testing is
commonly done through creating a structured pedi-
gree using mating designs, which is followed by
classical quantitative genetic evaluation for deter-
mining parents’ and offspring’s genetic merit
(Namkoong et al. 1988). The major drawback of
OP families is the unknown nature of their paternal
contribution (i.e., incomplete pedigree), even
though they have been commonly used in testing
as they offer multiple advantages over their
Bstructured pedigree^ counterparts (Burdon and
Shelbourne 1971). These include the following: (1)
it is fast and inexpensive as the breeding phase is
bypassed (i.e., no crosses), (2) it permits screening
large numbers of parents (seed donors) with minimal
efforts, (3) it provides better genetic sampling as
each seed donor acts as a conduit for many pollen
donors, and (4) it offers greater selection differential
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through increased candidate testing. However, it
should be stated that the OP families’ pedigree-
based additive genetic variance estimates are always
upwardly bias as the assumption of true half-siblings
cannot be verified/fulfilled (Namkoong 1966;
Squillace 1974; Askew and El-Kassaby 1994).

In a previous study, Gamal El-Dien et al. (2016)
utilized the genomic relationship to estimate height-
and wood density-related (proxies for fitness and
productivity) genetic variances for 214 white spruce
OP families growing on one site in Québec, Canada,
and successfully partitioned the genetic variance
into its different components, namely, the additive,
dominance, and epistatic variances, and demonstrat-
ed the presence of a systematic pedigree-based ad-
ditive genetic variance bias. In this respect, the use
of the genomic relationship also permitted estimat-
ing both dominance and epistatic genetic variances
from a testing experiment that does not lend itself to
the estimation of these genetic components.

Here, using 25 Interior spruce OP families grown
in a replicated block design over three sites in Brit-
ish Columbia, Canada, we compared the genetic
variance estimates generated from the average nu-
merator relationship A-matrix (the expected rela-
tionships) and the realized genomic relationship G-
matrix (the observed relationships). More specifical-
ly, we evaluated the genomic selection predictive
ability after removing genetic relatedness between
the training and validation populations during the
cross-validation process and determined the re-
sponse to selection differences between the expected
and realized relationships for the studied attributes.
This OP progeny test permitted extending the
single-site analysis to a more generalized multiple-
site model that partitioned the genetic variance com-
ponents into additive and nonadditive effects as well
as accounting for and determining the extent of
genotype × environment interaction, thus allowing
covering a more complex genetic structure.

Materials and methods

Progeny test and phenotypic and genotypic data

Interior spruce is a complex of white spruce (Picea
glauca (Moench) Voss), Engelmann spruce (Picea
engelmannii Parry), and their natural hybrids, and

because of their similar growing habitat and silvicul-
tural requirements, they are often collectively treated
as one complex species (Sutton et al. 1991). A total
of 1126 38-year-o ld Inte r ior spruce t rees ,
representing 25 OP families, growing on three prog-
eny test sites in the Interior of British Columbia,
Canada, were phenotyped for total tree height (HT)
and wood density (WD). The field trials were
established by the British Columbia Ministry of For-
ests, Lands and Natural Resource and are located in
Aleza Lake (lat. 54° 03′ 15.7″ N, long. 122° 06′ 35.4″
W, elev. 700 mas), Prince George Tree Improvement
Station (lat. 53° 46′ 17.9″ N, long. 122° 43′ 07.6″ W,
elev. 610 mas), and Quesnel (lat. 52° 59′ 27.2″ N,
long. 122° 12′ 30.6″W, elev. 915 mas) and planted in
a complete randomized block design with multiple
tree-row-plots within each block (see Kiss (1991) for
details). The sampled trees/sites are part of a larger
test with 197 OP families with an average family size
of 374 t rees . From each s i te , four b locks
(replications) were sampled and HT (in meters) was
measured using an ultrasonic clinometer Vertex™ III
(Haglöf®, Sweden); WD (g·cm−3) was determined
from bark-to-bark wood cores using X-ray scanning
(QTRS-01X Tree Ring Scanner, Quintek Measure-
ment Systems Inc., USA); the cores were extracted
from each tree at breast height in the north-south
direction by 5-mm increment borers.

Genotyping-by-sequencing (GBS: Elshire et al.
(2011)) was the genotyping platform used. For com-
plete details related to DNA extraction, specific
sequencing protocol, and SNP detection pipeline,
see Chen et al. (2013). The SNP data used for
estimating the realized genomic relationship matrix
were those published previously (Gamal El-Dien
et al. 2015; Ratcliffe et al. 2015); in brief, SNP
filtering consisted of constraining individual
Bmissingness^ to the best 1000 of the 1126 geno-
typed individuals, resulting in an average of 40
genotyped individuals (range was 32 to 45) across
the 25 families. Subsequently, SNPs with less than
30% missing data were retained, and missing infor-
mation was imputed using an expectation maximiz-
ing (EM) algorithm (Dempster et al. 1977), resulting
in a total of ~ 30,000 SNP markers which were used
to infer the genomic relationships (i.e., the SNP data
were filtered for a missing data threshold of 30%
followed by EM algorithm imputation resulting in
1000 individuals with ~ 30,000 SNPs).

Mol Breeding (2018) 38: 26 Page 3 of 16 26



Relationship matrices and genetic models

The additive relationship matrix was estimated as fol-
lows:

Gadd ¼ ZZ
0

2∑pi 1−pið Þ ð1Þ

where Z is the rescaled genotype matrix followingM −
P;M is the genotypematrix containing genotypes coded
as 0, 1, and 2 according to the number of alternative
alleles; and P is the vector of twice the allelic frequency
p (VanRaden 2008). The dominance genetic variance
was fitted by including the marker-based dominance
relationship matrix following:

Gdom ¼ WW
0

2pqð Þ2 ð2Þ

where W is the matrix containing − 2q2 for the alterna-
tive homozygote, 2pq for the heterozygote, and − 2p2

for the reference allele homozygote (Vitezica et al.
2013). Similarly, epistatic variance was fitted by includ-
ing several relationship matrices capturing first-order
additive × additive, dominance × dominance, and addi-
tive × dominance interaction. The relationship matrices
were constructed as the Hadamard product of the rela-
tionship matrices defined above: Gadd#Gadd ,
Gdom#Gdom, and Gadd#Gdom (Su et al. 2012; Muñoz
et al. 2014).

The variance components from the pedigree-based
analysis (ABLUP) were obtained by solving the mixed
models following:

y ¼ Xβþ Z1aþ Z2axeþ Z3r sð Þ þ e ð3Þ
where y is the vector of standardized phenotype
values to cope with the possible heterogeneity of
variance between environments; β is the vector of
fixed effects (overall mean and site); a is the vector
of random additive genetic effects following a ~ N(0,
Aσ2a), where A is the average numerator relationship

matrix and σ2
a is the additive genetic variance; axe is

the vector of random additive × environment (sites)
interaction effects following axe ~ N(0, Iσ2

axe), where

I is the identity matrix and σ2
axe is the additive ×

environment interaction variance; r(s) is the vector
of random block (replication) nested within the site
effect following r(s) ~ N(0, Iσ2

r sð Þ), where σ2
r sð Þ is the

replication nested within the site variance; e

represents a vector of the random residual effects
following e ~ N(0, Iσ2

e ), where σ
2
e is the residual error

variance; and X and Z’s are incidence matrices relat-
ing fixed and random effects to measurements in the
vector y. The variance components from the analysis
using the marker-based additive relationship matrix
(GBLUP-A) were obtained from the model described
above, but the average numerator relationship matrix
A is substituted by the marker-based relationship ma-
trix Gadd. The extended model for the dominance
term (GBLUP-AD) is performed as follows:

y ¼ Xβþ Z1aþ Z4d þ Z2axeþ Z5dxeþ Z3r sð Þ
þ e ð4Þ

where d is the vector of the random dominance effect
following d ~ N(0, Gdomσ2

d) with σ2
d the dominance

variance and dxe the random vector of dominance ×
environment interaction effects following dxe ~ N(0,
Iσ2

dxe), where σ2
dxe is the dominance × environment

interaction variance. Additional model extension for
epistatic terms (GBLUP-ADE) is performed as fol-
lows:

y ¼ Xβþ Z1aþ Z4d þ Z6axaþ Z7dxd þ Z8axd

þ Z2axeþ Z5dxeþ Z3r sð Þ þ e ð5Þ

where axa is the vector of random additive × additive
epistatic interaction effects following axa ~ N(0,
Gadd#addσ2

axa), where σ2
axa is the additive × additive

epistatic interaction variance; dxd is the vector of
random dominance × dominance epistatic interaction
effects following dxd ~ N(0, Gdom#domσ2

dxd), where

σ2
dxd is dominance × dominance epistatic interaction

variance; and axd is the vector of random additive ×
dominance epistatic interaction effects following axd
~ N(0, Gadd#domσ2

axd), where σ2
axd is the additive ×

dominance epistatic interaction variance.
The narrow-sense heritability estimate was estimated

as ĥ
2 ¼ σ̂2

a=σ̂
2
p, where σ̂

2
a represents the estimate of the

additive variance and σ̂2
p equals σ̂2

e in addition to the

other variance component estimates such as additive,
dominance, additive × additive, additive × dominance,
dominance × dominance, additive × environment, and
dominance × environment interactions following that of
the ABLUP and GBLUP (termed GBLUP-A, GBLUP-
AD, and GBLUP-ADE, respectively) models,
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respectively (Table 1). Where possible, the broad-sense
heritability was also estimated as Ĥ

2 ¼ σ̂2
G=σ̂

2
p, where

σ̂2
G represents the sum of all genetic effects: The esti-

mations of the variance components and their standard
errors were performed using ASReml-R v.3. software
(Butler et al. 2009, while the marker-based relationship

matrices construction and models’ cross-validations

were done in R (R Core Team 2015). Additionally, the

rank order of breeding values (BVs) for the top 50

performing individuals was compared between ABLUP
and GBLUP-AD and GBLUP-ADE for HT and WD,
respectively.

Table 1 Estimates of genetic variance components (source of variation (S.O.V.) and their standard errors (SE)) for height (HT) and wood
density (WD) across the four genetic models

Trait S.O.V. ABLUP GBLUP-A GBLUP-AD GBLUP-ADE

Value (SE) % Value (SE) % Value (SE) % Value (SE) %

HT
σ2
r sð Þ

0.02 (0.01) 1.63 0.02 (0.01) 1.76 0.02 (0.01) 2.07 0.02 (0.01) 2.07

σ2
a

0.31 (0.15) 30.28 0.21 (0.08) 23.70 0.19 (0.08) 24.38 0.19 (0.08) 24.38

σ2
d

N/A N/A 0.15 (0.14) 19.46 0.15 (0.14) 19.46

σ2
axa

N/A N/A N/A 0.00 (0.00) 0.00

σ2
dxd

N/A N/A N/A 0.00 (0.00) 0.00

σ2
axd

N/A N/A N/A 0.00 (0.00) 0.00

σ2
axe

0.35 (0.13) 34.73 0.22 (0.08) 24.68 0.22 (0.09) 28.14 0.22 (0.09) 28.14

σ2
dxe

N/A N/A 0.03 (0.19) 4.54 0.03 (0.19) 4.54

σ2
e

0.34 (0.14) 33.37 0.45 (0.09) 49.86 0.16 (0.27) 21.41 0.16 (0.27) 21.41

h2 0.31 (0.15) 0.24 (0.09) 0.25 (0.12) 0.25 (0.12)

H2 N/A N/A 0.45 (0.23) 0.45 (0.23)

R2 66.63 50.14 78.59 78.59

WD
σ2
r sð Þ

0.07 (0.04) 6.91 0.07 (0.04) 7.71 0.07 (0.04) 8.21 0.07 (0.04) 8.62

σ2
a

0.37 (0.15) 36.66 0.22 (0.07) 23.89 0.22 (0.07) 25.33 0.18 (0.08) 21.64

σ2
d

N/A N/A 0.00 (0.14) 0.29 0.02 (0.14) 2.76

σ2
axa

N/A N/A N/A 0.16 (0.18) 19.26

σ2
dxd

N/A N/A N/A 0.00 (0.00) 0.00

σ2
axd

N/A N/A N/A 0.00 (0.00) 0.00

σ2
axe

0.17 (0.09) 16.98 0.12 (0.07) 13.30 0.11 (0.08) 12.47 0.12 (0.08) 13.75

σ2
dxe

N/A N/A 0.07 (0.23) 7.86 0.01 (0.23) 1.32

σ2
e

0.40 (0.13) 39.45 0.52 (0.08) 55.10 0.41 (0.29) 45.84 0.28 (0.32) 32.66

h2 0.39 (0.16) 0.26 (0.09) 0.28 (0.13) 0.24 (0.12)

H2 N/A N/A 0.28 (0.18) 0.48 (0.32)

R2 60.55 44.90 54.16 67.34
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Comparison and cross-validation of models

Finally, to compare the relative quality of the goodness-
of-fit for the saidmodels, the variance explained by each
model (R2) was used (Nakagawa and Schielzeth 2013),
that is the summary statistics for the goodness-of-fit of
the linear mixed-effects models (LMM) and the fitted
line plot (graph of predicted ŷ vs. y values), while the
standard error (SE) of the predictions (SEPs) of the BVs
was used to assess the precision of the BVs.

The predictability (i.e., the Pearson product-moment
correlation between phenotypes and the predicted BVs
from cross-validation (PBV-CV)) and the prediction
accuracy (i.e., the Pearson product-moment correlation
between the estimated BVs from full data (EBV-all) and
predicted BVs from cross-validation (PBV-CV)) for the
four models were estimated using 10-fold CV and five
replicates. To assess the role of relatedness between the
training and validation populations on the genomic se-
lection predictive accuracy, two folding scenarios were
used, namely, random (retained relatedness as individ-
uals were removed during the CV process while their
families remained) and family (removed relatedness as
entire families were absent during the CV process)
folding. In each replicate, the data was divided into 10-
folds according to the used folding scenario, 9-folds was
assigned as the training population, while the last fold
was used as the validation population to estimate PBV-
CV. The five replicates were used to estimate the SE of
the correlation. Model pairwise prediction accuracy was
also estimated between the four models in order to
evaluate the ability of predicting each other. In this case,
accuracy was estimated as the Pearson product-moment
correlation between EBV-all of one model and PBV-CV
of the other model (see above).

Results

Genetic variance components and heritability estimates

Replications within-site variance components were con-
sistent across the four models and accounted in each
case for a relatively small variance component for both
height (HT 1.63–2.07%) and wood density (WD 6.91–
8.62%) (Table 1). The main difference between the
ABLUP and GBLUP-Awas the substantial decrease in
the additive variance and additive × environment inter-
action (Table 1). The additive genetic variances obtained

from GBLUP-Awere 68 and 59% of the ABLUP addi-
tive genetic variance for HT and WD estimates, respec-
tively (Table 1). This decrease in the additive genetic
variance apportionment subsequently decreased the ad-
ditive × environment interaction (34.73 vs. 24.68% and
16.98 vs. 13.30%, for height HT and WD, respectively)
and increased the residual term (33.37 vs. 49.86% and
39.45 vs. 55.10%, for height HTandWD, respectively),
resulting in reduced narrow-sense heritability estimates
(0.31 vs. 0.24 and 0.39 vs. 0.26, for height HT and WD,
respectively) (Table 1). Broad-sense heritabilities could
not be estimated for the ABLUP and GBLUP-A as
dominance and epistatic variances could not be estimat-
ed; however, GBLUP-AD and GBLUP-ADE produced
similar values for height (0.45) and drastically higher
estimate for WD (0.28 vs. 0.48, see below for explana-
tion) (Table 1).

The GBLUP-AD analysis produced surprising re-
sults for HT as the dominance variance component
was significant and accounted for 19.46% of the total
variance, while it was nonsignificant for WD (0.29%)
(Table 1). It is noteworthy to mention that the domi-
nance variance estimates affected neither the additive
genetic variances nor the heritability estimates and that
their appearance is mostly reflected in the reduction of
the residual term estimates (i.e., the dominance vari-
ances were confounded in the residual terms) (Table 1).

The GBLUP-ADE produced exactly the same results
as GBLUP-AD for HT, indicating the absence of first-
order interactions, while WD produced substantial ad-
ditive × additive interaction accounting for 19.26% of
the total variance (Table 1). The appearance of additive
× additive variance for WD reduced the residual term
(45.84 vs. 32.66%) as well as the additive term (25.33
vs. 21.64%) for GBLUP-AD and GBLUP-ADE, re-
spectively, further changing the WD heritability esti-
mates (narrow-sense: from 0.28 to 0.24 and broad-
sense: from 0.28 to 0.48) (Table 1).

In the ABLUP model, the genotype × environmental
interaction (G × E) can only be expressed through the
terms Badditive variance × environment,^ and these
were the first and third highest variance components,
accounting for 34.73 and 16.98% of the total variance
for HT and WD, respectively (Table 1). Under the
GBLUP model, the additive variance × environment
interactions magnitude showed slight rank change for
the studied traits (HT: shifting from first to second; WD:
retained the same rank); however, both showed appre-
ciable percentage reduction (HT: from 34.73 to 24.68%;
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WD: from 16.98 to 13.30%) (Table 1). Changing the
model from ABLUP to GBLUP produced consistent
redistribution of the variance components across HT
and WD, notably the reduction in additive genetic var-
iance and additive × environment interaction terms,
resulting in residual terms increase (HT: from 33.37 to
49.86; WD: from 39.45 to 55.10%) (Table 1). Domi-
nance variance × environment interaction can only be
observed in both GBLUP-AD and GBULP-ADE
models where dominance variance can be estimated
(Table 1). While HT and WD displayed different dom-
inance genetic variance magnitudes (see above), both
traits displayed small dominance variance × environ-
ment interactions (HT, 4.54% for GBLUP-AD and
GBLUP-ADE; WD, 7.86 and 1.32% for GBLUP-AD
and GBLUP-ADE, respectively) (Table 1). Considering
the G × E interaction (i.e., additive and dominance
variances) in the genetic variance, decomposition result-
ed in the production of more reliable heritability esti-
mates and this is supported by the model fit results (see
below).

Comparison and cross-validation of models

We used two methods for model comparison, namely,
the variance explained by the model (R2) and the fitted
line plots (represented by the graph of predicted values ŷ
vs. observed values y). Moving from ABLUP to the
GBLUP-A was characterized by the lack of improve-
ment for the two model comparison methods (Table 1
and Fig. 1). However, this result is not surprising, as the
ABLUP models were inaccurate due to the observed
inflated additive genetic variance which in turn makes
the total variance explained by the model inflated, too.
The R2 method showed reduced values between
ABLUP and GBLUP-A (66.63 vs. 50.14 and 60.55 vs.
44.90, for HT and WD, respectively) (Table 1). Com-
paring GBLUP-A with GBLUP-AD generally showed
improvement, which was more pronounced for HT
(50.14 vs. 78.59) than for WD (44.90 vs. 54.16) due to
the observed dominance variance (Table 1). The R2

values for HT did not change between GBLUP-AD
and GBLUP-ADE due to the lack of epistatic genetic
variances, indicating that GBLUP-AD is the best (and
sufficient) model for HT (Table 1). WD, on the other
hand, produced substantial R2 value improvement
(54.16 vs. 67.34), reflecting the presence of significant
additive × additive genetic variances and indicating that
GBLUP-ADE is the best model for WD. The R2

differences between HT and WD reflect the different
genetic architecture of the two traits (Table 1). These
results collectively indicate that the genomic-based
models are superior to the pedigree-based model.

The fitted line plot comparisons (shown in Fig. 1)
reflected the conclusions based on R2, while the differ-
ences between the ABLUP and GBLUP-A models for
HT and WD showed worse fitting, supporting the notion
that the ABLUP models harbor inflated additive genetic
variance. Similarly, the plots show that the GBLUP-AD
and GBLUP-ADE are the best fit for HT and WD,
respectively, and this is illustrated by the points’ distribu-
tion and their closeness to the 45° reference lines (Fig. 1).

Comparing BVs’ precision using the SEPs between
the ABLUP and GBLUP-A models indicated that the
SEPs of HT and WD were universally smaller for
GBLUP-A as compared to ABLUP (as all SEP values
were below the 45° reference lines (Fig. 2; GBLUP-A
vs. ABLUP), confirming the superiority of the GBLUP-
A model. For this reason, we used the GBLUP-Amodel
as a reference for the extended models’ comparisons.
GBLUP-AD and GBLUP-ADE were proven to be the
best models for HT and WD, respectively (Fig. 2;
GBLUP-AD vs. GBLUP-A (left panel) and GBLUP-
ADE vs. GBLUP-A (right panel) for HT and WD,
respectively).

Generally, the predictive accuracy of random folding
was much higher than that of family folding, demon-
strating the role of relatedness on predictive accuracy
overestimation (HT 0.563–0.690 vs. 0.089–0.271; WD
0.544–0.699 vs. 0.001–0.220) (Table 2). Random fold-
ing cross-validation prediction accuracy was the lowest
for ABLUP for both traits (0.615 and 0.625 for HT and
WD, respectively) compared to the GBLUP models
which gave a range of 0.681 (GBLUP-AD) to 0.690
(GBLUP-A) and 0.6939 (GBLUP-ADE) to 0.698
(GBLUP-AD) for HT and WD, respectively (Table 2;
diagonal values). On the other hand, the pairwise pre-
diction accuracy between ABLUP and GBLUPs (HT
0.563 to 0.622; WD 0.544 to 0.649) was lower than
between the GBLUP models themselves (HT 0.681 to
0.689; WD 0.691 to 0.698) (Table 2; off-diagonal
values). When GBLUP models were used to predict
ABLUP, the prediction accuracies ranged from 0.619
to 0.622 (HT) and from 0.646 to 0.649 (WD), while
when the ABLUP was used to predict GBLUPs, the
range was significantly lowered (from 0.563 to 0.571
and from 0.544 to 0.547, for HT and WD, respectively)
(Table 2). Regarding predictability, expressed as the
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correlation between the predicted BVs from cross-
validation (PBV-CV) and the phenotype, GBLUP-A
and ABLUP showed the highest values (0.285 and
0.262 for HT and WD, respectively) (Table 2; random
folding, first column).

For family folding, as indicated above, the predict-
ability and prediction accuracy were generally much
lower as compared to random folding (Table 2). The
use of the ABLUP model for individual breeding value
prediction for members of new families is not applicable
as the relatedness is equal to zero, and the predicted
value will be simply the overall mean of the model
(Table 2). It is worth mentioning that while family
folding produced the lowest predictive accuracy, family

folding results represent the most reliable prediction as
the number of independently segregating chromosome
segments is maximized as opposed to the increased
similarity in the random folding scenarios.

Discussion

Tree improvement programs depend mainly on pheno-
typic selection and the pedigree-based average numera-
tor relationship (A-matrix) for estimating genetic param-
eters and variance components; thus, the degree of ge-
netic advance is dependent on the accuracy and preci-
sion of these parameters, specifically heritability and

Fig. 1 Height (left) and wood density (right) fitted line plot (predicted ŷ vs. observed y values) for the four models
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individuals’ breeding values. The utilized mating design
determines mainly which genetic component can be
generated (additive and dominance), and in some cases,
additional efforts such as combining full-sib families
with replicated clonal trials are required to estimate
epistatic genetic variance (Foster and Shaw 1988;
Bradshaw and Foster 1992). While OP family testing
represents the most efficient method for screening large
numbers of individuals in terms of cost, time, genetic
sampling, and increased selection differential potential,
however, OP testing suffers from inflated additive var-
iance estimates due to the impossibility of meeting the
commonly assumed half-sib structure (Namkoong

1966; Squillace 1974; Askew and El-Kassaby 1994).
The availability and affordability of DNA high-
throughput fingerprinting methods, such as GBS, made
it possible to use SNPs to estimate the realized relation-
ship matrix (G-matrix) among individuals, irrespective
of their genealogy, and substitute the A-matrix in esti-
mating genetic variance components particularly in the
population of forest trees (Denis and Bouvet 2013;
Zapata-Valenzuela et al. 2013; Klápště et al. 2014;
Muñoz et al. 2014; de Almeida Filho et al. 2016; Gamal
El-Dien et al. 2016). These studies illustrated the supe-
riority of the GBLUP and resulted in generating more
precise genetic parameters, mainly due to the method’s

Fig. 2 Height (left) and wood density (right) standard error for the
predictions of 38-year-old Interior spruce breeding value

comparisons for GBLUP-A vs. ABLUP, GBLUP-AD vs.
GBLUP-A, and GBLUP-ADE vs. GBLUP-A
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efficiency in separating the additive from nonadditive
(dominance and epistasis) genetic variances as well as
accounting for the Mendelian sampling within families
(VanRaden 2008; Hayes et al. 2009). In a previous study
conducted to parse out additive and nonadditive genetic
variances, Gamal El-Dien et al. (2016) used data from a
single-environment white spruce trial and demonstrated
the presence of nonsignificant dominance as well as
significant epistatic genetic variances; however, the
study may have produced biased estimates, because
the genotype × environment interaction (G × E) com-
ponent cannot be assessed in a single site. Here, we
extended the single-site to a multisite model to partition
the genetic variance while accounting for the G × E,
using an Interior spruce OP testing population growing
in British Columbia, Canada. Including the G × E in the
present study has increased the model fit as demonstrat-
ed by the R2 term (variance explained by the model) and
the fitted line plots (Table 1; Fig. 2) and resulted in more
reliable heritability estimates. It should be pointed out
that the percent variance component accounting for G ×
E amounted to 32.68 and 15.07% for HT (GBLUP-AD)
and WD (GBLUP-ADE), respectively. These variance
component percentages would have been confounded in
either the additive and/or residual variances leading to
inaccurate heritabilities and individuals’ breeding value
estimates and ultimately affecting the estimated genetic
gain (see below). Unlike animal improvement pro-
grams, where the impact of environment is managed
and minimized, measuring the G × E in plant improve-
ment is essential as markers’ effect could vary across the
environment (Crossa et al. 2010).

Predictably, the results from the present study pro-
duced different additive variance estimates across the
tested models (ABLUP vs. GBLUPs) (Table 1). The
three GBLUP models produced lower additive genetic
variance than the ABLUP model, and results concur
with those reported for the single-site (Gamal El-Dien
et al. 2016) and other forest tree studies (Denis and
Bouvet 2013; Zapata-Valenzuela et al. 2013; Klápště
et al. 2014; Muñoz et al. 2014; de Almeida Filho et al.
2016), confirming the half-sib families unfulfilled as-
sumption. The reduced additive genetic variance subse-
quently lowered the heritability estimates; however, this
observed reduction in the present study was smaller than
the one observed in the single-site study (Gamal El-Dien
et al. 2016), highlighting the benefits of using the mul-
tisite approach in producing realistic estimates (i.e., G ×
E inclusion). Notwithstanding the better R2 and fitted

line plot of the ABLUP model (Table 1; Fig. 1) com-
pared to GBLUP-A, the obtained precise genetic vari-
ance and breeding value (Fig. 2) estimates from the
GBLUP-A demonstrate the added value of the realized
relationship-based models as their estimates are devoid
of hidden relatedness inflating additive genetic variance
and unaccounting the Mendelian term (VanRaden 2008;
Hayes et al. 2009; Gamal El-Dien et al. 2016).

The GBLUP-AD model produced surprising results
with a significant dominance variance for HT relative to
the additive variance with a higher R2 value supporting
better model fit (Table 1). This was also illustrated by
the fitted line plot and the breeding values’ SEPs graph
(GBLUP-AD: Figs. 1 and 2 left panels). This trend was
not observed forWD as the dominance variance was not
significant (based on SE) and only accounted for a small
amount of the total genetic variance, perhaps reflecting
different genetic architecture between the two traits
(Table 1 and Figs. 1 and 2, right panels). Similar obser-
vations were reported for Douglas-fir and white spruce
(El-Kassaby and Park 1993; Gamal El-Dien et al. 2016).
The significant dominance genetic variance for HT in
Interior spruce mirrored that reported for loblolly pine
(Muñoz et al. 2014; de Almeida Filho et al. 2016, but
see Gamal El-Dien et al. 2016). Additionally, the ability
to detect dominance variance is also dependent on the
nature of the population and the type of markers used to
construct the dominance (fraternity) relationship matrix.
In a simulation study, García-Cortés et al. (2014) report-
ed that the presence of multiallelic markers is a prereq-
uisite for the precise estimation of the dominance coef-
ficients, a condition, which can potentially affect the
ability to estimate the dominance variance component
when using exclusively biallelic markers such as SNPs.
It is interesting that the HTadditive genetic variance and
heritability estimates did not change between GBLUP-
A and GBLUP-AD, which means that the additive
variance was accurately estimated in the GBLUP-A
model and was not confounded with the dominance
effect for this trait. Probably, this is the reason why the
prediction accuracy of GBLUP-AD did not improve
when compared with GBLUP-A (Table 2; diagonal).

The full model (GBLUP-ADE), which was extended
to include first-order interactions, gave exactly the same
results as GBLUP-AD for HT indicating the absence of
all kinds of epistatic interactions; this model subsequent-
ly showed no improvement in all goodness-of-fit mea-
sures and precision estimates (Table 1, Figs. 1 and 2).
These results were distinct from Gamal El-Dien et al.
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(2016), where HTshowed significant additive × additive
interaction and nonsignificant dominance, while here,
HT showed a significant dominance component which
was extracted from the residual variance without any
effect on the additive variance. The hybrid nature of
Interior spruce (P. glauca x P. engelmannii) in British
Columbia (De La Torre et al. 2014) can explain such
distinct results as hybridization is reflected in higher
diversity and higher heterozygosity which may make
the dominance effect pronounced, and additionally,
dominance variance is also known to be population
specific (Falconer et al. 1996). For the WD trait, how-
ever, GBLUP-ADE resulted in improved genetic vari-
ance partitioning and showed a relatively larger additive
× additive component that was extracted mainly from
the residual variance and to some extent from the addi-
tive variance component (Table 1), supporting the theo-
retical expectation that additive × additive variance is
absorbed by additive and residual variances (Jannink
2007). The superiority of GBLUP-ADE model for
WD was supported by the R2 estimates (Table 1), the
fitted line plot, and the SEP graph (Figs. 1 and 2). A
significant additive × additive component was also ob-
served in the white spruce OP study of Gamal El-Dien
et al. (2016) and in loblolly pine full-sib population
(Muñoz et al. 2014). Thus, the WD results were consis-
tent with Gamal El-Dien et al. (2016) and the present
study as both studies showed nonsignificant dominance
variance in addition to a significant additive × additive
interaction that was extracted from the additive and
residual variances. Also in both studies, substantial
epistasis was detected in the genetic architecture of
WD in spruce, and therefore, this result cannot be an
artifact based on the population sampling and/or
genotyping methodology as the two studies used
completely different genotyping platforms.

The advantage of GBLUP models is their use of the
realized genomic relationship among individuals re-
gardless of their genealogy, while the ABLUP is mainly
dependent on the pedigree-structure created by mating
designs. Additionally, to capture the additive relatedness
among individuals, the realized genomic relationship
matrix is also capturing the linkage disequilibrium
(LD) between the SNPs and quantitative trait loci
(QTLs) and their co-segregation (Habier et al. 2007,
2010, 2013). These factors, collectively, affect the accu-
racy of the genomic estimated BVs (Habier et al. 2013).
Most tree improvement breeding programs are in their
early stage of tree domestication and suffer from their

shallow and simple pedigrees which make ABLUP’s
estimates somewhat questionable. Our cross-validation
results support this notion as the GBLUP models pro-
duced higher prediction accuracy than the ABLUP
(Table 2). Furthermore, using the GBLUPs to predict
ABLUP produced better results than the reverse scenar-
io. This is expected as the GBLUP models are capable
of capturing contemporary as well as historical related-
ness (Table 2; see the off-diagonal estimates). The
GBLUP models’ superiority was already illustrated by
Muñoz et al. (2014). In their study on loblolly pine,
Muñoz et al. successfully estimated the epistatic genetic
variance from a full-sib mating design with clonally
replicated trials using the GBLUP approach, while the
ABLUP failed to estimate the epistatic genetic variance
despite having full-sib families and clonal replications.

It is noteworthy to mention that extending the
GBLUP models to include the dominance (GBLUP-
AD in the case of HT) and dominance as well epistasis
variances (GBLUP-ADE in the case of WD) resulted
in improving the breeding values’ estimates precision
(Fig. 2); however, these adjustments did not improve
the prediction accuracy in the cross-validation com-
pared to the GBLUP-A (Table 2; diagonal). Such a
scenario was also observed in a similar genetic vari-
ance decomposition study in the context of genomic
selection for milk production in cattle (Ertl et al.
2014). This discrepancy can be explained by the fact
that both dominance and epistatic genetic variances
were mainly extracted from the residual term, thus
resulting in no or minimal impact on the additive
variance component.

The observed predictive accuracy differences be-
tween the random (retaining genetic similarity) and
family (excluding genetic similarity) folding are of great
importance (Table 2). Our results and those obtained
from previous studies conducted on forest trees
(Resende et al. 2012; Beaulieu et al. 2014a, b; Gamal
El-Dien et al. 2016) clearly demonstrated consistent
predictive accuracy overestimation, driven mainly by
relatedness, results meeting theoretical expectations
(Daetwyler et al. 2013). This situation calls for caution
when genomic selection is implemented, and therefore,
using family folding (removed genetic similarity be-
tween the training and validation populations) is prudent
even with lower predictive accuracy for obtaining real-
istic gain estimates as it is solely based on the short-
range LD, the backbone of genomic selection paradigm
(Meuwissen et al. 2001).
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The reported multisite genetic variance decomposi-
tion along with the selection of the best model for each
studied trait is expected to improve the genetic variance
partition (see above) as well as the individuals’ breeding
values. We compared the ranking of the top 50 individ-
uals for HT and WD between the pedigree-based
ABLUP and the genomic-based GBLUP models
(GBLUP-AD and GBLUP-ADE, for HT and WD, re-
spectively) (Fig. 3). Only 78 and 76%, respectively, of
the top 50 individuals persisted between the ABLUP
(HT) and the GBLUP-AD (HT), and between the
ABLUP (WD) and GBLUP-ADE (WD), both rankings
indicated that some of the top ranked individuals from
ABLUP have completely dropped out, suggesting the
need for revaluating the expected genetic advance from
the traditional ABLUP approach. Using the 1000 stud-
ied trees as a based population, we compared the
ABLUP’s and GBLUP’s (HT: GBLUP-AD; WD:
GBLUP-ADE) response to selection (R = h2 S; Falconer
et al. 1996) estimates using each model’s breeding
values and heritabilities, and truncating the population
to include the top ranked 50 individuals (selection in-
tensity of 5%), we observed 35 and 63% response to
selection reduction for HT and WD, respectively. This
substantial reduction in the response to selection is the

product of (1) inflated ABLUP heritability estimates, (2)
revised GBLUP breeding values, and (3) rank change
among the top 50 individuals, and all act in concert
affecting the anticipated genetic advance. This example
clearly illustrates the inaccuracies of the ABLUP evalu-
ation and also highlights the benefits of GBLUP imple-
mentation and its advantages in advancing the quick,
simple, and inexpensive OP family to the forefront of
forest tree progeny testing.

Conclusions

The utilization of the genomic-based relationship in tree
improvement testing and evaluation programs is imple-
mented, and its usefulness, in particular for the simplest
OP testing mode, is demonstrated. The proposed ap-
proach of genetic variance decomposition was illustrated,
and additional estimates such as dominance and epistatic
genetic variances as well as their interactions with the
environment were obtained. The incorporation of geno-
mic information in the analysis provided more accurate
genetic variance estimates, particularly for those that
could not be derived using the traditional OP pedigree-
based analysis. The negative role of genetic similarity

Fig. 3 Height (left) and wood density (right) breeding value ranking plots comparing ABLUP vs. GBLUP-ADE assessments for forward
selection of the top 50 performing individuals
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between training and validation populations on the pre-
dictive accuracy of genomic selection as well as exam-
ples of the unrealistic genetic gain estimates derived from
pedigree-based analyses was illustrated. Finally, extend-
ing the GBLUP model to include multisite makes the
analysis applicable to existing OP testing programs.
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