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Abstract Rice (Oryza sativa L.) is one of the most
important food crops, especially in Asia. The spikelet
is a characteristic structure of grass inflorescences that
determines crop output. However, the molecular mech-
anism that controls spikelet development and grain yield
in rice remains unclear. In this study, we isolated a new
osmads34 allelic mutant (i.e., osmads34-t). The
osmads34-t mutant showed more primary branch num-
bers, short panicles, and long sterile lemmas. The sterile
lemmas were transformed into the lemmas and had the
lemma identity in the osmads34-t mutant, suggesting
that the sterile lemma and lemma are homologous or-
gans. Additionally, osmads34-t displayed smaller grains

on its secondary branches of panicles and a lower seed-
setting rate. These results suggest thatOsMADS34 plays
an important role in determination of grain size and
yield in rice.OsMADS34was expressed in tested organs
and tissues, and its green fluorescent protein (GFP)
signal was located in the nucleus. The result of this
study will be used to understand the identity of unique
organs in grass spikelets and may improve grain yield in
breeding practice.
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Introduction

A typical eudicot flower has four whorls: sepals, petals,
stamens, and carpels. The ABC model for floral organ
specialization was established in 1991 based on model
eudicot species, Arabidopsis thaliana and Antirrhinum
majus, which facilitates the better understanding of
flower development (Coen and Meyerowitz 1991). In
recent advanced studies, this ABC model was devel-
oped to an ABCDE model. Most of the genes involved
in this model, which have been identified as members of
the MADS-box gene family, have been used to explain
the genetic mechanism and regulatory network under-
lying flower development in eudicot and monocot spe-
cies (Hong et al. 2010; Li et al. 2011; Dreni et al. 2011;
Khanday et al. 2013).

Grass species, comprising one of the largest monocot
families, are quite different from eudicots in terms of
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floral architecture, which have spikelets and florets
(Yoshida and Nagato 2011). In rice, each ordinary spike-
let consists of two rudimentary glumes, two sterile
lemmas and a floret. From the periphery to the center,
the floret contains a pair of interlocked lemma and palea,
two lodicules, six stamens and a pistil (Yoshida et al.
2009). Sterile lemmas, which are highly derived grass-
specific organs, are larger than rudimentary glumes, but
smaller than lemmas (Ikeda et al. 2004). Rudimentary
glumes are regarded as severely reduced bract organs,
and sterile lemmas represent vestigial glume of two
lateral florets (Hong et al. 2010; Gao et al. 2010;
Kobayashi et al. 2010; Ren et al. 2013). Although these
unique organs, including rudimentary glumes, sterile
lemmas, lemmas, and paleas, share some homology,
their identities are still controversial (Zhang and Yuan
2014; Ren et al. 2015).

Rice is a major food crop for half of the global
population (Abacar et al. 2016; Guo et al. 2014). Grain
yield is directly determined by four components: the
number of panicles, the number of grains per panicle,
grain weight, and the ratio of filled grains (Zuo and Li
2014). Grain weight is mainly affected by grain size
including grain length, width, and thickness (Xing and
Zhang 2010). To date, there are many quantitative trait
loci (QTLs) and genes involved in regulation of grain
size that have been cloned in rice mainly included
GRAIN WEIGHT 2 (GW2), GRAIN SIZE ON CHRO-
MOSOME 2 (GS2), GRAIN SIZE 5 (GS3), GRAIN
LENGTH 3.1 (GL3.1), GRAIN SIZE 5 (GS5), GRAIN
WEIGHT 5 (GW5), GRAIN WEIGHT 7 (GW7)/GRAIN
LENGTH ON CHROMOSOME 7 (GL7), DRAWF 61
(D61), BRASSINOSTEROID–DEPENDENT 1 (BRD1),
and SHORT GRAIN1 (SG1) (Song et al. 2007; Hu et al.
2015; Fan et al. 2006; Qi et al. 2012; Xu et al. 2015;
Weng et al. 2008; Wang et al. 2015a; Wang et al. 2015b;
Yamamuro et al. 2000;Mori et al. 2002; Nakagawa et al.
2011). GW2 encodes a RING-type protein with E3
ubiquitin ligase activity that regulates grain width and
weight (Song et al. 2007). GS2 encodes growth-
regulating factor 4 (OsGRF4), which regulates cell size
and cell numbers (Hu et al. 2015). GS5 encodes a
putative serine carboxypeptidase and functions as a
positive regulator of grain size (Xu et al. 2015). GW5
encodes a nuclear polyubiquitin-binding protein which
controls seed width and weight (Weng et al. 2008).GL7
encodes a protein homologous to A. thaliana
LONGIFOLIA proteins, which regulates longitudinal
cell elongation (Wang et al. 2015b). These findings

suggest that these genes determined grain weight and
size largely by regulating cell proliferation and expan-
sion of the hull, and these genes’ further application in
breeding program will facilitate to improve rice supply.

In this study, we isolated a new osmads34 allelic
mutant (osmads34-t) with variable defect. More primary
branch numbers per panicle, short panicles, and long
sterile lemmas were found in the osmads34-t mutant,
which was similar to phenotypic defects of the reported
osmads34 mutant (Gao et al. 2010; Kobayashi et al.
2010). Differently, the osmads34-t exhibited small
grains and low seed-setting rate. Sequencing analysis
displayed that the mutated LOC_Os03g54170 (i.e.,
osmads34-t) gene contained four base pair (bp) dele-
tions, resulting in premature translational termination.
Complementation test and bioinformatics analysis re-
vealed that LOC_Os03g54170 is indeed OsMADS34.

Material and method

Plant materials

The osmads34-t mutant was derived from Zhonghua11
(ZH11) (O. sativa L. japonica) undergoing ethyl methyl
sulfate (EMS) mutagenesis. ZH11 was used as the wild-
type strain for phenotypic observation. The osmads34-t
mutant was further crossed with an Indica rice variety,
Zhefu802 (ZF802) (O. sativa L. indica), to construct the
F2 population. All plants were cultivated in paddies in
Sanya, China.

Agronomic traits and genetic analysis

All plants were grown under normal cultural conditions.
At maturity stage, the agronomic traits of grains, includ-
ing grain width, grain length, and kilo-grain weight, and
the primary and secondary branch numbers were inves-
tigated and compared between the wild type and
osmads34-t mutant. The segregation of normal and ab-
normal plants was determined, and the ratio was ana-
lyzed by χ2 test.

Microscopy observation

At heading stage, the spikelets were fixed in FAA solu-
tion (50% ethanol, 10% formaldehyde, and 5% glacial
acetic acid) over night at 4 °C, then dehydrated with
ethanol series (50, 70, 85, 95, 100, 100, 100%) and
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infiltrated with xylene series (33, 50, 67, 100, 100,
100% solubility in 100% ethanol) (Ren et al. 2013).
Finally, the samples were embedded in paraffin, sec-
tioned into 8-μm thick sections, and stained with 1%
safranine (solubility in 95% ethanol) and 1% fast green
(solubility in 95% ethanol) for histological analysis.
Scanning electron microscopy (SEM) analysis was con-
ducted using a NIKON ECLIPSE 90i microscope (Yu
et al. 2015).

Map-based cloning

For fine mapping of the OsMADS34, six simple se-
quence repeat (SSR) markers were developed on com-
parisons between Indica 93-11 and Japonica
Nipponbare according to the web data which include
the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov), Rice Data (http://www.
ricedata.cn/gene/), and Gramene (http://www.gramene.
org). The primers used in this study are listed in
Supplementary Table 1.

Gene expression analysis

Using TRIzol reagent (Invitrogen, USA), total RNAwas
extracted from inflorescences at booting stage and floral
organs at heading stage in the osmads34-t and wild type.
Then, using a ReverTra qPCR RT kit (Toyobo Corpo-
ration, China), 2 mg RNA sample was reverse-
transcripted into single-strand cDNA. And three biolog-
ical repeats of qPCRwere conducted with an ABI Prism
7000 Sequence Detection System and SYBR Green
PCR Master Mix kit (Applied Biosystems, USA).
Quantitative real-time PCR experiments of MADS-box
genes (OsMADS1, OsMADS6, OsMADS14, and
OsMADS15), DL gene, and grain regulation genes
(SMG1, GW2, GS3, GS5, and GL7) were performed
using a Power SYBR Green PCR Master Mix kit (Ap-
plied Biosystems). And the rice actin gene was used as
an internal control (primers listed in Supplementary
Table1). For the β-glucuronidase (GUS) staining assay,
a 2.18-kb sequence of the OsMADS34 promoter was
amplified by PCR (primers listed in Supplementary
Table 1) and the PCR products were digested with
HindIII and BamHI. Then, the fragment was cloned into
the pCAMBIA1391Z vector.

Tissue for GUS staining was gently fixed in 90%
acetone on ice for 20 min and then rinsed in 50 mM
NaPO4, pH 7.2, 0.5 mM K3Fe(CN)6, and 0.5 mM

K4Fe(CN)6. Then, the tissue was placed in staining
solution (50 mM NaPO4, pH 7.2, 2 mM X-gluc,
0.5 mM K3Fe[CN]6, and 0.5 mM K4Fe[CN]6), which
was vacuum infiltrated and incubated at 37 °C overnight
(Sieburth and Meyerowitz 1997).

Subcellular localization

The coding sequence (CDS) of OsMADS34 was ampli-
fied without stop codon, and this contained restriction
enzyme sites PstI and XbaI (primers listed in Supple-
mentary Table1). The OsMADS34-GFP fusion vector
was constructed by the insertion of OsMADS34-CDS
into 35S-EGFP-(pCAMBIA1300) (Wu et al. 2016). The
green fluorescent protein (GFP) and OsMADS34-GFP
plasmids were then transformed into rice protoplasts
(Bart et al. 2006). GFP fluorescence was observed under
a confocal laser-scanning microscope (ZEISS LSM 700,
Germany).

Result

The osmads34 mutant shows elongated sterile lemmas

No obvious differences were observed between the wild
type and osmads34-t during the vegetative phase. At the
heading stage, the sterile lemmas of the wild type were
small, triangular structures with an average length ap-
proximately one fourth of the lemmas and paleas. By
contrast, the osmads34-t mutant showed two elongated
sterile lemmas which resembled the wild-type lemmas
or paleae in size (Fig. 1a, f). We also investigated the
morphology and the number of components of the four
whorls of floral organs, finding that these organs were
normal (Fig. 1b, g).

Paraffin section exhibited that wild-type lemmas and
paleas had four cell layers, as well as five and three
vascular bundles, respectively. The sterile lemmas of the
wild type had only one vascular bundle (Fig. 1c, d). By
contrast, in the osmads34-t mutant, the sterile lemmas
had 46 vascular bundles (Fig. 1h, i). SEM analysis
revealed that in the wild type, the epidermis of the
lemma and palea had numerous protrusions and tri-
chomes, whereas the epidermis of sterile lemmas had
few protrusions and trichomes (Fig. 1e). However, in the
osmads34-t mutant, the epidermis of sterile lemmas
possessed numerous protrusions and trichomes, which
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was similar to the epidermis of wild-type lemmas
(Fig. 1j).

In order to understand the identity of abnormal sterile
lemmas in osmads34-t, we examined the transcript
levels of the hull (i.e., lemma and palea) identity genes
OsMADS1, OsMADS14, and OsMADS15, the lemma
identity gene DROOPING LEAF (DL), and the palea
identity gene OsMADS6 in the osmads34-t. Abundant
levels of OsMADS1, OsMADS14, OsMADS15, and DL
transcripts were detected in the long sterile lemmas of
osmads34-t, but no OsMADS6 transcripts were found,
suggesting that the sterile lemmas were transformed into
lemma-like organs in the osmads34-t mutant (Fig. 2).

Early spikelet development in the osmads34-t mutant

Spikelet development is divided into eight stages
based on the identity of later organs according to
Ikeda et al. (2004). In the current study, we exam-
ined young spikelets at different developmental
stages from the wild type to osmads34-t by SEM.
During Sp4, the palea primordium formed at the
opposite side to the lemma and sterile lemma was
growing and had no significant difference between
the wild type and osmads34-t mutant (Fig. 3a, e).
However, in the osmads34-t mutant, lodicule

primordia and stamen primordia formed and the
sterile lemma was much larger than that of the wild
type, i.e., nearly the size of the palea during Sp5 and
Sp6 (Fig. 3b, f). During Sp7 and Sp8, the carpel
primordium was formed and the length of sterile
lemma was close to that of the palea and lemma in
the osmads34-t mutant (Fig. 3c, d, g, h). However,
at Sp4–Sp8, neither the morphology nor the number
was altered in the osmads34-t mutant compared to
the wild type.

OsMADS34 affects grain yield

The osmads34-t grains, on secondary branches, were
obviously different from the wild type. Compared
with the wild type, the osmads34-t mutant had
smaller grains on its secondary branches, but the
grains on primary branches were not affected
(Fig. 4a, b, h, i). Additionally, both the kilo-grain
weight and the weight of kilo-brown rice were re-
markably reduced in the osmads34-t mutant
(Fig. 4g). The osmads34-t mutant also had a lower
seed-setting rate than the wild type (Fig. 4j).

Further tests showed that the pollen viability of
spikelets on secondary branches was greatly reduced
in the osmads34-t mutant compared to the wild type,

Fig. 1 Phenotypes of spikelets in the wild type and osmads34-t
mutant. a, b Spikelet of wild type. c, d Histological analysis of
wild-type spikelet. e Epidermal surface of wild-type sterile lemma.
f, g Spikelet of osmads34-t. h, iHistological analysis of osmads34-

t spikelet. j Epidermal surface of osmads34. Le lemma, Pa palea,
Sl sterile lemma, Rg rudimentary glume, Pi pistil, Lo lodicule. Red
arrows represent vascular bundles in a, d, h, i. Bars = 2 mm in a,
b, f, h, 100 μm in c, h, 30 μm in d, i, and 100 μm in e, j
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whereas the pollen viability of spikelets on primary
branches was not altered (Fig. 4c–f). Moreover, the
number of primary branches increased, and the num-
ber of secondary branches decreased in the mutant
compared to the wild type (Fig. 4k). Most impor-
tantly, osmads34-t exhibited shorter panicles and
fewer grains than wild type.

Next, we examined the expressions of several genes
involved in the regulation of grain weight and size. The
expressions of SMG1, GW2, GS3, and GL7 were higher
in the mutant than in the wild type, while the expression
ofGS5was unaffected (Supplementary Figure 1). These
results may indicate that OsMADS34 functions in the
regulation of grain yield and size.

Isolation of OsMADS34

When the osmads34-t mutants were crossed with
ZF802, an indica variety, all F1 individuals exhibited
normal phenotype as the wild type. In F2 population,
the segregation rate of wild type and abnormal plants
fits the ratio of 3:1, which indicates that the mutated
traits are controlled by a single recessive nuclear gene.
The F2 population was used to map the OsMADS34
gene locus. More than 1300 plants in this population
exhibited the mutant phenotypes. We used 160 SSR
markers that are evenly distributed on rice chromo-
some1–12 to screen the target gene by bulked segre-
gant analysis. Markers RM227 and RM15948 on

Fig. 2 Relative expression levels
of floral organ identity genes in
the wild type and osmads34-t
floral organs. WT-Rg rudimentary
glume of wild type, WT-Sl sterile
lemma of wild type, WT-Le
lemma of wild type, WT-Pa palea
of wild type, osmads34-t-Rg
rudimentary glume of osmads34-
t, osmads34-t-Sl sterile lemma of
osmads34-t. Error bars indicate
SD

Fig. 3 Spikelets at early developmental stages in the wild type and
osmads34-t. a–d Development of the spikelet in the wild type.
aSp4. b Sp5–6. c Sp7. d Sp8. e–h Development of the spikelet in

osmads34-t. e Sp4. f Sp5–6. g Sp7. h Sp8. Sl sterile lemma, Le
lemma, Pa palea, Fm floral meristem, Pi pistil. Bars =50 μm in a–h
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chromosome 3 had polymorphisms between the wild-
type DNA pools and osmads34-t DNA pools. Using
these markers, we examined 212 F2 recessive individ-
uals finding that the target gene was located between
RM227 and RM15948.

For fine mapping of the locus, 24 pairs of SSR
markers were developed, four of which had poly-
morphism. Using these four markers, 1326 screened

F2 recessive individuals narrowed down this gene to
143 kilobase (Kb) regions (primers listed in
Supp l emen t a r y Tab l e 1 ) . I n t h i s r eg i on ,
LOC_Os03g54170 encoded a predicted OsMADS34
protein with the conserved MADS-box domain
(Supplementary Figure 3; http://www.ricedata.cn;
http://rice.plantbiology.msu.edu) may be involved
in the regulation of spikelet or floral development.

Fig. 4 Phenotype and grain yield in the wild type and osmads34-t
mutant. a, b Grains of wild type and osmads34-t. a-a Grains of
wild type on primary branch. a-bGrains of osmads34-t on primary
branch. a-cGrains of wild type on secondary branch. a-dGrains of
osmads34-t on secondary branch. b-a Brown rice grains of wild
type on primary branch. b-b Brown rice grains of osmads34-t on
primary branch. b-c Brown rice grains of wild type on secondary
branch. b-d) Brown rice grains of osmads34-t on secondary
branch. c Pollen grains in the wild-type stamen on primary branch.
d Pollen grains in the osmads34-t stamen on primary branch. e
Pollen grains in the wild type stamen on secondary branch. f
Pollen grains in the osmads34-t stamen on secondary branch. g
Kilo-grain weight of wild type and osmads34-t, including grains
and brown rice on primary and secondary branches. hGrain length
of wild type and osmads34-t, including grains and brown rice on
primary and secondary branches. i Grain length of wild type and

osmads34-t, including grains and brown rice on primary and
secondary branches. j Grain numbers per panicle on primary
branch and secondary branch of wild type and osmads34-t. k
Branch numbers per panicle of wild type and osmads34-t. KGW
kilo-grain weight, GL grain length, GW grain width, WT-P grains
on primary branch in wild type, osmads34-t-P grains on primary
branch in the osmads34-t,WT-PN brown rice on primary branch in
the wild type, osmads34-t-PN brown rice on primary branch in the
osmads34-t, WT-S grains on secondary branch in wild type,
osmads34-t-S grains on secondary branch in the osmads34-t,
WT-SN brown rice on secondary branch in the wild type,
osmads34-t-SN brown rice on secondary branch in the
osmads34-t, WT wild type, GNPP grain numbers per panicle,
NPP numbers per panicle. Bars = 2 cm in a, b and 50 μm in c–
f. Error bars indicate SD. The presence of the same lowercase
letter denotes a non-significant difference between the means g–i
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Next, sequencing suggested that LOC_Os03g54170
gene has four nucleotide (GGAT) deletions in the
genomic sequence of osmads34-t, which leads to a
frameshift and premature translational termination
(Fig. 5a, b). To further test the linkage between the
mutant phenotype and osmads34-t, LOC_Os03
g54170, a wild-type genomic fragment containing
a 2021-bp region upstream of the start codon and a
1008-bp region downstream of the stop codon, was
transformed into the osmads34-t mutant. In this
complementation test, all mutant phenotypes were
rescued in the osmads34-t mutant (Fig. 5c–h;
Supplementary Figure 2).

Meantime, we performed the protein sequence align-
ment. The result showed that the LOC_Os03g54170
protein contains a highly conserved domain with the
proteins of other species such as rice, sorghum, maize,
wheat, and Arabidopsis (Supplementary Figure 4). The
results also suggest that LOC_Os03g54170 shared high
amino acid sequence similarity with the known E-
function genes OsMADS1 and OsMADS5, which pos-
sessed a conservedMADS-box domain (Supplementary
Figure 3). Further, LOC_Os03g54170 is also reported
and is an allele of theOsMADS34 gene (Gao et al. 2010;
Kobayashi et al. 2010). Therefore, all findings sug-
gested that LOC_Os03g54170 is a member of E-class

Fig. 5 Isolation of the OsMADS34 gene. a Map position of the
OsMADS34 locus. The mutation sites, deletion of 4 bp, are shown.
b An AFD1 gene encodes 239 amino acid expression proteins,
while osmads34-t encodes 176 amino acid expression proteins due
to frame shift. c Spikelet of wild type. d Spikelet of osmads34-t

mutant. e Spikelet of transgenic plants. f Grains of wild type on
secondary branch. g Grains of osmads34-t on secondary branch. h
Grains of transgenic plants on secondary branch. Bars = 2 mm in
c–h
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gene family and confirmed that LOC_Os03g54170 is an
OsMADS34 gene.

Expression pattern of OsMADS34 and protein
localization

To examine the expression pattern of OsMADS34, we
performed qRT-PCR in the wild type. OsMADS34 was
expressed in all tissues and organs examined, including
roots, culms, leaves, sheaths, panicles, rudimentary
glumes, sterile lemmas, lemmas, and paleae, with strong
expressions detected in young panicles and reproductive
organs (Fig. 6a).

To monitor the tissue-specific expression of
OsMADS34, we constructed an OsMADS34 promoter:
a GUS expression vector. GUS signals were observed in

all of the tissues examined, with the strongest signals
detected in young panicles (Fig. 6b–f). We also exam-
ined the subcellular localization of OsMADS34 in rice
protoplasts, finding that fluorescent signals of
OsMADS34were detected in the nucleus. Taken togeth-
er, these results suggested that OsMADS34 is a nuclear
protein that may function as a transcription factor
(Fig. 6g–l).

Discussion

Grain size and number are important determinants of
grain yield (Qian et al. 2016). To date, numerous genes
controlling rice grain size have been identified, such as
GW2, GS2, GS3, DWARF 1 (D1), DWARF 2 (D2),

Fig. 6 Expression pattern of
OsMADS34. a Relative
expression of OsMADS34 in
different tissues was detected by
qPCR. b–f Gus signal were
observed in different tissues. b
Root. c Culm. d Leaf. e Sheath. f
Young panicles. g–l GFP fusion
protein. g Digital Image Control
(DIC) image. h Bright-field
image. i Merged GFP fusion
protein. j–l OsMADS34-GFP. j
DIC image. k Bright-field image.
l Merged image of OsMADS34-
GFP fusion protein. R root, C
culm, L leaf, S sheath, 1 cm young
panicles (≤1 cm), 1–3 cm young
panicles (1–3 cm), 3–5 cm young
panicles (3–5 cm), Rg
rudimentary glume, Sl sterile
lemma, Le lemma, Pa palea.
Bars =1 cm in b–f and 2 μm in g–
l. Error bars indicate SD

147 Page 8 of 11 Mol Breeding (2016) 36: 147



SMALL GRAIN 1 (SMG1), DENSE AND ERECT PAN-
ICLE 1 (DEP1)/ERECTPOSE PANICLE (EP), and
DENSE AND ERECT PANICLE 2 (DEP2) (Song et al.
2007; Hu et al. 2015; Qi et al. 2012; Miura et al. 2009;
Hong et al. 2003; Duan et al. 2014; Huang et al. 2009;
Wang et al. 2009; Li et al. 2010). However, the molec-
ular mechanisms that affect final rice supply are com-
plicated and remain to be described. Although
OsMADS34 was reported to control spikelet develop-
ment (Gao et al. 2010; Kobayashi et al. 2010), its
involvement in the regulation of grain yield has not
previously been described. In this study, we found that
the osmads34-t mutant bore small grains on secondary
branches, but not on primary branches. Compared with
the wild type, osmads34-t grains on secondary branches
were shorter in length, but are equal in width, which
resulted that the grain weight was markedly decreased.
The osmads34-t mutant also displayed shorter panicles
and a lower seed-setting rate which was caused by the
defective pollen grains of spikelets on secondary
branches. Using qRT-PCR and GUS analyses, we found
that OsMADS34 was highly expressed in spikelets,
which is consistent with the phenotype observations of
the osmads34-t mutant. In previous studies, most of
MADS-box genes are primarily involved in regulating
flower development, but how they regulate seed devel-
opment is currently unclear. OsMADS29, a rice MADS-
box family member, is expressed in the ovule. Knock-
down of OsMADS29 causes shrunken seeds and a re-
duced grain-filling rate (Yang et al. 2012; Yin and Xue
2012). Through these findings, together with the current
results, we suggest that MADS-box genes including
OsMADS34 and OsMADS29 play important roles in
determining grain yield and size. Further, functional
analysis and appalment of OsMADS34 and other
MADS-box genes will provide a new way to improve
grain yield in rice breeding.

In this study, the osmads34-t sterile lemma exhibited
a similar histological structure, resembling the wild-type
lemma. In wild type flowers, DL and OsMADS6 were
mainly expressed in the lemma and palea, respectively
(Li et al. 2011). But DL was ectopically expressed, and
no OsMADS6 expression was detected in the sterile
lemma of the osmads34-t mutant (Fig. 2). Meantime,
our results also displayed that the transcripts of
OsMADS1, OsMADS14, and OsMADS15 were primar-
ily in the lemma and palea of wild-type flowers (Prasad
et al. 2005; Kobayashi et al. 2012; Lu et al. 2012), but
their expressions were also observed in the elongated

sterile lemma of the osmads34-t mutant (Fig. 2). These
information suggested that the sterile lemma was trans-
formed into the hull-like organ and acquired the lemma
identity in part in the osmads34-t mutant. Similarly, in
the reported g1/ele and eg1mutants, the sterile lemma is
also transformed homeotically into a lemma-like organ
(Li et al. 2009; Yoshida et al. 2009; Hong et al. 2010).
These findings imply that OsMADS34, G1/ELE, and
EG1maintain the identity of sterile lemmas and restrain
the elongation of sterile lemmas in the development of
rice spikelet. A current hypothesis suggests that the
spikelet originally contained three florets, in which
two lateral florets degenerated into lemmas, which sub-
sequently degenerated into the sterile lemmas during
evolution (Kellogg 2009; Ren et al. 2013). In the
osmads34-t, g1/ele and eg1 mutants, the sterile lemmas
are enlarged and transformed into lemmas, which sup-
ports the hypothesis that the sterile lemma and lemma
may be homologous structures. However, more studies
are needed to identify more related mutants and to clone
the corresponding genes involved in the regulation of
the sterile lemma and lemma in rice.

In summary, our findings about the osmads34-t mu-
tant will not only facilitate further study of the genetic
mechanism of flower development, but they also provide
a new way to improve rice yield in breeding practice.
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