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Abstract Modern plant breeding is based on the

detection of traits at the molecular level so that the

selection process can be accelerated. Methods that

allow the rapid and high-throughput analysis of such

traits are therefore useful for plant breeders and farmers.

We have shown that next-generation sequencing,

applied to short PCR products spanning or flanking

polymorphisms of interest in barley, can provide robust

genotyping data that allow the rapid determination of

genotype and zygosity. This method can be used to

genotype large panels of plants because up to 80million

individual reads can be produced in one sequencing run,

and samples from different lines and/or traits can be

pooled. These findings are significant because plant

breeders may need to screen large populations for

multiple traits in parallel. Our next-generation sequenc-

ingmethod therefore provides a simple and inexpensive

approach for the rapid and accurate genotyping of

natural polymorphisms in barley, which can also be

applied in many other economically relevant crop

species.
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Introduction

Barley is an important cereal crop which has been

cultivated for thousands of years (Reets and Léon

2004). It ranks fourth in terms of production volume

behind maize, rice and wheat and is primarily used for

food, feed and the production of alcoholic beverages

(FAO 2014). Barley is cultivated in different climates,

soils and environments and is exposed to diverse forms

of abiotic and biotic stress. Cultivars and varieties with

yield, nutritional quality and agronomic performance

optimized for different environments are therefore

needed to supply the growing global population (UN

2008). Optimized characteristics can be achieved by

conventional breeding, but this takes up to 8 years

because phenotype-based testing requires fully grown

plants (Borlaug 1983; ISAAA 2014). The speed and

efficiency of plant breeding can be improved by
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adopting technologies such as reverse breeding,

marker-assisted selection (MAS) and genetic modifi-

cation, all of which have advantages and disadvan-

tages (He et al. 2014; Jonas and de Koning 2013;

Nakaya and Isobe 2012; Varshney et al. 2009). These

modern techniques are steadily replacing or augment-

ing classical breeding approaches (Xu et al. 2012).

Next-generation sequencing (NGS) generates large

amounts of data in short time by producing thousands

or even millions of reads in parallel. The increasing

throughput and falling costs of NGS have encouraged

multiple applications in different areas of the life

sciences, including medicine (Metzker 2010) and

agriculture (Elshire et al. 2011; Mascher et al. 2013;

Teixeira et al. 2014; You et al. 2011). For example, the

high-throughput sequencing of large numbers of

amplicons has been used to genotype the human

leukocyte antigen (HLA) locus (Bentley et al. 2009;

Holcomb et al. 2011) and to determine zygosity in

transgenic maize (Fritsch et al. 2015), but has yet to be

applied in the plant breeding sector.

Using a multiplex PCR-based approach (Bentley

et al. 2009; Fritsch et al. 2015), we generated

amplicons representing naturally occurring polymor-

phisms in two barley genes, namely the flowering time

habit locus VrnH1 (Fu et al. 2005; Szucs et al. 2007;

von Zitzewitz et al. 2005) and the grain protein content

locus HvNAM1 (Cai et al. 2013; Uauy et al. 2006)

(Fig. 1). Each locus represents a relevant trait for

breeding programs: VrnH1 in terms of adaptation to

environmental conditions and HvNAM1 in terms of

grain quality. The coverage of more than 1000 reads

per PCR product ensured that the sequencing data

were statistically valid and reduced the impact of

sequencing errors, especially in the hybrids where

anticipated polymorphisms only represented half of

the reads. We validated our assay using two different

genes containing different kinds of polymorphisms,

i.e., indels and single nucleotide polymorphisms

(SNPs). We found that our genotyping method is easy

to implement, requires no PCR optimization steps and

is suitable for the high-throughput analysis of many

different samples and/or polymorphisms

simultaneously.

Materials and methods

Barley seeds, plant cultivation and interbreeding

Barley (Hordeum vulgare) seeds of the winter barley

line Strider and the spring barley lineMorex were used

to prepare genomic templates representing the flow-

ering time locus VrnH1. The Strider VrnH1 locus

42 bp 
insertion/deletion

17 bp 
insertion/deletion

5.2 kb 
insertion/deletion

(a)

G/C SNP G/C SNP G/A SNP(b)

Fig. 1 a Schematic depiction of the VrnH1 gene. The total size

of the VrnH1 gene is 14,776 bp (including the potential

insertions). The genotypic features of the winter barley line

Strider are shown in bold, whereas normal font shows the

genotypic features of the spring barley line Morex. b Schematic

depiction of the HvNAM1 gene. The total size of the HvNAM1

gene is 1585 bp. The genotypic features of the low grain protein

content barley line Karl are shown in bold, whereas normal font

shows the genotypic features of the high grain protein content

barley line Clipper.Horizontal bars show stretches of DNAwith

thick black bars representing exons, thin black bars representing

introns and the thick white bars representing untranslated

regions. The polymorphisms are indicated by red arrows. (Color

figure online)
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contains additional sequences that are not present in

Morex; thus, the locus is characterized by an indel

polymorphism (Fig. 1a). Similarly, the Karl and

Clipper lines were used to prepare genomic templates

representing the grain protein content locus HvNAM1.

Karl is a low grain protein content line with guanidine

residues at three single nucleotide polymorphisms

(SNPs) in this locus, whereas Clipper is a high grain

protein content line with cytidine residues at the SNPs

in the first two exons and an adenosine residue at the

SNPs in exon three (Fig. 1b). All seeds were provided

by the National Small Grains Collection (Aberdeen,

Idaho, USA) of the United States Department of

Agriculture (USDA). To generate hybrids, the

homozygous seeds were planted in Jiffy-7 pellets

(Jiffy Products International BV, Moerdijk, Nether-

lands) and transferred to pots filled with Einheitserde

classic substrate (Einheitserdewerke Werkverband

e.V., Sinntal-Altengronau, Germany) after *14 days.

As soon as the awns started to grow out of the husks,

the mother plant was emasculated by removing

immature anthers from the flowers. To interbreed the

plants, ripe anthers from the paternal line were

transferred to the emasculated flower and placed on

the stigma of the maternal plant 2–3 days after the

emasculation. The resulting hybrid seeds were har-

vested after *3 months, when the seeds and plants

were completely dry (Cornelia Marthe and Dr. Jochen

Kumlehn, IPK Gatersleben. Germany, personal com-

munication). To extract DNA, the homozygous and

heterozygous seeds were planted in Jiffy-7 pellets and

leaves from 7- to 14-day-old plants were processed

with the Nucleospin Plant II kit (Machery-Nagel,

Düren, Germany) according to the manufacturer’s

protocol. All DNA samples were dissolved in elution

buffer (50 mM Tris–HCl, pH 8.5) to a final concen-

tration of 150–250 ng/ll.

Primers: general aspects

Primers were designed using CLC Main Workbench

version 6.9.1 (CLC Bio, Qiagen, Venlo, Netherlands)

and synthesized by MWG-Biotech (Ebersberg, Ger-

many). Primers for single PCR and/or for multiplex

PCR had a length between 19 and 21 bases and a

melting temperature between 58 and 62 �C. The

primer sequences are listed in Table S1 (online

resource). The reference sequences for primer design

were obtained from the NCBI nucleotide database

(http://www.ncbi.nlm.nih.gov/nuccore/AY750993.1

for the VrnH1 gene in the Strider line; http://www.

ncbi.nlm.nih.gov/nuccore/AY750995.1 for the VrnH1

gene in the Morex line; and http://www.ncbi.nlm.nih.

gov/nuccore/EU368851.1 for theHvNAM1 gene). The

barcodes and adapters associated with each primer are

listed in Tables S2 and S3 (online resources).

Multiplex PCR to generate NGS templates

NGS templates were prepared by PCR on a Veriti

96-well thermocycler (Life Technologies, Carlsbad,

USA) using the Expand High Fidelity PCR System

(Roche, Rotkreuz, Switzerland), Axygen eight-strip

tubes (Thermo Fisher Scientific, Waltham, USA) and

eight-lid flat-cap strips (Sarstedt, Nümbrecht, Ger-

many). Each reaction comprised 3.5 U Taq/Tgo DNA

polymerase enzyme mix, 500 lM dNTPs, 0.5 lM of

each primer (Table S1, online resource) and

150–200 ng of template DNA, topped up to 50 ll
with the buffer supplied in the kit. The template was

denatured at 95 �C for 2 min and then amplified (30

cycles at 95 �C for 30 s, 55 �C for 30 s and 72 �C for

30 s) followed by a final elongation step for 4 min at

72 �C and indefinite storage at 8 �C. PCR products

were sized and quantified by capillary electrophoresis

using the Agilent DNA 1000 Kit on an Agilent 2100

Bioanalyzer according to the manufacturer’s instruc-

tions (Life Technologies). The PCR products were

pre-diluted to at least 100 pM according to the

concentration determined by capillary electrophoresis

(data not shown). The PCR products were diluted

according to the concentration of the least concen-

trated amplicon because it was a multiplex reaction.

Next-generation sequencing

The pre-diluted PCR products were purified and

diluted to the final concentration of 26 pM using the

Ion Library Equalizer Kit (Life Technologies). There-

fore, 2-ll aliquots from each multiplex PCR vessel

were pooled and topped up to 50 ll with elution buffer
(50 mM Tris–HCl, pH 8.5). The pool was processed

with the Ion Library Equalizer Kit using 90 ll Ampure

beads and otherwise following the manufacturer’s

protocol. The pooled and equalized PCR products

were then sequenced on an Ion Torrent Sequencer

(Life Technologies) using an Ion 316 chip (Life

Technologies). The results were analyzed using
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Lasergene Genomics Suite software (DNA Star,

Madison, USA). The barcodes shown in Table S2

(online resource) were used to differentiate among the

samples.

Results and discussion

We developed our NGS-based polymorphism detec-

tion procedure using two previously described quan-

titative trait loci (QTLs), namely the barley flowering

time locus VrnH1 (Fu et al. 2005; Szucs et al. 2007;

von Zitzewitz et al. 2005) and the grain protein content

locus HvNAM1 (Cai et al. 2013; Uauy et al. 2006)

(Fig. 1). Primers were designed to define amplicons of

146–268 bp spanning or flanking the polymorphisms

of interest (Fig. 2). The 5.2-kb indel polymorphism at

the VrnH1 locus (Fig. 1a) was amplified by compet-

itive PCR with two reverse primers: one specific for

the insert and one specific for the downstream 30

sequence flanking the insert (Fig. 2a). Amplification

of the entire insert with the forward and reverse

flanking primers was prevented by limiting the PCR

elongation time to 30 s, which is not enough to

generate a full-size product of[5.4 kb because the

polymerization rate of a standard PCR is approxi-

mately 1500 bp/min (Roche 2011). A similar

approach was used by Fritsch et al. (2015) to verify

the presence of transgenic events in maize. The 42-

and 17-bp indels at the VrnH1 locus were amplified

using primers flanking the indels (Fig. 2b). The same

strategy was used for the three SNPs at the HvNAM1

locus. Primers with barcodes (Table S2 of online

resource) and adapters (Table S3 of online resource)

were used to reduce the number of sample preparation

steps by generating short PCR products, covering the

indels and SNPs, linked to two adapters and one

sample-specific barcode that can be sequenced

directly, without prior library preparation. The

preparation of a library involves fragmentation of the

target DNA followed by end repair, adapter ligation,

purification and size selection (Fig. 3) (Life Tech-

nologies 2015; Thermo Fisher Scientific 2014) and in

our experience is time-consuming and expensive,

especially when processing a large number of samples.

We furthermore carried out three PCRs to amplify the

three polymorphisms at each locus (Fig. 1) simulta-

neously in a multiplex reaction, rather than individ-

ually in three singleplex reactions, to limit the number

of pipetting steps and therefore reduce consumables

expenditure. Potentially, if more genetic loci would be

investigated in a specific plant line, the PCR could

even bemultiplexed to a higher extend by adding more

primer pairs to a reaction vessel. Certainly, the

multiplexing capacity is limited to the extent where

all target PCR products are still successfully amplified,

which would have to be individually tested for each

multiplex reaction. Capillary electrophoresis was

carried out using an Agilent 2100 Bioanalyzer to

confirm the success of the reactions and to quantify the

products. This is particularly important because the

PCR products need to be diluted to exactly 26 pM for a

successful sequencing (Life Technologies 2013).

Capillary electrophoresis showed that the PCRs were

successful (data not shown) and bands with the

anticipated sizes were observed (data not shown).

The samples were pre-diluted to 100 pM according to

the capillary electrophoresis results. To reduce the

number and cost of pipetting steps even further, 2 ll of
each pre-diluted sample was pooled and processed

collectively. The sample pool was diluted to the

required concentration and thereby also purified, using

a magnetic bead-based procedure with the Ion Library

Equalizer Kit, therefore requiring a single reaction

tube and set of reagents per sample.

The reads generated by NGS were aligned to the

VrnH1 and HvNAM1 reference sequences, allowing

the genotypes to be clearly distinguished (Table S4 of

FW primer RV primer

Indel/SNP site

Insertion

FW primer
Insertion
RV primer

Deletion
RV primer

(a) (b)

Fig. 2 PCR strategies to amplify polymorphisms of interest.

Horizontal bars show the DNA; horizontal arrows represent

primers and the direction of elongation. a PCR strategy to

amplify the flanking sequence of the 5.2-kb insertion at the

VrnH1 locus. The orange and black striped arrows illustrate the

use of two distinct reverse primers in a competitive PCR. b PCR

strategy to amplify the small indels in the VrnH1 locus and the

SNPs in the HvNAM1 locus. (Color figure online)
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online resource). For the VrnH1 gene, the three

anticipated insertions were detected in all reads

representing the Strider line, revealing the winter

growth genotype of this QTL. The anticipated dele-

tions were detected in all reads representing the Morex

line, confirming the spring growth genotype of the

QTL in this line. Insertions at these three locations

correspond to winter barley alleles, whereas deletions

correspond to spring barley alleles (Fu et al. 2005;

Szucs et al. 2007; von Zitzewitz et al. 2005). In the

Morex 9 Strider hybrid, the insertions and deletions

were distributed in approximately equal shares among

the reads (Table S4 of online resource) and the loci

could therefore be identified as heterozygous. The

genotype of the 5.2-kb indel could be detected by

counting the reads aligned either to the 50 part of the
insertion or to the downstream flanking sequence of

the anticipated insertion (Fig. 4) because competitive

PCR was carried out with three primers (Fig. 2a). The

Strider line exclusively generated reads matching the

50 sequence of the insertion, whereas the Morex line

exclusively generated reads matching the downstream

flanking sequence. These results show that the Strider

line contains the 5.2-kb insertion which is not present

in the Morex line. The Morex 9 Strider hybrid

generated reads aligning to both reference sequences,

Fragmentation End repair Adapter ligation Size selection Qualify, 
Quantify

NGS

Fragmentation End repair Adapter ligation Size selection Qualify, 
Quantify

Long-range PCR
~ 6 – 10 h

or 
genomic DNA

Multiplex PCR with 
barcoded adapter 

primers
70 min 200-400 bp PCR products

Long-range PCR product / genomic DNA

(a)

(b)

Fig. 3 Schematic depiction and comparison of the workflow

with either (a) genomic DNA/long PCR products or (b) short
PCR products of 200–400 bp with attached barcodes and

adapters. Working steps are shown as required to apply next-

generation sequencing to the samples of interest, based on the

designated PCR strategy and starting material. The crossed out

steps in (b) are omitted when PCR is carried out with barcoded

primers amplifying 200- to 400-bp fragments

Deletion

(b)

(c)
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Fig. 4 Allelic identification at the 5.2-kb indel site of theVrnH1

gene, showing the number of reads aligned to the 50 sequence of
the insertion, or to the flanking sequence indicating a deletion.

a Reads on the Strider template. bReads on theMorex template.

c Reads on the heterozygous Morex 9 Strider template.

Insertion: reads aligned to the 50-insert sequence. Deletion:

reads aligned to the sequence flanking the insertion site
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confirming that both indel alleles are present. The 42-

and 17-bp indels were detected as gaps in the

sequence. The sequencing results for the 17-bp indel

are shown as an example in Table 1.

The three SNPs of interest in the HvNAM1 gene

(Fig. 1b) were also detected by sequencing. The

Clipper line contains guanidine residues at nucleotide

positions 234 in the first exon and 544 in the second

exon, whereas cytidine residues occupy both positions

in the Karl line. In the third exon, the Clipper line

contains a guanidine residue at nucleotide position

1433, whereas the Karl line contains an adenosine

residue at this site. The Clipper alleles correspond to a

high grain protein content, whereas the Karl alleles

correspond to a low grain protein content phenotype

(Cai et al. 2013; Uauy et al. 2006). The Karl 9 Clipper

hybrid showed a near-equal distribution of the two

alternative nucleotides in each position (Table S4 of

online resource), confirming the heterozygosity of the

hybrid at locus. The sequencing results for the SNP at

nucleotide position 234 are shown as an example in

Table 1. An overview of the sequencing results and

read numbers is given in the online resource (Table S4).

The different numbers of reads aligned to the

reference sequences of each locus (Fig. 4; Table S4 of

online resource) may reflect the uneven amplification

efficiency of the multiplex PCR, which can be caused

by differences in primer binding efficiency, the

favored amplification of a specific target or the

formation of primer dimers that inhibit amplification

(Le et al. 2009). Furthermore, read errors/low-quality

reads are excluded from the final dataset. This often

occurs when reads are automatically trimmed or

filtered out, e.g., when they are polyclonal or produce

an off-scale signal on the Ion Torrent server (Life

Technologies 2014). However, there was no need to

normalize or equalize the PCRs in our method because

a few reads are theoretically sufficient to confirm the

presence of a given allele by mapping to a unique

reference sequence. In heterozygous samples, those

reads should be distributed in a near-equal manner.

Although specific limits have not been proposed,

higher read numbers are known to reduce the error

frequency significantly (Sims et al. 2014), and we

therefore propose that a coverage of at least 30 reads

per PCR product is desirable.

We have demonstrated that single nucleotide poly-

morphisms and indel polymorphisms of different sizes

can be characterized by NGS in terms of genotype and

zygosity. Our assay is therefore useful in the context of

barley breeding because diverse polymorphisms in

several genes can be investigated simultaneously. The

duration and cost of the assay are reduced by the

multiplex PCR with barcoded adapters, so that all

samples, from different plants and with distinct

adapters, can be pooled for parallel dilution, purifica-

tion and sequencing. So far, 96 different barcodes are

available and have been described (Elshire et al. 2011;

Life Technologies 2015), enabling the analysis of 96

individual samples per gene of interest in one sequenc-

ing run. Therefore, when a large sequencing chip such

as the Ion 318 (Life Technologies) with a capacity of

80 million reads (Life Technologies 2015) is used, and

the read number is optimized to 30 parallel reads per

PCR product, it would be possible to screen more than

27,000 individual PCR products representing poly-

morphisms in specific loci using 96 different samples

or plant lines. These numbers have been theoretically

calculated by considering that the capacity of reads

divided by the number of barcodes and desired read

depth gives the number potentially screenable PCR

products (80 million 7 96 7 30 = 27,777.78). This

large capacity makes the assay suitable for the high-

throughput analysis of genotypes. It should also be

possible to increase the number of barcodes as soon as

they are defined in the sequencing software, so that

even more samples could be processed in a single run.

In general, our method can be carried out on any

sequencing device that allows amplicon sequencing.

Therefore, the number of screenable PCR products

depends on the capacity of the used sequencer and its

properties. As demonstrated by Campbell et al. (2015),

who established an NGS assay with 100-bp reads to

genotype rainbow trout Oncorhynchus mykiss for SNP

markers, a different PCR strategy, with two thermal

cycling steps, could also be used to increase the

number of samples.

Many parallel reads of the polymorphisms in each

of the finely mapped genes of interest provide robust

data about the genotype and therefore allow the

phenotype to be predicted. Plants can be selected as

soon as they have grown enough to extract DNA,

usually 1–2 weeks after planting. It has yet to be

determined whether this assay is suitable for poly-

ploid crops such as potato and wheat, and whether it

can be implemented in plant species with large

genomes and/or large numbers of transposable ele-

ments (Choulet et al. 2010; Schnable et al. 2009). To
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design ideal primers enabling the PCR amplification of

desired polymorphic regions, preliminary investigations

of relevant traits and associated gene loci as well as

polymorphisms affecting the phenotype are necessary.

PCRs should be designed based on these reference

sequences of choice, so that PCR products can be

generated in most of the cases, but at least in individuals

carrying the desired loci variations. Further polymor-

phisms especially in the primer binding regions occur-

ring in more diverse barley lines will not be addressed

for the selection process. Thus, a failed PCR product

will just lead to no sequencing result and such plant lines

will be sorted out from the selection process. To reduce

the number of failed PCRs in such cases, it would be

possible to design several primers in close proximity to

the original primer binding site to increase the proba-

bility of a successful primer annealing. Also, the use of

wobble primers would be possible if certain mutations

within the primer binding sites are known.However, the

straightforward implementation of our assay and its

consistent results address the limitations of other

modern plant breeding techniques such as MAS (Jonas

and de Koning 2013; Nakaya and Isobe 2012). Sample

preparation is simple, and library preparation steps such

as fragmentation, sizing and adapter ligation can be

omitted, thus providing an advantage over other geno-

typing-by-sequencing approaches (Deschamps et al.

2012; Elshire et al. 2011; He et al. 2014). Although the

assay relies on prior knowledge concerning the

sequence of polymorphic sites and the distribution of

alleles linked to certain phenotypes, as long as associ-

ation studies and thefinemapping of traits continue to be

used in plant breeding, our assay could nevertheless be

adopted widely as a new tool for high-throughput

selection in many species of crops and other plants.
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