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Abstract The stem rust fungus, particularly race

TTKSK (Ug99), poses a serious threat to world wheat

production. Gene Sr42 or SrCad (which could be the

same gene or an allele of Sr42) is effective against race

TTKSK. However, known genetic markers for Sr42

are mostly SSR markers which are generally labor

intensive to use. In this study, we mapped a race

TTKSK resistance gene derived from PI 595667 at the

same locus as Sr42 on chromosome 6DS. Based on

position, pedigree and infection-type information, we

propose that this gene is SrCad (Sr42). We enriched

the genetic map for the Sr42 region using genotyping

by sequencing (GBS) and array-derived SNP markers.

In total, 21 SNP markers were discovered, spanning a

genetic distance of 27.2 cM. Nine of them are derived

from GBS and twelve from the Illumina iSelect 90K

SNP assay. Ten of the twenty-one SNP markers are

closely linked (\2.2 cM, or co-segregating) with

Sr42. We converted five of the closely linked SNP

markers into uniplex KASP assays which will better

facilitate marker-assisted selection. We validated the

KASP assay in a doubled haploid wheat population

derived from a three-way cross between accessions PI

410954, RB07, and Faller that shared an uncharacter-

ized resistance gene mapped at approximately the

same locus as PI 595667. The development of closely

linked (co-segregating), codominant, sequence-based

SNP assays will aid marker-assisted selection and

map-based cloning of Sr42.

Keywords Wheat (Triticum aestivum L.) � Stem rust

fungus (Puccinia graminis tritici) � Sr42 � Genotyping
by sequencing (GBS) � Kompetitive allele-specific

PCR (KASP) � Marker-assisted selection (MAS)

Introduction

Disease epidemics can cause serious yield losses and are

one of the major concerns for global wheat (Triticum

aestivum L.) production. Rusts are by far the most
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damaging diseases ofwheat and have had a great impact

on human civilization, with evidence of epidemics

dating backmore than 3300 years (Kislev 1982; Chaves

et al. 2013).Among the threewheat rust pathogens (leaf,

stem, and stripe rusts), the stem rust pathogen (Puccinia

graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.; Pgt)

has the capacity to cause the most serious damage to

wheat production (Szabo et al. 2014).

Rust pathogens are known to quickly evolve and

mutate to overcome plant resistances and cause

serious yield losses (Singh et al. 2004; Chen et al.

2009). A recent example is the emergence of the

Ug99 (TTKSK) race group of the stem rust fungus in

East Africa (Jin et al. 2008; Pretorius et al. 2010;

Singh et al. 2011). The TTKSK race group has

defeated the resistance provided by stem rust resis-

tance genes (Sr) Sr24, Sr31, Sr36, and Sr9h (Jin et al.

2008; Pretorius et al. 2010) and can infect more than

90 % of the wheat crop grown worldwide (Singh

et al. 2011). This race group is quickly evolving and

migrating throughout Africa and Southwest Asia,

posing a serious threat to world wheat production

(Singh et al. 2011).

Development of resistant varieties has been the

most economical and environmentally sound way to

control rust diseases. Stem rust resistance gene Sr42

showed effective resistance to race TTKSK and was

mapped to chromosome 6DS, at approximately the

same position as SrCad, which is likely the same gene

or an allele of Sr42 (Hiebert et al. 2011; Ghazvini et al.

2012). In the current study, we mapped a TTKSK

resistance gene in Canadian accession PI 595667 (syn.

GS-117[2965]) to approximately the same locus as

Sr42. We used an independently developed doubled

haploid population (DH) derived from South African

accession PI 410954 to validate the markers developed

in this research.

The genes from both PI 595667 and PI 410954

showed infection types similar to those displayed by

lines possessing Sr42 or SrCad to Pgt race TTKSK.

The pedigree information for PI 595667 suggests that

the race TTKSK resistance gene from this line is

SrCad, whereas the pedigree information for PI

410954 gave no indication of this gene’s presence.

PI 595667 was developed as a common bunt resistance

source. Sr42 and the bunt resistance gene Bt10 are

likely closely linked on wheat chromosome 6DS

(Knox et al. 1998; Laroche et al. 2000; Hiebert et al.

2011). PI 410954 was developed in South Africa

during the 1970s and possesses the cultivar ‘Agent’

within its pedigree. Agent is the adapted source of

Sr24 in modern wheat (Friebe et al. 1996).

To date, publishedmaps for the 6DS-Ug99 resistance

locus, including Sr42, SrCad, and possibly SrTmp

(Lopez-Vera et al. 2014), consist of a dominant marker

FSD_RSA (Laroche et al. 2000), a few codominant SSR

markers (Hiebert et al. 2011;Ghazvini et al. 2012), and a

SNP marker BS000010742 that is not closely linked

(approximately 6–20 cM) to the gene and is polymor-

phic in some but not all of the RILmapping populations

developed by Lopez-Vera et al. (2014). In this study,we

identified closely linked SNP markers for Sr42 via

genotyping by sequencing (GBS) (Elshire et al. 2011)

and a SNP array platform (Wang et al. 2014) and

converted some of the SNP markers into easier to use

uniplex KASP assays. The uniplex assays are more

suitable for marker-assisted selection (MAS) when

breeders need to assay one or a few markers on a large

collection of germplasm or breeding lines.

Materials and methods

Plant materials

Wheat accession PI 595667 (HY377/SC8021V2//

L8474D1) was crossed to susceptible wheat line

LMPG-6 to derive 94 F2 progeny. F2:3 seeds were

harvested from each F2 plant and used for testing

seedling reactions to stem rust. Line L8474D1 (HY-

320*3/BW553) shares the parent line BW553 with AC

Cadillac (BW90*3/BW553), which contains the gene

SrCad (Hiebert et al. 2011; McCallum and DePauw

2008). LMPG-6 is a selection of LMPG, a stem rust

susceptible line (Knott 1990). AC Cadillac (BW90*3/

BW553) was available through the Triticeae Coordi-

nated Agricultural Project (TCAP). BW553 carries the

Bt10 gene and is the donor of SrCad (Hiebert et al.

2011). Norin 40 (donor of Sr42) was obtained from the

USDA-ARS Cereal Disease Laboratory.

The PI 410954 DH population was created from

individual TC1F1 plants from the cross RB07//Faller/

PI 410954. ‘RB07’ was developed by the University of

Minnesota Agricultural Experiment Station and

released in 2007 (Anderson et al. 2009). ‘Faller’ was

released by the North Dakota Agricultural Experiment

Station in 2008 (Mergoum et al. 2008). Both Faller and

RB07 are high-yielding, popular varieties in the Upper
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Midwest of the USA. An LMPG-6/PI 410954 cross

was used to determine the genic nature of TTKSK

resistance observed in PI 410954.

A collection of 29 wheat parental lines or cultivars

known to be positive or negative for the 6DS-Ug99

resistance locus (Sr42/SrCad/SrTmp) was obtained

from the USDA-ARS Cereal Disease Laboratory or

the University of Minnesota wheat breeding program.

These lines were used for validation of newly devel-

oped SNP marker assays.

Stem rust disease phenotyping

Pgt urediniospore isolates were retrieved from long-

term storage in a-80 �C freezer. Seedling evaluation

of Pgt races was performed at the USDA-ARS Cereal

Disease Laboratory as described previously (Rouse

et al. 2011). A total of 15–20 plants of each F2:3
family (LMPG-6/PI 595667) and 10 plants of each

DH line (LMPG-6/PI 410954) were screened with

stem rust race TTKSK (isolate 04KEN156/04).

Seedling reactions to stem rust were classified

according to the ‘0–4’ infection-type (IT) scale

developed by Stakman et al. (1962) with ITs ranging

from ‘0’ to ‘2?’ including mixed ITs such as ‘;13’

considered as resistant and ITs ranging from 3- to 4

considered as susceptible.

F2 plants from LMPG-6/PI 410954 (n = 346 and

n = 104 in two replicates) were screened with Pgt

race TTKSK. Resistant lines in the PI 410954 DH

population were identified in replicate screenings with

Pgt race TTKSK (Sr24-virulent isolate 06KEN19v3;

to select against any lines possessing Sr24). Chi-

square tests were used to infer the genic nature of

resistance to Pgt race TTKSK.

DNA extraction and genotyping

DNA extraction of F2 plants derived from LMPG-6/PI

595667 was conducted using a Qiagen Biosprint 96

DNA plant kit. DNA concentrations for 94 progeny

and two parents were measured using a PicoGreen

method (Ahn et al. 1996). DNA concentrations were

adjusted to 10 ng/lL for all samples.

DNA from 48 F2 plants (LMPG-6/PI 595667) and

the two parents were subjected to GBS (Elshire et al.

2011), following the protocol developed by Poland

et al. (2012). Specifically, 200 ng of DNA from each

sample was double-digested using restriction enzymes

PstI and MspI. Barcoded forward adapters and com-

mon reverse adapters were ligated to digested frag-

ments and 60 samples (48 F2 DNA plus two parental

DNAs repeating six times each) were pooled into one

60-plex library. PCRs were performed using Illumina

primers with sequences complimentary to adapters

used in library preparation. PCR products were sent to

the University of Minnesota Genomics Center

(UMGC) for next-generation sequencing (NGS) with

Illumina Hi-Seq 2000 machine. One library was

double-loaded onto two lanes of Illumina flow cell,

and the two lanes serve as two technical replicates.

GBS tag sequences were analyzed using the bioinfor-

matics pipeline UNEAK (Lu et al. 2013). Tag

sequences were converted into genotypic calls after

UNEAK analysis. SNPs were filtered based on Chi-

square test (Chi-square 1:2:1 test p[ 0.05), missing

data percentage (\20 %), and tag counts (C4 for each

SNP call that is homozygous).

As cultivar Agent (Sr24) is in the pedigree of PI

410954, all DH progeny and parents were screened

with the Sr24markers Xbarc71 and Sr24#12 following

published methods (Mago et al. 2005). DNA was

extracted using a PCR microprep method developed

by Edwards et al. (1991). All PI 410954 DH lines

amplifying Sr24 amplicons when screened with

Xbarc71 and Sr24#12 were excluded from further

analyses.

A total of 57 F2 plants and parents (LMPG-6/PI

595667) and 108 DH lines and parents (PI 410954 DH)

were genotyped using the Illumina iSelect 90K SNP

array (Wang et al. 2014) at the USDA-ARS Bio-

sciences Research Lab in Fargo, North Dakota, USA.

DNA extractions of progeny and parents in the PI

410954 DH population were performed using a

modified CTAB method (Rouse et al. 2012). The

resulting SNP data were manually called using

Illumina GenomeStudio software.

DNA from 94 F2 plants and two parents (LMPG-6/

PI 595667) were subjected to SSR marker Xcfd49

(Somers et al. 2004), marker FSD_RSA (Laroche et al.

2000), and KASP (Semagn et al. 2014) analyses. DNA

from 45 DH lines and three parents (RB07, Faller, PI

410954) were also subjected to KASP analyses.

Marker FSD_RSA reactions used 19 PCR buffer,

0.2 mM dNTP, 12 pmol FSD forward primer,

3.5 pmol RSA reverse primer, and 1 U Taq DNA

polymerase. The thermal cycling conditions were

94 �C 10 min, followed by 35 cycles of 94 �C 30 s,
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44 �C 1 min 45 s, 72 �C 2 min, with a final extension

step of 72 �C 10 min.

The SSR PCRs included 1x PCR buffer, 0.125 mM

dNTPs, 0.4 pmol of each primer, 0.05 U Qiagen Taq

polymerase. The thermal cycling conditions for SSR

markers were 94 �C 15 min, followed by 35 cycles of

94 �C 1 min, 60 �C 1 min, 72 �C 2 min, with a final

extension step of 72 �C for 5 min and 4 �C indefi-

nitely. PCR products were separated by polyacry-

lamide gel electrophoresis (PAGE) and silver-stained

(Bassam et al. 1991) for visualization and genotype

scoring. Marker assay csLV34 for examining the

possible presence of Lr34 on PI 595667 was per-

formed according to the published method (Lagudah

et al. 2006).

KASP KBD primer assays were designed by LGC

Genomics (Teddington, Middlesex, UK, http://

lgcgenomics.com). The KASP PCR conditions were

adapted from KASP protocol 4.0. Each PCR consisted

of 20 ng of wet DNA template, 1XKASP reaction mix,

and 0.11 lL of KBD primer assay. Thermal cycling

conditionswere 94 �C15 min, followed by 10 cycles of

touchdown PCR: 94 �C 20 s, 61–55 �C for 60 s

(dropping 0.6 �C per cycle), followed by 26–29 cycles

of regular PCR: 94 �C 20 s, 55 �C 60 s, followed by

data collection/plate read at 25 �C. Both thermocycling

and fluorescence reading were performed on ABI Ste-

pOnePlus Real-Time PCR system. For marker valida-

tion on the PI 410954 DH population, KASP was

performed using the same PCR protocol on a Roche

LightCycler 96 real-time PCR machine.

Linkage and marker–trait association analysis

Construction of linkage groups for LMPG-6/PI

595667 population using GBS markers and array-

derived SNP markers were all done using JoinMap

version 4.0 (Stam 1993). For array-based SNP marker

analysis, we utilized the reference map information

(Wang et al. 2014) and removed markers that were

mapped to other chromosomes. Groupings were done

in JoinMap with a LOD threshold of 5.0 and 40 %

maximum recombination frequency. Linkage groups

were associated with individual wheat chromosomes

after aligning the GBS tag sequences to the wheat

chromosome survey sequences (Consortium 2014)

using command line version of BLAST? 2.2.8 under

Linux environment (with [95 % identity match).

After grouping, final maps were generated using

MapMaker version 3.0b (Lander et al. 1987). The

maximum likelihood mapping algorithm was used to

generate the linkage map. Kosambi’s mapping func-

tion (1944) was used to calculate the interval

distances.

The location of TTKSK resistance in PI 410954

was determined by performing a genome-wide asso-

ciation study (GWAS) using the R package rrBLUP

(Endelman 2011). The population structure consisting

of DH lines derived from several independent TC1F1

plants precluded the use of traditional mapping

algorithms. All SNPs mapped by Wang et al. (2014)

were exported as a tab-delimited text file

(n = 38,800). SNPs with missing data [10 % (no

calls[12) were removed from analysis leaving a total

of 36,068 SNPs. The SNP data set was passed through

the function ‘Amat’ in order to develop an appropriate

additive relationship matrix for GWAS. ‘Amat’ auto-

matically removes monomorphic markers, and the

data set was trimmed to 27,196 SNPs. Phenotypes for

the 111 non-Sr24 lines were coded as follows:

0 = susceptible and 1 = resistant. All genotypes were

converted from the form AA, AB, and BB to 1, 0, and

-1, respectively. ‘No calls’ were coded as NA. The

command ‘GWAS’ conducts a genome-wide associ-

ation analysis using phenotype and genotype data

using a mixed-model approach (Yu et al. 2006).

The command line for GWAS analysis was entered

as follows: GWAS (pheno, geno, K = A, n.-

core = 16, P3D = TRUE, n.PC = 2). ‘pheno’ and

‘geno’ are data frames containing the phenotypic and

genotypic data, respectively. ‘K’ is the kinship matrix

for covariance between lines and was assigned the

matrix, A, developed via the function ‘A.mat.’ ‘n.core’

divides the SNPs into 16 groups to allow them to be

analyzed in parallel on a single machine. ‘P3D’

(population parameters previously determined) when

TRUE is equivalent to the expedited efficient mixed-

model association (EMMAX) is developed by Kang

et al. (2010). EMMAX is able to correct for sample

structure by taking into account the pairwise relation-

ship between individuals in a population. The final

term, ‘n.PC,’ determines the number of principle

components to include as fixed effects. The number

used for this setting was determined by conducting an

eigenvalue decomposition of matrix A developed via

the function ‘A.mat.’ The first two principal compo-

nents accounted for *18 % of the total spectrum and

were included as covariates in the GWAS.
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Results

A single gene confers resistance to Pgt race

TTKSK (Ug99) in PI 595667

Seedlings of PI 595667 and LMPG-6 were inoculated

with Pgt race TTKSK (Fig. 1). The resistant parent PI

595667 displayed ‘2-’ to ‘2’ infection types (ITs)

against race TTKSK (Fig. 1), whereas the susceptible

parent LMPG-6 showed ‘3?’ to ‘4’ infections types

(ITs) (Fig. 1). Segregation ratio (17 resistant:54 segre-

gating:23 susceptible) for seedling response among 94

F2:3 families (188 alleles) derived from LMPG-6/PI

595667 indicated that a single gene confers resistance to

raceTTKSK(Chi-square test for 1:2:1,pvalue = 0.24).

Two genes confer resistance to Pgt race TTKSK

(Ug99) in PI 410954: Sr24 and an unidentified Sr

gene

F2 seedlings of an LMPG-6/PI 410954 cross were

screened with Pgt race TTKSK. LMPG-6 displayed an

IT of ‘3?’ and PI 410954 displayed an IT of ‘2’

(Fig. 1). Segregation (327 resistant:29 susceptible and

96 resistant:8 susceptible in two replicates) for

seedling response indicated the presence of two genes

conferring resistance (Chi-square test for 15:1,

p value = 0.40 and 0.84, respectively). As mentioned

earlier, PI 410954might possess Sr24 throughAgent in

its pedigree. Amplification of the Sr24 associated

amplicon in PI 410954 when screened with Xbarc71

and Sr24#12 indicates that one of the two genes is Sr24.

Genetic mapping of the race TTKSK resistance

gene from PI 595667 using GBS markers

A total of 323 million GBS reads were generated for

selected DNA samples (48 F2s randomly selected and

the two parents). Over 70,000 SNPs were identified.

After quality filtering, approximately 1200 markers

were selected for linkage map construction in JoinMap

(Stam 1993). A total of 908 markers were grouped into

31 linkage groups. Through a BLASTn search against

wheat chromosome survey sequences (Consortium

2014), we were able to associate each linkage group

with a wheat chromosome. Linkage groups were

constructed for each chromosome on wheat A and B

genomes. Chromosomes from the wheat D genome are

not well represented (e.g., chromosomes 4D and 5D

were not represented). The D genome is known for low

polymorphisms and tends to produce (incomplete)

linkage groups that are not spanning whole chromo-

somes even when genotyped with high-density SNP

arrays (Cavanagh et al. 2013).However,wewere able to

group the stem rust resistance gene derived from PI

595667 with nine GBS SNP markers derived from

wheat chromosome 6DS (Table 1; Fig. 2a blue high-

lighted markers). GBS SNP marker WCSS1_6DS_

2123217-1527 (TP43472) co-segregates with the PI

595667-derived TTKSK resistance gene in the F2 plants

subjected to GBS analysis.

The TTKSK resistance gene from PI 595667 is

Sr42

It was known that Sr42 and SrCad are located in a

similar region of chromosome 6DS; therefore, the

LMPG-6/PI 595667mapping population was screened

with known Sr42markers, FSD_RSA and Xcfd49. Our

results show that these markers were closely linked to

the resistance gene derived from PI 595667 (Fig. 2a).

PI 595667 (HY377/SC8021V2//L8474D1) shares a

line in its pedigree with several Canadian breeding

lines (Knox et al. 1998; Hiebert et al. 2011). The

pedigree of L8474D1 (HY-320*3/BW553) contains

the donor line (BW553) of SrCad (Sr42) (Hiebert et al.

2011). In the current study, we mapped the resistance

gene derived from PI 595667 to wheat chromosome

Fig. 1 Seedling reactions of parental lines to Pgt race TTKSK.

a Left to right LMPG-6, PI 595667, Norin 40, AC Cadillac.

b Left to right PI 410954, Faller, RB07
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6DS, at the same location as Sr42 and SrCad. It is

likely that the race TTKSK resistance gene in PI

595667 is derived from the donor of SrCad, BW553.

The infection types (ITs) conferred by the resistance

gene from PI 595667 (‘2-’ to ‘2’) (Fig. 1) are similar

to those conferred by AC Cadillac (SrCad) and Norin

40 (Sr42) (Hiebert et al. 2011; Ghazvini et al. 2012).

All lines of evidence (pedigree, chromosome arm

position, and infection types) suggest that the race

TTKSK resistance gene present in PI 595667 is Sr42.

Genetic mapping of Sr42 using array-based

markers

A 90K iSelect array platform was used to genotype the

two parents and 57 F2 individuals of the mapping

population derived from LMPG-6/PI 595667. In total,

12 SNP markers were found to be linked to the

resistance gene derived from PI 595667 (Table S1,

Fig. 2, pink highlighted markers). Markers IWB31561

and IWB30767 co-segregated with Sr42 in this

mapping population. Our map orders are largely

consistent with published reference consensus maps

(Wang et al. 2014). Marker IWB36391 was placed to

the distal end of IWB31561 in the reference consensus

map, but to the proximal in our map (Fig. 2a). We did

a BLAST search using array SNP sequence informa-

tion (Wang et al. 2014) and found that SNP markers

IWB36391 and IWB52065 (mapped proximal to

IWB31561 in both the reference and our maps,

Fig. 2a) share the same best BLAST hit (contig

6DS_2116396, Table S1), suggesting that our map

order probably reflects a true order.

For GWAS analysis in the PI 410954 DH popula-

tion, a total of 15 SNPs with q values \0.05

(equivalent to a false discovery rate of 0.05) were

discovered (Table 2; Fig. 2b, Fig. S1). Two of these

SNPs, IWB6072 and IWB6902, map to both

Fig. 2 a Genetic linkage map for TTKSK resistance gene Sr42

using SNP and developed markers based on the LMPG-6/PI

595,667 population. Blue color represents GBS derived, pink

color represents array derived, and bold italic highlighted

represents KASP assays derived from GBS or array SNPs. Ruler

on the left indicates genetic distances. bManhattan plot of SNPs

associated with non-Sr24 resistance in the PI 410954 TC1F1

population developed from genome-wide association study in R

package ‘rrBLUP.’ A total of 108 DH lines and three parents

were used in the analysis. The dashed line represents a q value of

0.05, and all points above this line have q values B0.05. The

X axis represents the haploid chromosome composition

(n = 21) of Triticum aestivum. As discussed in the ‘Results’

section, the extra peaks/dots on chromosome 6A could be due to

markers being mapped to both chromosomes 6A and 6D. (Color

figure online)
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chromosomes 6A and 6D in the consensus map

developed by Wang et al. (2014) (Table 2; Fig. 2b).

However, best BLAST hits against wheat chromo-

some survey sequences (Consortium 2014) are to

chromosome 6DS. SNP IWB6072 also has significant

hits on 6AS. SNP IWB49090 maps to chromosome 6A

exclusively in Wang et al. (2014); however, it too has

significant BLAST hits on chromosome 6DS. All

remaining SNPs are located within a 6-cM region of

chromosome 6DS between 18.2 cM and 24.8 cM,

using the scaled map distances reported byWang et al.

(2014).

In total, there are five SNPs in common between

LMPG-6/PI 595667 and the PI 410954-derived DH

populations (Table 2), which are associated with

resistance genes from each resistant parental line. As

both resistance genes are located on the same region of

chromosome 6DS, they are either the same gene,

alleles of the same gene, or closely linked genes. We

did notice that the PI 410954-derived Sr gene seemed

to have a higher association (more significant GWAS

p values) with markers at position 23.84 cM (Table 2),

whereas the PI 595667 derived Sr gene was co-

segregating with a SNP marker (IWB31561) at

20.75 cM (Table S1).

Conversion of multiplex SNP assays into uniplex

KASP assays

To convert multiplex GBS or array-based SNP assays

into uniplex KASP assays, we selected a total of eight

SNPs (five iSelect array derived and three GBS

derived) for KASP assay design through LGC

Genomics. Five of the eight KASP assays formed

good clusters in the PI 595667 mapping population

(Fig. 3). The primer sequences for KASP assays are

listed in Table S2. The two alleles are labeled with

either FAM or HEX in KASP assays as shown in blue

or red colors in allelic discrimination plots (Fig. 3). A

final linkage map consisting of SNP based and other

known markers was developed for the Sr42 region in

PI 595667 (Fig. 2a). The SNP marker IWB31561 also

co-segregated with Sr42 in the full mapping

population.

A subset of the PI 410954 DH population consisting

of 48 plants including PI 410954, RB07, Faller, and

Table 2 Single nucleotide polymorphism (SNP) markers from Illumina iSelect 90K assay with significant associations with the

resistant phenotype in non-Sr24 doubled haploid (DH) lines derived from RB07//Faller/PI 410954 TC1F1 plants

IDa SNP name Chr Position -log 10 p value

IWB49090 Kukri_rep_c105406_308 6A 13.45 32.01

IWB6072 BS00009514_51 6A/6D 16.96/23.84 32.05

IWB6902 BS00022094_51 6A/6D 16.96/23.84 18.28

IWB36391b IACX9471 6D 18.20 32.08

IWB10744 BS00074495_51 6D 19.00 28.50

IWA6799 wsnp_Ku_c2637_5009091 6D 19.00 27.93

IWB4284 BobWhite_c7090_2001 6D 20.75 10.38

IWB30767 Excalibur_rep_c66622_1066 6D 20.75 8.03

IWB31561b Excalibur_s114066_247 6D 20.75 12.89

IWB49821 Kukri_rep_c68823_696 6D 20.75 29.49

IWB262 BobWhite_c11808_975 6D 21.83 27.61

IWB6838 BS00021983_51 6D 23.84 31.59

IWB7135 BS00022523_51 6D 23.84 32.07

IWB52065 Ra_c42576_780 6D 23.84 32.07

IWB34477 IAAV1942 6D 24.77 29.69

SNPs were identified using the GWAS function in R package ‘rrBLUP.’ All SNP markers listed have a q value B0.05, corresponding

to a false discovery rate (FDR) of\5 %
a Bold highlighted are SNP markers associated with the TTKSK resistance genes in both the PI 410954 and PI 595667 populations

through linkage or GWAS analysis. Consensus position are based on 90K reference map (Wang et al. 2014)
b Array SNPs converted to KASP assays
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DH individuals was screened with the five KASP

markers: IWB15852, IWB31561, IWB36391, WCSS1_

6DS_2123217-1527 (TP43472), and WCSS1_6DS_

2061773-14642 (TP93838). Markers IWB15852 and

TP93838 were monomorphic in this subpopulation.

Marker IWB31561 cannot clearly separate alleles

from PI 410954 and alleles from RB07 or Faller in the

DH population, as all alleles are close to the middle

Fig. 3 SNP sequence-based, codominant KASP assays devel-

oped for diagnosing and mapping TTKSK resistance gene Sr42.

In all cases except TP43472, red (HEX-labeled) dots represent

homozygous resistant (R), blue dots represent homozygous

susceptible (S), and green dots represent heterozygous

genotypes (H). Black dots represent no template controls

(NTC). Top five plots (a–e) show results on PI 595667

population. Bottom two plots (f, g) with gray themes are

validation results on the PI 410954 DH population. (Color

figure online)
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and difficult to differentiate (data not shown), sug-

gesting that there could be additional sequence

variations at the target locus or that there is interfer-

ence with a possibly homeologous locus. Markers

IWB36391 andWCSS1_6DS_2123217-1527 (TP43472)

co-segregated with the PI 410954-derived resistance

gene (Fig. 3), evidence that this resistance gene is the

same or an allele as that in PI 595667.

We screened 29 wheat cultivars or parental lines

using three KASP assays developed in this study

(IWB31561, IWB36391, and TP43472) (Table S3).

Our results show that the lines that possess the 6DS-

Ug99 resistance locus fall into three haplotypes: (1)

AC Cadillac (SrCad), Peace (SrCad), and PI 595667

share haplotype of C–C–T, for the three KASP assays,

as shown in Table S3, adding further support that PI

595667-derived TTKSK resistance gene is SrCad; (2)

the genotype of Norin 40 (Sr42) had a different

haplotype (T*–C–T) that corresponded with lines

Eagle 10, Ember, Guard, Ripper, and Shield

(Table S3); and (3) the haplotype of Triumph 64

(SrTmp) and CnSSrTmp (SrTmp) was T–C–T, and this

corresponded with lines Blouk, Digalu, Robin,

Pfunye, and PI 410954. Lines with the T* allele of

KASP marker IWB31561 did not cluster tightly with

lines with T or C alleles, but were closer to those with

the T allele. This may be caused by an imperfect

sequence match of the template DNA with either

primer. These results suggest that the sources of

resistance (Sr42, SrCad, SrTmp) may correspond to

different resistance alleles or genes. All of the resistant

and susceptible cultivars or breeding lines (with

Chinese Spring and Briggs as possible exceptions)

can be successfully distinguished using the selected

three KASP assays. Combinations of more SNP assays

to form longer haplotypes will likely further empower

breeders for more accurate selections. All of the SNP

assays could prove to be useful in mapping projects

based on biparental populations, as long as the two

parents are polymorphic for target SNP markers.

These results add further support to the utility of these

KASP assays in MAS or molecular breeding.

Discussion

The line BW553 is the donor of SrCad (Hiebert et al.

2011), which is likely the same gene as Sr42 or an

allele of it (Ghazvini et al. 2012). BW553 is also the

donor of the race TTKSK resistance gene derived from

PI 595667. AC Cadillac (SrCad) shows different

infection types to several non-TTKSK Pgt races

compared to Norin 40 (Sr42) (Hiebert et al. 2011;

Ghazvini et al. 2012). These could be due to the

presence of background disease resistance genes such

as Lr34 (Hiebert et al. 2011), which is known for

broad-spectrum resistance against leaf rust, stripe rust,

powdery mildew, and stem rust pathogens (Singh and

Huerta-Espino 2003; Lagudah et al. 2006; Lillemo

et al. 2007, 2008; Krattinger et al. 2009; Kolmer et al.

2011) and is widely present in Canadian lines and

cultivars (McCallum and DePauw 2008) including AC

Cadillac (Hiebert et al. 2011).

We did not detect the presence of Lr34 on PI

595667 (data not shown), based on assay results using

a previously published Lr34marker csLV34 (Lagudah

et al. 2006). The absence of Lr34 in PI 595667 might

help explain why PI 595667 infection type is slightly

more severe than AC Cadillac (‘2-’ compared to

‘12-’). However, overall, the TTKSK infection types

for AC Cadillac (SrCad), Norin 40 (Sr42), PI 595667,

and PI 410594 are quite similar (12- to 2), and the

genes derived from these lines are genetically co-

localized within an approximately 3 cM distance

according to the consensus map (Table 2; Fig. 2a)

developed by Wang et al. (2014). Taking together

pedigree, map position, and infection-type informa-

tion, we feel justified to hypothesize that the stem rust

resistance gene derived from AC Cadillac, Norin 40,

PI 595667, and PI 410954 is actually Sr42 or an allele

of Sr42. Yet, we cannot rule out the possibility that

they represent closely linked genes.

The tight coupling linkage between SrCad and

Bt10 (Hiebert et al. 2011) together with the potential

presence of a few other leaf/stem rust resistance

genes in the pedigree lines of PI 595667 (Liu and

Kolmer 1997) might present some challenge for

allelism tests and further dissection of this 6DS

resistance locus. Ongoing allelism test efforts by our

group and colleagues (Hiebert et al. 2014) will help

further elucidate the relationships among these

Ug99 resistance sources. We believe that the SNP

markers identified in this study will assist in the

construction of an enriched map around the 6DS

region of interest.

Single nucleotide polymorphisms (SNPs) are

becoming the marker of choice for enriching genetic

maps and developing novel markers for MAS. In this
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study, we identified over 20 SNP markers for wheat

stem rust resistance gene Sr42. Development of

closely linked, codominant SNP assays for Sr42 is

an important first step in fine mapping and map-based

cloning of this gene. The genetic distances between

most of the SNPmarkers identified in this study have a

much closer map distance (0–2 cM compared to

6–20 cM) to Sr42 than a previously validated SNP

marker (BS000010724) (Lopez-Vera et al. 2014). The

identification of twenty-one (or thirty-one, if counting

the additional SNPs detected in GWAS study for PI

410954 population) SNP markers will allow a more

efficient tagging and selection of Sr42 in breeding

programs. Some of these KASP assays developed by

this study are being utilized at other USDA facilities

for marker-assisted screening of different collections.

In GBS analysis, we used 48 samples and the

parental lines for initial genotyping and mapping. We

were able to construct linkage groups that represented

most wheat chromosomes. Our results demonstrate a

high success rate in utilizing GBS for target gene

tagging, even with a relatively small sample size.

Increasing the sample size will likely improve future

mapping projects. We did notice that D genome

chromosomes were less well represented, which could

be due to our limited sample size, or it could be due to

the known low polymorphisms for the D genome

compared to the A and B genomes (Cavanagh et al.

2013; Wang et al. 2014).

The use of SNP arrays, such as the wheat iSelect

90K assay, will continue to be an important tool for

understanding the relationship between resistance loci

found in varied wheat accessions. This study repre-

sents the first study that associates the 6DS-Ug99 locus

to a narrow region (about 3 cM) on the reference 90K

map. The high SNP density allows for rapid compar-

ison among genotyped accessions, as shown here. The

use of a uniplex genotyping platform will continue to

facilitate collaboration among wheat researchers. As

genome sequencing efforts move forward (Consor-

tium 2014; Chapman et al. 2015), GBS (Poland et al.

2012; Li et al. 2015) and array-derived SNP markers

can be associated with the physical chromosome

positions in reference genomes. Sequence-based

markers could potentially provide direct insights into

the genomic compositions around the target genes,

thus facilitating better trait dissection and marker

development.

Conclusion

The Ug99 resistance gene(s) derived from PI 595667

is Sr42 based on pedigree, chromosome position, and

infection-type data. We identified more than 20 SNP-

based markers linked to the Sr42 region on wheat

chromosome 6DS. Closely linked markers were

validated in the PI 410954 DH population, indicating

that the markers developed through this research are

effective in multiple genetic backgrounds. The devel-

opment of closely linked (co-segregating) codominant

SNP markers will facilitate further fine mapping and

map-based cloning of the gene. Uniplex SNP assays

will also aid marker-assisted breeding.
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