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Abstract The wheat relative Agropyron cristatum

(L.) Gaertn. (2n = 4x = 28; genomes PPPP) has often

been used as a donor of useful genetic variation for

wheat improvement, including enhanced disease

resistance to powdery mildew caused by Blumeria

graminis f. sp. tritici (Bgt). In this report, resistance to

powdery mildew was transferred from A. cristatum to

common wheat, and the resulting introgression line

PB3558 exhibited all-stage resistance. To identify the

resistance gene, genetic analysis was conducted using

F2, F2:3 and recombinant inbreed line populations

derived from the cross of PB3558 and the susceptible

cultivar Jing 4841. Segregation ratios from inoculation

with Bgt isolate E09 indicated that the resistance was

conferred by a single dominant gene, temporarily

designated PmPB3558. Bulked segregant analysis

(BSA) was applied to screen for molecular markers

linked to PmPB3558, and five published markers were

found. In order to increase the density of the genetic

map, we developed ten novel single sequence repeat

markers based on the single nucleotide polymorphism

(SNP) loci with polymorphisms produced from a

combination wheat 90 k SNP array and BSA.

PmPB3558 was located on wheat chromosome arm

5DS and flanked by markers Xcfd81 and Xbwm25.

Because there are other powdery mildew resistance

genes located on 5DS, 21 Bgt isolates were used to

compare the reaction differences. PmPB3558 showed

unique reactions, suggesting that it was most likely a

novel allele. This is the first documentation on

transferring an alien powdery mildew resistance gene

from A. cristatum, and the germplasm acquired in this

study will be useful for broadening the genetic basis

for wheat breeding.
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Introduction

Wheat production is threatened by various pathogens,

and powdery mildew caused by Blumeria graminis f.

sp. tritici (Bgt) is one of the most devastating diseases.

Epidemics of powdery mildew cause severe wheat

yield losses in many wheat-growing regions of the

world, especially in regions with cool and moist

climates (Everts and Leath 1992; Cowger et al. 2012).

Although fungicide application can be employed to
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reduce the damage from disease, this can cause

environmental problems and the acquisition of fungi-

cide tolerance by pathogens. Therefore, development

of resistant cultivars is the most economical and

environmentally friendly strategy to control wheat

powdery mildew (Huang et al. 2000; Huang and Roder

2004).

At present, more than 60 formally designated

powdery mildew resistance (Pm) genes or alleles at

45 loci (Pm1–Pm50, Pm18 = Pm1c, Pm22 = Pm1e,

Pm23 = Pm4c, Pm31 = Pm21) have been document-

ed in bread wheat and located on wheat chromosomes

(McIntosh et al. 2008, 2011b; Mohler et al. 2013;

Herrera-Foessel et al. 2014; Ben-David et al. 2010).

These Pm genes have been mapped with different

molecular markers, such as restriction fragment length

polymorphism (RFLP), amplified fragment length

polymorphism (AFLP), random amplified polymor-

phic DNA (RAPD), sequence tagged site (STS),

simple sequence repeat (SSR), cleaved amplified

polymorphic sequence (CAPS), sequenced character-

ized amplified region (SCAR) and single nucleotide

polymorphism (SNP) markers. PCR-based DNA

markers are more attractive for mapping genes, due

to the small amount of template required and efficient

handling of large population sizes. High-density wheat

SSR maps have greatly facilitated the identification

and mapping of Pm genes to specific chromosomes or

chromosome regions in wheat (Roder et al. 1998;

Somers et al. 2004; Song et al. 2005; Huang and Roder

2004; Landjeva et al. 2007). However, these SSR

markers are sometimes insufficient for mapping genes

in chromosomal regions with low gene density or poor

recombination. In this case, novel SSR markers or

markers of other types need to be developed. The SNP

marker is one of the preferred choices because of its

high variation and density in genomes (Akhunov et al.

2009; Paux et al. 2012; Allen et al. 2013). High-

throughput SNP genotyping platforms are now avail-

able with wheat 9K SNP and 90K SNP chips (Wang

et al. 2014a; Lai et al. 2012; Cavanagh et al. 2013;

Berard et al. 2009; Colasuonno et al. 2014; Avni et al.

2014). SNP chips greatly facilitate the identification of

SNPs closely linked to the particular trait, but it is not

economic to genotype every individual in a popula-

tion. To overcome this problem, in this report we

developed a procedure to discover novel SSR markers

by a combination of bulked segregant analysis (BSA)

and SNP array.

Introgression of powdery mildew resistance genes

from wild wheat relatives has been an active area of

research. Six Pm genes (Pm2, Pm10, Pm15, Pm19,

Pm34 and Pm35) were identified from Aegilops

tauschii (2n = 2x = 14, genome DD) (Qiu et al.

2006; Miranda et al. 2007; Tosa et al. 1987; Tosa and

Sakai 1991; Lutz et al. 1995; Miranda et al. 2006).

Four Pm genes (Pm1b, Pm4d, Mlm2033 and Mlm80)

were identified from Triticum monococcum (2n =

2x = 14, genome AA) (Yao et al. 2007; Hsam et al.

1998; Schmolke et al. 2012). Triticum dicoccoides

(2n = 4x = 28, genomes AABB) was the source of

several Pm genes including Pm3K, Pm16, Pm26,

Pm30, Pm31, Pm36, Pm41, Pm42, PmG16, PmG25

and MlZec1 (Chen et al. 2005; Rong et al. 2000; Hua

et al. 2009; Liu et al. 2002; Xie et al. 2004; Blanco

et al. 2008; Wang et al. 2014b; Yahiaoui et al. 2006;

Ben-David et al. 2010; Alam et al. 2013; Mohler et al.

2005), while Secale cereale L. (2n = 2x = 14,

genome RR) was the donor of Pm7, Pm8, Pm17 and

Pm20 (Hsam and Zeller 1997; Mohler et al. 2001;

McIntosh et al. 2011a; Hsam et al. 1995; Zeller and

Hsam 1996; Friebe et al. 1994). Pm 21 was identified

from Haynaldia villosa (2n = 2x = 14, genome VV),

a species related to wheat that is highly resistant to

powdery mildew (Chen et al. 1995, 2013; Xie et al.

2012). Some Pm genes have been successfully used in

commercial production and have prevented significant

economic losses in wheat production, such as Pm2,

Pm6, Pm8 and Pm21 (Huang et al. 1997; Huang and

Roder 2004; Xie et al. 2012). Unfortunately, some Pm

genes, such as Pm8, have been rendered ineffective to

powdery mildew within a short period of use due to

variation of the pathogenic virulence (Hurni et al.

2013; Hsam and Zeller 2002; McDonald and Linde

2002). Therefore, finding new resistant genes and

alleles, especially with resistance to a broad spectrum

of pathogen races, becomes an urgent task to prevent

wheat from attack by the disease and secure the

world’s food supply.

Agropyron cristatum (L.) Gaertn. (2n = 4x = 28;

genomes PPPP), a perennial species of the Triticeae,

has long been considered as a useful genetic resource

for wheat genetic improvement. It harbors numerous

genes beneficial to cultivated wheat, such as stress

tolerance and resistance to numerous diseases includ-

ing powdery mildew resistance (Dewey 1984; Dong

et al. 1992; Han et al. 2014). PB3558 (T. aestivum,

2n = 6x = 42, genomes AABBDD), which is a
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derivative produced from cross between A. cristatum

and common wheat Fukuhokomugi (Fukuho), dis-

plays high resistance to powdery mildew at both

seedling and adult stages. However, the gene under-

lying powdery mildew resistance is unknown. In this

report, we (1) explored the genetic basis of the

powdery mildew resistance gene from PB3558, (2)

developed novel SNP-based SSR markers for con-

structing the genetic map of the resistance gene, and

(3) determined the chromosome location of the

resistance gene and its relationship with previously

reported Pm resistance genes.

Materials and methods

Materials

PB3558 is a homogenenous F7 line derived from the

cross of A. cristatum (Accession No. Z559) and

Fukuho. Wheat cultivar Jing 4841, highly susceptible

to powdery mildew, was chosen as one parent to

cross with PB3558, and wheat cultivar Zhongzuo

9504 was used as the susceptible control in the

powdery mildew assessment. Both Jing 4841 and

Zhongzuo 9504 were provided by Institute of Crop

Sciences, Chinese Academy of Agricultural Sciences.

Chinese Spring (CS), CS nullisomic–tetrasomic lines

(N5DT5A, N5DT5A, N5AT5B, N5AT5D, N5BT5A

and N5BT5D), CS ditelosomic lines (Dt5DL and

Dt5DS) and CS deletion lines (5DS-1, 5DS-2 and

5DS-5), kindly provided by the Wheat Genetic and

Genomic Resources Center, Kansas State University,

were used in chromosome assignment of the molecular

markers associated with the powdery mildew resis-

tance gene from PB3558.

Disease assessments at the seedling stage

Evaluation of seedling reactions to different Bgt

isolates was carried out in a separate greenhouse that

was not exposed to any other isolates. The Bgt isolate

E09, avirulent to PB3558 and virulent to Jing 4841,

was selected to inoculate the two parents and genetic

populations for mapping the powdery mildew resistant

gene from PB3558. Twenty seedlings of each line in

the F2:3 population were tested against Bgt isolate E09

to determine the genotypes of the F2 individuals, and

another 20 seedlings of each line from RIL-F8 (RIL,

recombinant inbred line) population to determine the

genotypes of RIL-F8 individual plants. Seedlings at

the one-leaf stage were dusted with fresh conidios-

pores from susceptible cultivar Zhongzuo 9504. The

plants were grown in a high humidity environment at

18–20 �C with a photoperiod of 12 h of light per day

after inoculation. Infection types (ITs) were scored on

the first leaf of each plant using a 0–4 scale at about

15 days after inoculation, when susceptible control

Zhongzuo 9504 displayed severe symptoms. Plants

were classified into two groups according to IT score:

plants with IT 0–2 were considered resistant, while

plants with IT 3–4 were considered susceptible (Liu

et al. 2002; Chen et al. 2005). Twenty-one Bgt isolates

collected from different parts of China were used to

compare the reactions of PB3558 and other lines to

determine whether the resistance gene in PB3558 was

different from the known powdery mildew resistance

genes on chromosome arm 5DS. Evaluation for 21 Bgt

isolates was carried out using detached leaf segments

as described by Limpert et al. (1988). Leaves from six

individual plants of each genotype were inoculated

with each isolate separately and the experiment was

repeated three times.

Genomic in situ hybridization analysis

Genomic in situ hybridization (GISH) was carried out

as previously described (Han et al. 2003). A. cristatum

genomic DNA (labeled with Dig-Nick-Translation

Mix) and Fukuho genomic DNA were used as probe

and blocker, respectively. Wheat and A. cristatum

chromosomes were pseudo-colored as blue and red,

respectively. All cytological images were taken under

a Nikon Eclipse E600 fluorescence microscope and

captured with a CCD camera.

DNA extraction and bulk segregant analysis

Leaves of young seedlings were harvested to isolate

genomic DNA following the CTAB method (Allen

et al. 2006). BSA was performed to screen for

polymorphic markers among PB3558, Jing 4841, the

resistant DNA bulk and the susceptible DNA bulks,

respectively (Michelmore et al. 1991). The resistant

DNA bulk was generated by equal quantities of DNA

from 50 homozygous highly resistant (IT = 0) plants,

while the susceptible DNA bulk was generated by

equal quantities of DNA from 50 homozygous highly
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susceptible (IT = 4) plants. All these 100 homozy-

gous plants were from the individual lines of the

PB3558 9 Jing 4841 RIL-F8 population. Two parents

and two DNA bulks were used to select published

wheat SSR markers and newly developed SSR mark-

ers. The published wheat SSRs were chosen ap-

proximately every 10 cM along the chromosomes

according to the reported consensus map (Roder et al.

1998; Somers et al. 2004; Song et al. 2005; Gao et al.

2003). Novel SSR markers were developed according

to SNP loci with polymorphisms between the resistant

and susceptible bulks as described below. All poly-

morphic SSR markers obtained were used to genotype

the individuals of the RIL-F8 population for mapping

the powdery mildew resistance gene in PB3558. PCR

was performed with the reaction mixture (10 lL)

containing 40 ng of template DNA, 0.2 lM of the

forward and reverse primers, 1 U of Taq polymerase,

0.5 mM dNTPs and 1 lL 109 buffer. The amplifica-

tion was programmed at 94 �C for 5 min, followed by

36 cycles of 94 �C for 40 s, 52–60 �C for 40 s and

72 �C for 1 min. The reaction was terminated after an

extension at 72 �C for 10 min. The resulting PCR

products were separated on 8 % nondenaturing poly-

acrylamide gel, and the bands were visualized by

silver staining.

Development of novel SSR markers

The wheat 90 k SNP array was used to genotype

two parents and two DNA bulks in BSA following

Illumina’s Infinium assay protocol (www.illumina.

com). SNP clustering and genotype calling were

performed using Illumina’s GenomeStudio Polyploid

Clustering v1.0 software following the procedure

described previously (Wang et al. 2014a). SNP

markers were removed from the dataset if they were

either monomorphic, showed more than 20 %

missing values or ambiguous SNP calling, or had a

minor allele frequency below 5 %. The flanking

sequences of SNPs with polymorphism were used as

queries to search Ae. tauschii D genome sequeces

and scaffolds (Jia et al. 2013). New SSR markers

were designed in the vicinities of the above-men-

tioned SNPs using the software SSR Finder and

polymorphic SSR markers were selected to construct

the high-density genetic map. SSR markers were

assigned identifiers prefixed with Xbwm for ‘‘Beijing

wheat microsatellite’’.

Statistical analysis and linkage map construction

Chi squared (v2) tests for goodness of fit were

performed to determine the deviations of observed

segregation ratios from theoretically expected ratios.

Linkage between markers and the powdery mildew

resistance gene in PB3558 were established with the

software Mapmaker 3.0, with an LOD score threshold

of 3.0 (Lincoln et al. 1993).

Results

The origin and inheritance of the powdery mildew

resistance gene in PB3558

PB3558 was a homogeneous F7 line derived from the

cross of A. cristatum and Fukuho. PB3558 and A.

cristatum were highly resistant to powdery mildew at

both seedling and adult stages, while Fukuho was

susceptible to powdery mildew at all stages. These

results suggested that resistance to powdery mildew in

PB3558 was derived from A. cristatum. We then tried

to detect A. cristatum chromosomal fragments in

PB3558. The somatic cells of PB3558 were blocked

with Fukuho genomic DNA and probed by A. crista-

tum genomic DNA following the standard GISH

procedure. As shown in Fig. S1, 21 pairs of wheat

chromosomes were all present but no visible translo-

cation signals were detected in PB3558, suggesting

that the translocated A. cristatum chromosomal frag-

ments might be too small to be detected by GISH

(Fig. 1).

To investigate the inheritance of the powdery

mildew resistance, PB3558 was crossed to Jing

4841, a wheat cultivar highly susceptible to powdery

mildew, to produce F2, F2:3 and RIL-F8 populations

for genetic analysis of the powdery mildew resistance

gene. When challenged with the popular Bgt isolate

E09 in China, PB3558 and Jing 4841 displayed high

resistance (IT = 0) and high susceptibility (IT = 4),

respectively. Therefore, E09 was chosen to score

infection types of the PB3558 9 Jing 4841 popula-

tions. As shown in Table 1, 16 F1 plants produced

from PB3558 9 Jing 4841 cross exhibited similar

reactions to the isolate E09 as the resistant parent

PB3558 did. 280 F2 plants were studied, of which 214

resistant plants and 66 susceptible plants were ob-

served. A Chi squared test indicated that these plants
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segregated in a ratio of 3:1 (v2 = 0.30, P = 0.5809).

F2 plants were selfed to generate the F2:3 lines. From

these 254 F2:3 lines generated, we found 65 homozy-

gous resistant lines, 126 segregating lines and 61

homozygous susceptible lines, fitting to the ratio of

1:2:1 (v2 = 0.13, P = 0.9385). PB3558 9 Jing 4841

F2:3 lines were further used to establish a

PB3558 9 Jing 4841 RIL-F8 population by single

seed descent, from which 104 resistant lines and 127

susceptible lines were observed. All progenies of both

resistant and susceptible lines showed no segregation

for powdery mildew resistance in the next generation,

indicating that they were all homozygous lines. The

ratio between 104 homozygous resistant lines and 127

homozygous susceptible lines fitted to the ratio of 1:1

(v2 = 2.29, P = 0.1302). Taken together, we con-

cluded that a single dominant gene conferred the

powdery mildew resistance in PB3558, and it was

tentatively designated as PmPB3558.

Molecular mapping of the powdery mildew

resistance gene PmPB3558

Among 954 published wheat SSR markers distributed

throughout all the wheat chromosomes, 374 markers

(39.2 %) were found to display polymorphism

a

M   PR PS   BR BS R   R   R    R   R    R   R   R   R    R   S    S   S   S     S   S    S   S    S   S 

M    PR PS  BR BS R   R    R   R    R   R   R   R   R    R   S   S   S   S    S    S    S    S    S    S 

b

c

M  PR PS     BR BS R   R   R    R   R   R   R    R    R   R  S    S   S    S   S    S   S   S     S   S 

331

331
242
190

331
242
190

Fig. 1 Examples of amplification patterns of PmPB3558-

linked polymorphic markers Xcfd81 (a), Xbwm25 (b) and

Xbwm21 (c) from two parents, two DNA bulks, and selected

plants from PB3558 9 Jing 4841 RIL-F8 population by 8 %

silver-stained non-denaturing polyacrylamide gels. M DNA

ladder, PR resistant parent PB3558, PS susceptible parent Jing

4841, BR resistant DNA bulk, BS susceptible bulk, R homozy-

gous resistant RIL-F8 individual plant, S homozygous suscep-

tible RIL-F8 individual plant. The arrows indicate DNA

fragments’ polymorphic bands

Table 1 Genetic analysis of powdery mildew resistance to the Bgt isolate E09 in PB3558 9 Jing 4841 F1, F2, F2:3 and RIL-F8

populations

Parents and populations No. of plants Observed ratio Expected ratio v2 P value

HR HZ HS

PB3558 16 16 0

Jing 4841 16 0 16

PB3558 3 Jing 4841 F1 16 16 0

PB3558 3 Jing 4841 F2 280 214 66 3:1 0.30 0.5809

PB3558 3 Jing 4841 F2:3 254 65 126 61 1:2:1 0.13 0.9385

PB3558 3 Jing 4841 RIL-F8 233 104 0 127 1:1 2.29 0.1302

HR homozygous resistant line, HZ heterozygous resistant line, HS homozygous susceptible line
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between PB3558 and Jing 4841. These markers were

then used to perform BSA, and four markers (Xg-

wm205, Xcfd78, Xcfd81 and Xgpw302) on chromo-

some arm 5DS were polymorphic between the

contrasting DNA bulks, indicating linkage with the

powdery mildew resistance gene PmPB3558. We also

found one SCAR marker Xscar112 linked to

PmPB3558 on chromosome arm 5DS (Fig. 2). Since

these markers were not adequate for mapping

PmPB3558, we set out to develop more novel SSR

markers by a combination of BSA and SNP array.

When two parents and two DNA bulks were genotyped

with the wheat 90 k SNP chip, 10,306 SNP loci

showed polymorphisms between two parents, of which

131 SNP markers showed polymorphisms between the

two DNA bulks. By searching the previous report, 28

SNP markers were found on wheat chromosome arm

5DS, much more than on any other chromosome arm

(Wang et al. 2014a) (Table S1). Therefore, SNP

markers on wheat chromsome arm 5DS were mostly

likely linked with PmPB3558, and this was consistent

with the results acquired using SSR and SCAR

markers. The flanking sequences of the 28 SNP

markers were then used as queries to search the D

genome sequeces from Ae. tauschii. Scaffolds with

highest similarities were acquired, and the correspond-

ing information is shown in Table S1. Twenty-five

new SSR markers were designed in the vicinities of the

SNP markers (Table S2). Of them, ten SSR markers

(Xbwm16, Xbwm8, Xbwm9, Xbwm11 Xbwm3, Xbwm2,

Xbwm14 Xbwm25, Xbwm21 and Xbwm20) were

polymorphic between the two DNA bulks and were

also found to associate with PmPB3558 (Table S2 and

Fig. 2). Based on the linkage analysis, a linkage map

spanning chromosome arm 5DS (64.7 cM in length)

was constructed, and PmPB3558 was flanked by

markers Xcfd81 and Xbwm25 at genetic distances of

5.5 and 3.9 cM, respectively (Fig. 2).

Chromosomal localization of PmPB3558

Four SSR markers (Xgwm205, Xcfd78, Xcfd81 and

Xgpw302) and one SCAR marker Xscar112 linked to

PmPB3558 were previously found on chromosome

arm 5DS. Additionally, ten newly developed SSR

markers were also found on chromosome arm 5DS,

and were verified using the CS, CS nullisomic–

tetrasomic lines (N5DT5A, N5DT5A, N5AT5B,

N5AT5D, N5BT5A and N5BT5D), CS ditelosomic

lines (Dt5DL and Dt5DS) and CS deletion lines (5DS-

1, 5DS-2 and 5DS-5). Amplification patterns of three

SSR markers (Xcfd81, Xbwm25 and Xbwm21) were

shown in Fig. 3 as examples. These results further

indicated that all these markers closely linked to

PmPB3558 were located on chromosome arm 5DS,

more precisely on the deletion bin C-5DS1-0-0.63.

Xcfd81

PmXL66

2.8

Xscar203

0.4

Barc44

20.5

Xgwm205

Pm46

17.6

Xmp510
1.3

Xcfd81
1.8

Xgpw302
10.7

Xcd674.2

Xwmc6084.3

Xcfd18

Xgwm190
10.0

Xcfd81

32.2

Pm2
2.0

Centromere

19.8

Xcfd81

Xmag6137

0.8

Xmag6176

0.5

PmD57-5D

2.8

Xgwm205

8.3

Qiu et al.(2006)

Ma et al.(2011)

Gao et al.(2012)

Huang et al.(2012)

Xbwm16

Xbwm8
6.7

Xbwm9
1.6

Xbwm113.8

Xbwm31.6

Xgwm2052.3

Xbwm2
6.7

Xbwm14

8.5

Xscar112
5.9

Xcfd81
1.8

PmPB3558
5.5

Xbwm25
3.9

Xbwm21
0.9 Xbwm20
0.9

Xcfd785.0

Xgpw302
9.7

Fig. 2 Linkage map of

PmPB3558 and comparison

with the known Pm genes on

wheat chromosome arm

5DS. Genetic distances are

shown to the left in cM.

Black arrow points to the

centromere
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Comparative reactions to 21 Bgt isolates

between PB3558 and other lines with known

powdery mildew resistance genes on wheat

chromosome arm 5DS

According to the previous reports, there were several

Pm genes located on wheat chromosome arm 5DS, such

as Pm2, Pm46 and PmLX66. In order to distinguish the

disease reaction differences between them, 21 Bgt

isolates were used. PB3558 (PmPB3558), Ulka/8*Cc

(Pm2), Tabacco (Pm46), Liangxing 66 (PmLX66) and

Jing 4841 as well as the susceptible control Zhongzuo

9504 were inoculated with 21 Bgt isolates at the one-leaf

stage. These isolates showed different virulence pat-

terns. PB3558 was resistant to 17 of the 21 Bgt isolates

tested, and the reaction patterns of PmPB3558 were

different from Pm2, Pm46 or PmLX66. PmPB3558

differed from Pm2 in its reactions to four Bgt isolates

(E18, E20, E21 and Bg79-1), from Pm46 in its reactions

to six Bgt isolates (E11, E18, E20, Bg44-4, Bg79-1 and

Bg84-3), and from PmLX66 in its reactions to six Bgt

isolates (E18, E22, Bg44-4, Bg77-2, Bg79-1 and Bg86-

2). A. cristatum was found resistant to all 21 Bgt isolates

tested, and thus it displayed a broader spectrum of

disease resistance than PB3558 (Table S3). The disease

reactions of PB3558, Ulka/8*Cc, Tabacco, Liangxing

66, Jing 4841 and Zhongzuo 9504 to six different Bgt

isolates are shown in Fig. 4. Therefore, the resistance

spectrum of PB3558 is different from all the wheat

cultivars tested above.

Discussion

The origin of PmPB3558

The discovery of novel powdery mildew resistance

genes is the most effective method of controlling

powdery mildew in wheat, and alien chromosomal

translocation is a classic method of transferring genes

from wild relatives to common wheat. A. cristatum is

an important perennial Triticeae species and a valuable

source of resistance to powdery mildew (Dewey 1984;

Dong et al. 1992; Han et al. 2014). In this report, the

introgression line PB3558, highly resistant to powdery

mildew, was obtained. The resistance gene PmPB3558

came from A. cristatum, since the only common wheat

parent of PB3558, Fukuho, was highly susceptible to

powdery mildew. One obstacle to the application of

alien translocations in practical breeding is that the

large transferred chromosome segments often carry

additional genes conferring undesirable traits or do not

adequately compensate for the wheat genes they

replace in non-homoeologous regions, resulting in

‘linkage drag’ (Friebe et al. 1996). In this sense, the

smaller the translocation chromosome fragment, the

242

M    1     2      3    4      5     6     7     8     9    10    11  12

190
M     1     2      3    4     5     6     7     8    9    10   11  12

M     1     2      3     4     5     6     7     8    9    10   11  12

190

5DS-2 (0.78)

5DS-5 (0.67)
5DS-1 (0.63)

Centromere

d

C-5DS1-0-0.63

a

b

c

Fig. 3 Amplification

patterns of SSR markers

Xcfd81 (a), Xbwm25 (b) and

Xbwm21 (c) in Chinese

Spring (CS), CS nullisomic–

tetrasomic lines (N5DT5A,

N5DT5A, N5AT5B,

N5AT5D, N5BT5A and

N5BT5D), CS ditelosomic

lines (Dt5DL and Dt5DS)

and CS deletion lines (5DS-

1, 5DS-2 and 5DS-5). The

deletion map of 5DS is

shown in (d). M DNA

ladder, 1 CS, 2 N5AT5B,

3 N5AT5D, 4 N5BT5A,

5 N5BT5D, 6 N5DT5A,

7 N5DT5B, 8 DT5DL,

9 DT5DS, 10 5DS-1,

11 5DS-2, 12 5DS-5
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better the material is in breeding. Indeed, some

translocation lines with desirable traits have been

occasionally transferred to recipient genotypes by

cryptic translocation without detectable cytological or

genetic changes (Kuraparthy et al. 2007). A GISH

signal in PB3558 was not detected using A. cristatum

genomic DNA as a probe, suggesting that PB3558 does

not possess a large alien chromosomal segment and

may instead contain a cryptic translocation. Alien

chromosomal segments resulting from such small

translocations cannot be easily detected by standard

cytogenetic methods other than high-resolution GISH.

Comparison between PmPB3558 and other Pm

genes on wheat chromosome arm 5DS

PmPB3558 was assigned to wheat chromosome arm

5DS, flanked by the SSR marker Xcfd81 and Xbwm25

at genetic distances of 5.5 cM and 3.9 cM,

respectively. To date, six Pm genes have been reported

on chromosome 5D: Pm34, Pm35, Pm2, PmD57-5D,

PmLX66 and Pm46 (Miranda et al. 2006, 2007; Qiu

et al. 2006; Ma et al. 2011; Gao et al. 2012). Pm34,

Pm35 and Pm2 were originally from Ae. tauschii,

PmD57-5D from the common wheat line D57, Pm46

from German wheat cultivar Tabasco, and PmLX66

from Chinese wheat cultivar Liangxing 66. Pm34 and

Pm35 were mapped on wheat chromosome arm 5DL,

while the other four mapped on wheat chromosome

5DS. Pm34 and Pm35 were located on the distal part

of 5DL, 2.6 cM away from Xbarc144, and on the

proximal end of 5DL, 11.9 cM away from Xcfd26,

respectively (Miranda et al. 2006, 2007). Xbarc144

and Xcfd26 were not linked to PmPB3558, suggesting

that PmPB3558 was different from Pm34 and Pm35.

Pm2 was firstly physically mapped on wheat chromo-

some arm 5DS and flanked by marker Xcfd81 at a

genetic distance of 2.0 cM (Qiu et al. 2006), and

Fig. 4 Reactions of PB3558 (PmPB3558), Ulka/8*Cc (Pm2), Tabacco (Pm46), Liangxing 66 (PmLX66), Jing 4841 and Zhongzuo

9504 to six different Bgt isolates
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PmD57-5D was considered to be most likely Pm2 (Ma

et al. 2011). In this study, PmPB3558 was flanked by

marker Xcfd81 at the genetic distance of 5.5 cM, so

PmPB3558 was 3.5 cM away from Pm2 (Fig. 2). To

distinguish between PmPB3558 and Pm2, 21 Bgt

isolates were used to test the reactions; four Bgt

isolates exhibited different reaction patterns (Table

S3). Combining the results of molecular markers and

disease tests, PmPB3558 is most likely a new allele at

the Pm2 locus. However, an allelism test is required to

further examine the allelic relationship between

PmPB3558 and Pm2. As shown in Fig. 2, Pm46 is

distal to Xcfd81 at a genetic distance of 3.1 cM, and

PmLX66 is proximal to Xcfd81 at a genetic distance of

2.8 cM (Gao et al. 2012; Huang et al. 2012). There-

fore, PmPB3558 was 8.6 and 2.7 cM away from Pm46

and PmLX66, respectively. In addition, compared with

Pm46 and PmLX66, PmPB3558 showed different

reactions with six of the 21 Bgt isolates, accounting for

28.5 % of the total isolates tested (Table S3). More-

over, PmPB3558 was the only genotype immune to

isolates E18 and Bg79-1. Therefore, these results

indicated that PmPB3558 was different from Pm46

and PmLX66, which will be further verified by the

allelism tests.

As shown in the previous reports, many powdery

resistance genes have multiple alleles, due to the

cluster feature of resistance genes. These powdery

mildew resistance genes are non-randomly distributed

in the genome, but form clusters in gene-rich regions.

In addition to the five allelic genes for Pm1 (1a–1e),

PmG16, MlIM72, Mlm2033, Mlm80, MIAG12 and

HSM1 are also likely allelic to this locus (Hsam et al.

1998; Zhang et al. 2012; Singrun et al. 2003; Yao et al.

2007; Ben-David et al. 2010; Ji et al. 2008; Maxwell

et al. 2009; Li et al. 2014). Pm3 is the best

characterized wheat powdery mildew resistance gene

locus, at which 15 resistance alleles have been

identified (Yahiaoui et al. 2006; Hsam et al. 2015;

McIntosh et al. 2011a; Bhullar et al. 2009; Srichumpa

et al. 2005; Huang et al. 2004; Hartl et al. 1993;

Yahiaoui et al. 2009). Four allele have been reported

for Pm4 (4a–4d) (Schmolke et al. 2012), and PmPS5A

was also a member of the Pm4 complex (Zhu et al.

2005). The presence of Pm gene clusters often confers

quantitative and durable disease resistance when

combined together by marker-assisted selection

(MAS) (Paillard et al. 2000; Gupta et al. 2010). A

number of commercially grown cultivars have been

found to have Pm gene combinations, such as

Normandie with Pm1, Pm2 and Pm9 (Schneider

et al. 1991) and Kronjuvel with Pm4b and Pm8 (Liu

et al. 2000). Besides powdery mildew resistance

genes, the same is true for leaf rust (Nocente et al.

2007), stem rust (Mago et al. 2011) and so on. In this

study, PmPB3558 may be located in resistance gene-

rich regions and is potentially applicable in gene

pyramiding.

Novel SSR markers increase the density

of the genetic map of PmPB3558

Various populations are available for constructing

genetic maps and mapping genes, such as F2, RIL,

near-isogenic (NIL) and doubled haploid (DH)

populations. Of them, the F2 population is the easiest

to construct and most widely used. However, eval-

uation of traits of F2 individuals is sometimes not

accurate. Therefore, alternative strategies can be used

to improve the efficiency of genetic mapping, such as

RILs, NILs or DHs, which are permanent populations

that enable replicated phenotyping across different

environments (Michelmore et al. 1991; Peng et al.

2014). In this study, we used the PB3558 9 Jing 4841

RIL-F8 population instead of the F2 population to

improve the accuracy of phenotyping the powdery

mildew resistance at the seedling stage. It should be

noted that PB3558 also shows adult plant resistance

(APR) to powdery mildew in the field. Further

investigation is needed as to whether PmPB3558 also

contributes to the observed APR. All reported Pm

genes on wheat chromosome arm 5DS were mapped

only with limited published SSR markers, which was

due to the relative low level of DNA polymorphism

and low recombination frequency on chromosome arm

5DS. In our efforts to tag PmPB3558, we developed

novel SSR markers based on flanking sequences of

polymorphic SNP markers. Three new SSR markers

(Xbwm25, Xbwm21 and Xbwm20) located between

Xcfd81 and Xcfd78 were found more closely linked to

disease resistance gene PmPB3558. Therefore, this

study provides better marker coverage of the Pm gene

on wheat chromosome arm 5DS than in the previous

studies. In this study, PB3558 is an ideal germplasm

for resistance to powdery mildew and the identified

molecular markers closely linked to PmPB3558 can

simplify wheat breeding programs such as cultivar
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development and pyramiding of additional resistance

genes.
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