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Abstract Future barley cultivars will have to pro-

duce under the constraints of higher temperature in

combination with increased concentrations of atmo-

spheric carbon dioxide and ozone as a consequence of

climate change. A diverse set of 167 spring barley

genotypes was cultivated under elevated levels of

temperature (?5 �C) and [CO2] (700 ppm) as single

factors and in combination as well as under elevated

[O3] (100–150 ppb) as single factor. The setting in

general resembled changes projected by IPCC (AR5)

to take place at the end of this century. A genome-wide

association study (GWAS) was performed to identify

markers for increased primary production under

climate change conditions and reveal possible genes

of interest. Phenotyped traits included grain yield,

number of grains, number of ears per plant, above-

ground vegetative biomass, harvest index and stability

of the production parameters over the five applied

treatments. The GWAS encompassed 7864 SNP

markers (Illumina iselect), a compressed mixed linear

model with the GAPIT package, and conservative

validation of markers. A total of 60 marker-trait

associations [-log10(P value) 2.97–5.58] were iden-

tified, e.g. grain yield under elevated temperature on

barley chromosome 2H, static stability of grain yield

on 7H, sites for exploitation of elevated [CO2] on 4H
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and 7H and associations under the two-factor treat-

ment. Marker-trait associations identified from single-

factor treatments were not retrieved, when elevated

[CO2] and temperature were combined emphasizing

the need for multifactor experiments. This GWA study

identified markers and chromosome regions to be

targeted in breeding for development of climate

resilient cultivars.

Keywords Carbon dioxide � Climate change �
Combined factors � GWAS � Hordeum vulgare �
Ozone � Temperature

Abbreviations

AllM Dataset of all markers

BM Aboveground vegetative biomass

EG Number of ears with grains

ET Number of ears

GN Number of grains

GWAS Genome-wide association study

GY Grain yield

HI Harvest index

LD Linkage disequilibrium

MwP Markers from the AllM dataset with

identified position

QTL Quantitative trait loci

SNP Single nucleotide polymorphism

Introduction

Rapid changes in growth environments induced by

altered climate conditions urge the need to breed

climate resilient crop cultivars. Traditionally, charac-

terization and subsequent introduction of genes into

elite germplasm have increased tolerance to pest and

pathogens. However, in a future climate of increasing

temperatures as well as elevated atmospheric concen-

tration of carbon dioxide ([CO2]) and ozone ([O3]),

abiotic stresses demand a more extensive focus in crop

improvement. Therefore, molecular targeting of genes

providing tolerance to abiotic stresses is an important

tool in the development of climate resilient cultivars.

Barley (Hordeum vulgare L.) is an economically

important crop plant widely used as feed for livestock

and as ingredient in beverage and food products for

human consumption (e.g. Newton et al. 2011). Studies

have reported high phenotypic plasticity in wild

barley, which may explain its large geographical

distribution and wide adaptation to diverse environ-

mental conditions (Nevo et al. 2012). As a diploid,

inbreeding, temperate crop, barley has traditionally

been considered a model for plant genetic research.

Large collections of germplasm containing geo-

graphically diverse elite varieties, landraces and wild

accessions are readily available and possibly contain

alleles that could counteract or even exploit the

projected future increases in temperature, [CO2] and

[O3] (The International Barley Genome Sequencing

Consortium 2012).

Marker-assisted selection, where markers for de-

sired agricultural traits are applied to verify loci

related to a phenotype, is a method to accelerate plant

breeding. However, robust phenotyping and reliable

markers are needed. In recent years, the cost of

genotyping has decreased considerably (Wetterstrand

2014) and accelerated the identification of markers

associated with agricultural traits encoded by quanti-

tative trait loci (QTL) in segregating progenies, as well

as in diverse sets of accessions through genome-wide

association study (GWAS). The emergence of high-

throughput SNP genotyping platforms has enabled the

implementation of GWAS in barley (Close et al. 2009;

Waugh et al. 2009; Comadran et al. 2012). The

advantage of GWAS to traditional bi-parental map-

ping is that alleles present within diverse sets of

accessions can be identified, and not only alleles

present in the parents of segregating crosses (Zhu et al.

2008). To avoid an inflated rate of false positives, the

frequency of an allele within the set of accessions must

reach an adequate level (minor allele frequency) to be

revealed. Hence, the minor allele frequency limits the

use of GWAS to find rare alleles (Tabangin et al.

2009). As GWAS analyses the linkage disequilibrium

(LD) between marker loci, the genetic structure

(relatedness) within the set of accessions must be

accounted for.

LD is found to be extensive in barley (Caldwell

et al. 2006; Comadran et al. 2011), and therefore,

barley is well fitted for identification of marker-trait

associations by GWAS with a reasonable number of

markers. Numerous studies have reported QTL and

marker-trait associations for agricultural traits in

barley (e.g. Kraakman et al. 2004; Schweizer and

Stein 2011; Varshney et al. 2012; Tondelli et al. 2013);

other studies led to a better understanding of plant
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tolerance to stresses, e.g. salt and aluminium (Cai et al.

2013; Long et al. 2013). Exploring QTL and marker-

trait associations under projected climate change

conditions could improve the understanding of genes

and processes operating under such conditions. How-

ever, phenotypic responses to elevated temperature,

[CO2] and/or [O3] have not yet been included in a

GWAS.

Already, climate changes have been found to cause

a 5.5 % decrease in global wheat yield in the period

from 1980 to 2008 (Lobell et al. 2011). According to

IPCC (Intergovernmental Panel on Climate Change),

the [CO2] may increase to about 1,000 ppm (mean

value) at the end of the twenty-first century from

approximately 400 ppm of today (Collins et al. 2013).

In the same period, the [O3] is expected to increase

with 8 ppb in average per year from the present levels

at 32–62 ppb but with large local and seasonal

variation (Collins et al. 2013; Ellermann et al. 2013).

The effect of the elevated greenhouse gasses is that

average temperature will increase up to ?5 �C though

with large regional differences; also for the occurrence

of extreme climate events, local variation will occur

(Collins et al. 2013).

Even though plants have a long evolutionary

history of adapting to changing environmental condi-

tions, the present climatic changes might be progress-

ing with a pace that exceeds natural adaptation

(Rosenzweig and Parry 1994; Svenning and Sandel

2013). In recent years, barley production has stagnated

in Europe (FAOSTAT 2014) due to climatic, agro-

nomic and/or socio-economic reasons. Hence, to

maintain and preferable increase crop productivity to

meet the future need from higher living standards and

population growth (UN 2012; IPCC 2014), the culti-

vars of the future should be designed to possess

stability, e.g. towards extreme climate shifts during the

growing season, and to exploit the elevated [CO2].

In the search for markers associated with produc-

tion traits, e.g. grain yield and its components as well

as their stability under climate change conditions, we

applied 7864 SNP markers to a set of spring barley

accessions consisting of landraces, old and new

cultivars as well as breeder lines. The climate treat-

ments represented elevated levels of temperature

(?5 �C), [CO2] (700 ppm) and [O3] (100–150 ppb)

as single factors, and the elevated levels of tem-

perature and [CO2] were combined in a two-factor

treatment.

Materials and methods

Plant material

A total of 127 predominantly Nordic spring barley

accessions of both 2- and 6-row types were included in

the analysis (Table 1). Our set of accessions covered 38

landraces, 31 old cultivars (1883–1974), 53 modern

cultivars (1975–2013) and 5 breeder lines. The separa-

tion into new and old cultivars was based on the

introduction of exotic gene pools as disease resistance in

the period after 1975 (Backes et al. 2003). Further

details of the material are shown in Online Resources 1.

Phenotyping

The accessions were grown to maturity in the RERAF

phytotron (http://www.eco.kt.dtu.dk/Research/Research_

Facilitites/RERAF) under four climate treatments and a

control. In the climate treatments temperature, [CO2] and

[O3] were applied at levels projected by IPCC at the end of

the twenty-first century (Collins et al. 2013). In the control

treatment, ambient temperature was 19/12 �C (day/night)

and [CO2] at 385 ppm. The climate treatments were (1)

[CO2] at 700 ppm; (2) temperature at 24/17 �C (day/

night); (3) the combination of elevated temperature (24/

17 �C) and [CO2] (700 ppm); and (4) O3 added at

100–150 ppb. For each accession, eight plants were grown

in 11 L pots (plant density 151 plant m-2). The pots were

placed at identical positions in all treatments and rotated

within and between chambers once a week during the

growing period to eliminate potential chamber-specific

effects. Light exposure, humidity level, water and fertilizer

supply were identical between all treatments. The light

regime averaged approximately 400 mol photons m-2 s-1

at canopyheight (ca.1 m)andwas applied in a16/8 h day/

night cycle. The relative humidity was constant 55/70 %

(day/night). Water was supplied by a dripping system at

4.4 L m-2 day-1 in the morning, and 10 g NPK fertilizer

(21-3-10, Yara) was supplemented to the sphagnum sub-

strate (Pindstrup Substrate No. 6, Pindstrup Mosebrug A/S,

Denmark) at the time of sowing. Watering was reduced

stepwise when 2/3 of the accessions in a treatment had

reached Zadoks growth stage (ZGS) 90 and ended at ZGS

99 (Zadoks et al. 1974). Plants were harvested and threshed

individually.

The production parameters measured after harvest

were grain yield (GY, g plant-1), aboveground vegeta-

tive biomass (BM, g plant-1), total number of ears (ET,
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no. plant-1) and number of ears with grains (EG, no.

plant-1). From the measured values, the following

parameters were calculated: number of grains (GN, no.

plant-1, GY/weight of 40 grains), harvest index (HI,

%), D (delta) values and static and dynamic stability.

Harvest index was calculated as grain yield relative to

aboveground vegetative biomass, and D values were

defined as the measure of a production parameter of a

given accession in a climate treatment relative to the

measure of this production parameter in the ambient

treatment. The response to the overall production

parameters in the climate treatments was calculated in

% to the ambient treatment and significance according

to T test; 0.001:***, 0.01:** and 0.05:* in Microsoft

excel version 2010. Static stability was found according

to environmental variance (S2; Roemer 1917), and

dynamic stability according to Wricke’s ecovalence

(W2; Wricke 1962). The stability measures were

calculated over all five treatments for BM, ET, EG,

GN and HI. S2 is defined as:

S2
i ¼

X
ðRij�miÞ2=ðe� 1Þ ð1Þ

where Rij is the observed yield of the accession i in the

treatment j, mi is mean yield of the accession across

treatments and e the number of environments, in the

present study treatments. W2 is defined as:

W2
i ¼

X
ðRij�mi�mj þ mÞ2 ð2Þ

where Rij is the observed yield of the accession i in the

treatment j, mi is mean yield of the accession across

treatments, mj is mean yield across treatment j of all

accession and m is the grand mean. Further details on

experimental set-up, phenotyping of traits and details

on RERAF can be found in Ingvordsen et al. (2015).

Genotyping

Genomic DNA was extracted using the CTAB proce-

dure (Cetyl Trimethyl Ammonium Bromide; Rogers

and Bendich 1985). Plant material was collected at

seedling stage and freeze dried. For cultivars and

breeder lines, DNA was extracted from one individual.

For some of the landraces (25 out of 38), normally two

but up to six individuals were included and treated as

separate genotypes, however, linked to the same

phenotype. Diversity found within the landrace ac-

cessions is given in Online Resources 2. In total, 192

samples were genotyped by TraitGenetics (TraitGe-

netics GmbH, Gatersleben, http://www.traitgenetics.

com/en/) with a total of 7864 SNP (single nucleotide

polymorphism) markers from the Illumina iselect ar-

ray (Comadran et al. 2012).

Table 1 Accessions of

barley according to country

of origin, accession type

and subtype

a Two accessions

segregated both in 2- and

6-rowed

Country Landrace Old cultivar Modern cultivar Breeder’s line

2 rows 6 rows 2 rows 6 rows 2 rows 6 rows 2 rows 6 rows

Belgium 1 1

Croatia 1 1

Czech Republic 1

Denmark 1 2 9 1 25 3

Estonia 1

Farao Islands 2

Finlanda 2 5 2 4 2 5 1 1

France 1 2 2

Germany 2 4

Greece 1

Hungary 1

Italy 1

Norway 4 1 5 1 5

Romania 1

Sweden 1 7 2 6 2

Unknown 5

Total 12 24 19 12 41 12 4 1
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In filtering SNP markers, maximally 50 % missing

data were accepted, and an allele was considered rare

when present in only 7 % of the genotypes, and the

marker in question was excluded.

Genetic structure and association analysis

Genetic relatedness between accessions was analysed

with the dataset including all markers using a distance

matrix based on ‘Simple Matching’ and a subsequent

principal coordinate analysis (PCoA). The PCoA was

computed using the macro ‘Diversity’ in Microsoft

Excel (2010) (programmed by G. Backes, co-author).

The bayesian cluster analysis using the software

‘STRUCTURE’ (Pritchard et al. 2000) was also

applied on the dataset. For the STRUCTURE analysis,

a panmixis model was applied with a length of burn-in

period and number of MCM repeats after burin of

10,000 in the 20 first rounds to determine the number

of groups and 100,000, respectively, in the second

rounds determining the Q-values. For the choice of the

optimal number of groups, the method of Evanno et al.

(2005) was applied. Linkage disequilibrium for a

random sample of SNP marker pairs with a distance

smaller than 50 cM (10 % of all linked pairs) was

calculated in Microsoft Excel (2010) by the macro

‘Assoc’ (programmed by G. Backes). The calculated

values were, together with a locally weighted scatter-

plot smoothing curve, visualized using R version

2.15.3 (R Core Team 2014).

Associated markers were identified in a two-step

analysis by the use of the macro ‘Assoc.’, which calls

the R-package GAPIT (Genomic Association and

Prediction Integrated Tool; Lipka et al. 2012) in R

version 2.15.3 (R Core Team 2014). In step one, the

optimal model was identified, and in step two, the

association analysis was performed with the identified

model. In the optimization step, the models included

two different distance matrices, one calculated by

efficient mixed-model association (EMMA; Kang

et al. 2008) and the other a simple-match distance

matrix calculated on all polymorphic SNP markers.

Each of the two models was tested including matrices

with and without the vector of Q-values calculated

from STRUCTURE. To choose the optimal model, a

compressed mixed linear model was applied (Zhang

et al. 2010) on each phenotype. Maximum likelihood

and heritability of the model were calculated, as well

as goodness of fit of the predicted versus the observed

P values. In addition and for reason of comparison, a

non-stratified naive model was applied. The optimiza-

tion step was performed for each phenotyped trait with

two partly overlapping datasets. One dataset included

7864 SNP markers (AllM), whereas the second dataset

included the 3967 SNP markers with established

position (MwP); hence, MwP was a subset of the AllM

dataset. Subsequently, association analyses were per-

formed with each of the two datasets with the

optimized model including genetic structure and with

the naive model.

For each phenotypic trait, the critical P values for

assessing the significance of associations in the naive

model were corrected for multiple comparisons using

a false discovery rate (FDR = 0.05) (Benjamini and

Hochberg 1995). Considering the stringency of the

model used for accounting for population structure,

most of the false positives were inherently controlled

and no further corrections were applied. To further

minimize false positives, the cut-off for accepting

associations was arbitrary set to -log10(P val-

ue) [ 2.95 and had to be meet by both datasets.

Linkage disequilibrium and bioinformatics

of associated markers

Linkage disequilibrium (LD) between SNP markers

positioned on the same chromosome was determined

by TASSEL version 4.0 (Bradbury et al. 2007). When

LD was found, the respective markers were treated as

a LD block. The position of the LD blocks and

associated markers was determined in cM and as bin

according to the BinMap 2005 with its unique

segregation patterns separating the bins by single

recombinant events. In practice GrainGenes 2.0

(http://wheat.pw.usda.gov) was utilized, and the bar-

ley maps OPA123-2008, OPA 2011, OWB, Stein 2006

and/or OWB OPA2008 when necessary. Known genes

that co-localized with SNP markers were determined

through marker position from HarvEst Barley version

2.02 (http://harvest.ucr.edu; Alpert et al. 2011), IPK

barley BLAST server, Gatersleben (http://webblast.

ipk-gatersleben.de/barley/) and/or MIPS barley gen-

ome database (http://mips.helmholtz-muenchen.de/

plant/barley/index.jsp).
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Results

Effects of applied treatments to production

parameters and stability

The production parameters were found to be strongly

affected by the climate treatments as displayed in

Table 2, and differences between cultivar responses

were prominent as reported by Ingvordsen et al.

(2015). Elevated temperature decreased overall grain

yield (55.8 %), number of grains and also above-

ground vegetative biomass and HI. Elevated [CO2]

increased all production parameters apart from HI

(grain yield increased 14.5 %). In the two-factor

treatment, grain yield decreased (29.6 %) together

with number of grains, whereas number of grain-

bearing ears and total number of ears increased; the

aboveground vegetative biomass was overall not

influenced, and as a result, HI decreased. Elevated

[O3] resulted in reduced grain yield (15.8 %), but had

a positive effect on number of ears produced; above-

ground vegetative biomass was unaffected and HI

decreased (Table 2). The stability measures calculated

over all treatments for each trait varied among the

accessions as seen in Table 2. For GY, the environ-

mental variance, S2, ranged from 0.58 to 16.79, and the

dynamic stability, W2, ranged from 0.27 to 33.60.

Marker analysis

Genotyping succeeded for 6985 of the SNP markers,

and after filtering, the AllM dataset contained 5978

polymorphic SNP markers and the MwP dataset 3679

in 167 genotypes. Heterozygotes were excluded from

analysis. All phenotypic traits, except for DET under

elevated [O3], passed the optimization step. The LD

decay of all SNP markers was found to decrease

considerable after 40 cM and sufficient to perform

GWAS (Online Resources 3). Only nine out of the 25

landraces with more than one individual showed

above 10 % polymorphism in alleles (10.2–41.8 %,

Online Resources 2).

Genetic structure and optimization

Three groups within the 167 genotypes were formed

by the principal coordinate analysis (PCoA) and the

Bayesian clustering (Fig. 1, Online Resources 4). The

groups corresponded reasonably well with row type T
a
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and time of registration at the official variety list. One

group was comprised primarily by 6-rowed accessions

with different year of registration (landraces, old and

modern cultivars) (Fig. 1a, III), whereas the 2-rowed

accessions were divided into two groups. One group of

2-rowed accessions included modern cultivars

(Fig. 1a, I), and the other group included primarily

old cultivars and landraces (Fig. 1a, II). No grouping

could be identified by country of origin.

In the optimization step, the compressed mixed

linear model (Zhang et al. 2010) with EMMA as

correction for genetic structure was found to be the

best fit for the majority of the phenotypes, and the

model was applied in the association analyses for all

phenotypes.

Marker associations and LD

Sixty associations with -log10(P value) values from

2.97 to 5.58 were found between phenotypic traits and

44 of the applied SNP markers (Table 3; Fig. 2,

Online Resources 5). The marker-trait associations

were predominantly identified in the single-factor

treatments of elevated [CO2] and temperature for the

phenotypes GY, DGY, DGN, EG and HI. Few markers

were found associated with traits under the two-factor

treatment or with S2 for either of the phenotyped traits

(Table 3).

In total, 12 LD blocks together with 15 single (not

located to a LD block) marker-trait associations were

identified (Table 3, Fig. 2, Online Resources 6). From

the analysis of LD between markers on the same

chromosome, 10 LD blocks included two to five

marker-trait associations and two LD blocks consti-

tuted one marker each that associated with more than

one phenotype. All marker-trait associations are

reported in Online Resources 5. Marker-trait asso-

ciations for thousand grain weight and grain per ear

were identified but not reported since they generally

were found to have low -log10(P values).

Generally, the LD blocks included markers associ-

ated with similar phenotypic traits under one climate

treatment, e.g. LD block 2H-2 comprised markers for

GY DGY under elevated temperature (Table 3). LD

block 2H-6 and 6H-10 deviated by including markers

associated with different phenotypic traits in different

climatic treatments, i.e. DGY under elevated tem-

perature together with DET in the two-factor treatment

(Table 3). Only LD block 2H-6 included markers

associated with phenotypes in the two-factor treat-

ment, as well as one of the single-factor treatments;

however, the markers were not found associated with

the same trait.

The LD blocks 2H-2 and 2H-3 hold markers that

associated with GY, DGY, BM or DBM under

elevated temperature (Table 3) indicating an area

important for temperature tolerance. Also, LD block

3H-7 indicated an area related to elevated temperature

with associations for DGN, HI and DGY under

elevated temperature. Associations for GY, DGY
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analysis (b) of 167 spring barley genotypes based on 6624 SNP
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6-rowed landrace, open triangle 6-rowed cultivar from before
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and DGN under elevated [CO2] were found with six

markers in LD block 4H-9 and 7H-11 pointing towards

chromosome areas for exploitation of elevated [CO2].

For the two-factor treatment, associated markers were

found in LD block 2H-6. Also, two single markers,

SCRI_RS_144841 and SCRI_RS_213333, were found

associated under the two-factor treatment with HI and

DGN, respectively (Table 3).

Associations with climate stability across the five

applied treatments for either of the production pa-

rameters were found in four of the LD blocks and with

four single markers. Two of the markers were both

found in LD block 7H-12 associating with S2 of HI and

GY (Table 3). One marker associated with W2 of GY

was found in LD block 7H-11 together with marker-

trait associations for DGN, DGY and GY under

elevated [CO2] suggesting exploitation of elevated

[CO2] involved in dynamic stability of GY.

Discussion

Overall response to the applied treatments

The identified responses of the production to the

climate treatments support the projected decrease in

future primary production (IPCC 2014). In agreement

with previous studies (e.g. Morison and Lawlor 1999;

Fuhrer 2003; Bokszczanin and Fragkostefanakis

2013), elevated temperature and [O3] were found to

cause decrease, and elevated [CO2] to cause increase

in the grain yield; however, variation in response was

Te15P
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Fig. 2 Associated markers with chromosomal position. LD block refers to linked markers or one marker associated with more than one

phenotyped trait
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identified between the accessions as described by

Ingvordsen et al. (2015). Under the two-factor treat-

ment, the most realistic future climate scenario, grain

yield was decreased by 30 %, whereas quantity of

aboveground vegetative biomass was generally main-

tained. Identification of the genomic regions involved

in these responses may serve in developing cultivars

that can combat effects of the future climate changes

and increase our knowledge on the underlying

mechanisms for a high and stable production.

Genetic structure and relatedness

between accessions

In this study, a separation of the 167 barley genotypes

tested was observed according to year of registration and

row type (2- and 6-rowed). The same grouping has also

been reported in earlier studies on European and Nordic

spring barley accessions (Backes et al. 2003; Brantestam

et al. 2007). Even though the agroenvironmental condi-

tions for cultivation of spring barley differ widely in the

Northern European region, we did not observe any

genetic separation according to country of origin.

Likewise, no separation according to country of origin

was observed in the study by Brantestam et al. (2007).

One reason could be that local adaptation or breeding for

regional conditions could be present, obscuring the

national origin. However, the lack of grouping correlat-

ing to ‘country of origin’ within the Nordic countries

Denmark, Finland, Norway and Sweden could also

suggest that the cultivars are widely adapted to Nordic

conditions or that they represent common germplasm

independent of national breeding programs.

Conservative validation of marker-trait

associations

The outcome from a GWAS is the results of the

applied statistical model and dependent on the set of

accessions studied. Additionally, type of molecular

markers, phenotypes and phenotyping method influ-

ence the output. Several studies have debated the

statistical challenges and the inputs (Jannink 2007;

Stich et al. 2008; Matthies et al. 2012). In the present

study, we applied a conservative approach, where

markers were only accepted when found significant

[-log10(P value) [ 2.95] in four analyses (both AllM

and MwP tested with the optimized and naive model).

Taking such conservative approach to avoid false

positives consequently caused a higher rate of rejected

marker-trait associations. However, the conservative

procedure of validation was applied to achieve mark-

er-trait associations with known chromosome position

sufficiently solid to be exploited in marker-assisted

selection.

Markers for breeding of cultivars for the future

climate

Since 1975, [CO2] has increased from 330 to 400 ppm

of today (Collins et al. 2013). However, a correlating

positive response in cereal grain yield to this change in

[CO2] is found absent or weak, despite that modern

cultivars have been developed along with the gradual-

ly increasing [CO2] (Manderscheid and Weigel 1997;

Ziska et al. 2004; Franzaring et al. 2013; Ingvordsen

et al. 2015). The markers that associated with

increased grain yield and grain number under elevated

[CO2] identified in LD block 4H-9 and 7H-11 are

possibly of value, when aiming to improve response of

grain yield to elevated [CO2]. Further, a putative

sucrose synthase, a key enzyme in the sucrose

metabolism forming carbohydrates (Barrero-Sicilia

et al. 2011), is co-localizing with one of the markers in

LD block 7H-11 (BOPA2_12_30880; Alpert et al.

2011). In that same region, a sucrose synthase was

previously found, decisive for malting quality

(Matthies et al. 2011). The role of sucrose synthase

in the energy storage metabolism should be further

explored under conditions of elevated [CO2], as this

enzyme could potentially improve grain yield in a

changed climate.

The identification of markers associated with either

grain yield or vegetative aboveground biomass under

elevated temperature (LD block 2H-2 and 2H-3) calls

for further investigations of genes in that region. The

presence of loci for grain yield has previously been

reported by Varshney et al. (2012) and Hayes et al.

(1993) in this chromosome region. Interestingly, the

pseudo-response regulator gene Ppd-H1, found to

provide adaptation to different environments through

photoperiod responses, is positioned in this region on

2H (Turner et al. 2005; Wang et al. 2010). Within the

QTL reported by Wang et al. (2010), the strongest

candidate gene for Ppd-H1 was found located at

chromosome 2H bin 3, where we here identified four

markers associated with grain yield or grain yield

relative to ambient under elevated temperature
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(Table 3, LD block 2H-2) pointing to a possible link

between photoperiod response and grain yield. How-

ever, the bins span large genomic areas and connection

remains therefore speculative. In favour of the

connection between photoperiod and increased grain

yield is the previously suggested photoperiod control

of the growth period of the spike, where prolongation

of this period leads to increased number of grains

(Miralles and Slafer 2007). Further, in barley, genetic

variability has been identified for this developmental

phase, where stems and spikes grow actively (White-

church et al. 2007). The markers are found associated

under elevated temperature, where number of grains

decreased significantly and ears with grains also

decreased. Therefore, another physiological explana-

tion could be the ability to maintain floret fertility

under elevated temperature, which has been found to

abort florets (Ugarte et al. 2007; Rajala et al. 2011). In

order to explain the underlying mechanism of the

found association or perhaps connect photoperiod to

temperature tolerance, further studies are necessary.

In LD block 2H-4, three markers associated either

with number of ears with grains or with total number

of ears under all applied treatments except for the two-

factor treatment. The gene product co-localized with

the marker positioned at 66.3 cM (BOPA1_4037-916,

Online Resource 5) shows homology to a PsbP family

protein, which plays a role in the oxygen evolving

complex of photosystem II that is essential for normal

photosynthetic activity (Roose et al. 2007; HarvEST

2014; Alpert et al. 2011). The marker at 66.9 cM

(SCRI_RS_6727, Table 3), also within LD block 2H-

4, that associated with total number of ears both under

elevated temperature and elevated [CO2] co-localizes

with a putative peroxidase 18-like protein. Several

peroxidases have been found involved in abiotic and

biotic stress responses. Elevated temperature as an

abiotic stressor has previously been found to decrease

ear production (Köszegi et al. 2005). Here, we found

the marker SCRI_RS_6727 in LD block 2H-4 to be

associated with total number of ears under elevated

temperature and therefore potentially beneficial in

marker-assisted selection for maintaining the produc-

tion of ears under elevated temperature. However,

further studies are necessary to verify whether the

maintained ear production is also accompanied by

grain yield.

Climate stability of yield and aboveground vegeta-

tive biomass was estimated by two stability measures

(S2 and W2); however, few marker associations with

stability were identified. This might suggest that

climate stability is highly complex with interaction

of numerous genes. An accession with a low value of

S2 was interpreted as environmentally stable, a

precious trait under future climate variability. The

two markers associated with either S2 of grain yield or

HI in LD block 7H-12 co-localize with the ubiquitin-

conjugating enzyme 18 (Alpert et al. 2011). With

ubiquitin being involved in protein degradation, the

found co-localization with this ubiquitin enzyme

indicates the involvement of protein turnover in

stability to climate variation. However, the complexity

of the processes that govern yield will make further

interpretation highly speculative; this complexity

might also be the reason for the scarcity of published

results on QTL for stability in barley (Kraakman et al.

2004; Lacaze et al. 2009). However, not least due to

the threat of climate change, this area of research is

developing (reviewed by Korte and Farlow 2013)

valorizing markers-trait associations for stability.

Marker-trait associations in the two-factor

treatment differ from those in the constituent

single-factor treatments

It could be assumed that a marker or LD block

associated with a trait under either elevated tem-

perature or [CO2] would also be associated with this

trait, when both of these single factors were elevated

simultaneously. However, only three markers were

found to be associated with phenotypes in the two-

factor treatment, while 31 marker-trait associations

were identified under the corresponding single-factor

treatments. This difference in number of marker-trait

associations suggests the responses in the combined

treatment to involve the interaction of multiple genes,

and therefore, associations cannot easily be detected

by GWAS. Interestingly, only in one case, LD block

2H-6, two linked markers were found for both the two-

factor treatment and one of the component single-

factor treatments viz. temperature, however, not with

the same production parameter (DGY, temperature

and DET, two-factor; Table 3). The absent overlap of

marker traits from single-factor and their two-factor

treatments may be attributable to the opposite effects

of elevated temperature and [CO2] on plant production

(Table 2). The apparent absence of similarity in

genetic regulation of effects in the combined and the

Mol Breeding (2015) 35:84 Page 11 of 14 84

123



single-factor treatments emphasizes the need for

multifactor studies, when the need is to identify

marker-phenotype association for multifaceted future

climate conditions.

Preferably, association studies should be performed

under field conditions with elevated climatic factors.

However, multifactor field studies including tem-

perature are challenging in set-up. Despite several

attempts and developments of technologies, it is

difficult to increase temperature more than 1–2 �C

under field conditions without several redundant

experimental effects (Kimball et al. 2007; Bruhn

et al. 2013). For GWAS, an appropriate—and large—

quantity of accessions must be included and that

defines the size of the facility needed to manipulate the

climate and further excludes several enclosure fa-

cilities due to size.

In conclusion, our results have revealed potential

genome sites to be exploited in the breeding of climate

resilient cultivars. We have identified SNP candidates

for grain yield and other production parameters under

conditions of elevated temperature, [CO2] and [O3] for

further use in marker-assisted selection.
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