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Abstract Selection for drought-tolerant cereal vari-

eties has successfully moved to screening for grain

yield under stress. Grain yield is the culmination of the

process of grain filling, which in turn is closely linked

to flag leaf functionalities. For grain filling to occur

under drought, either a relatively uncompromised or a

favorably reprogrammed functioning of the flag leaf is

required. However, knowledge is limited on how

effectively flag leaves can function under stress con-

ditions or what adaptations could allow such func-

tioning. The information on rice flag leaf function and/

or adaptation under drought is critically limited, while

rice continues to be the crop with the highest potential

to alleviate hunger and poverty. In fact, other cereal

crops are equally important in maintaining regional

food baskets and these too suffer intermittently from

different intensities and kinds of drought. Patchy

information is available on the morpho-anatomical,

physiological and biochemical aspects of flag leaves

under drought; even this is dispersed within different

cereals, with studies predominantly on wheat. Hence,

a reasonable understanding of the function of flag

leaf under drought is lacking for any cereal. Impor-

tantly, very few reports exist on the molecular and

mechanistic understanding of any known adaptations

of flag leaf function under drought. Here we review the

existing information on cereal flag leaf function under

drought and highlight the need to better understand its

characteristics/adaptations, especially at the molecular

level. Novel drought-tolerant breeding material gen-

erated through selection for yield under stress can be a

useful resource to underpin the mechanistic basis of

the contribution of flag leaves to such yield. Improved

knowledge can then be used for providing dependable

markers (morphological, anatomical, physiological,

biochemical and/or molecular) for robust flag leaves,

leading to efficient and judicious use of resources for

screening broader germplasm collections.
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Introduction

Frequent major crop shortfalls in the vast drought-

prone areas of Asia, Africa and other continents

threaten food security, human health and the liveli-

hood of millions of people. Uncertain threats associ-

ated with climate change further aggravate the situation.

At least 23 million ha of rice area (20 % of the total

rice area) in Asia are subject to drought of differ-

ent intensities (Pandey et al. 2007). To meet the
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ever-growing demand for rice by 2030, an increase of

at least 35 % in yield is needed (Bouman et al. 2007;

Ainsworth 2008). Since rice yield in the irrigated

ecosystem has apparently plateaued for many years

(FAO 1996), breeders are looking into new horizons of

yield enhancement in the rain-fed ecosystem. How-

ever, the rain-fed ecosystem is obviously most prone

to mild, moderate or severe drought. Drought of

different intensities at different growth stages affects

yield through separate routes (Pantuwan et al. 2002;

Pirdashti et al. 2004). For example, late-season

drought coinciding with the rice booting to heading

stage affected plant height and the photosynthetic rate

of the flag leaf, thus leading to an overall significant

loss in yield (Ji et al. 2012).

To leverage untapped rice yield potential in the rain-

fed ecosystem, generating drought-tolerant rice geno-

types has received a new impetus. Drought tolerance is

a complex trait which is a combined function of various

morphological, physiological and biochemical char-

acters (Table 1). This presents the challenge of

improving multiple characters in coordination: for

example, the physiological and biochemical nature of

water use along with improvement in nitrogen and

carbon assimilation and mobilization under drought

stress (Anjum et al. 2011; Serraj et al. 2011; Farooq

et al. 2009, 2010). Importantly, however, not all

characteristics known to be useful for drought toler-

ance need to be manipulated in a particular scenario

because different sets of characteristics manifest as

useful in specific plants and locations (Tardieu 2012).

The approach of direct selection for yield under

reproductive stage stress initiated in maize (Bolanos

and Edmeades 1993; Quarrie et al. 1999; Araus et al.

2012), and its success in the identification in rice of

large-effect quantitative trait loci (QTL) for yield

under drought (Swamy and Kumar 2012) calls for

updating of knowledge on the role of the flag leaf as a

major source of assimilates for grain filling. This is

especially relevant due to the lack of comprehensive

information on the importance of the flag leaf in

drought tolerance of cereals.

Various characteristics or their combinations in the

flag leaf have been used or proposed for selecting

drought-tolerant plant, for example, higher flag leaf

area, relative dry weight, excised-leaf weight loss,

residual transpiration, leaf glaucousness, canopy tem-

perature depression (CTD) and chlorophyll content; late

senescence; and higher carbon isotope discrimination

(CID). Despite the recognition of the importance of

cereal flag leaves, little is known about hormone

homeostasis in flag leaves under stress. Also, practically

no information is available on flag leaf-specific gene

promoters, constitutive or stress-inducible. Effectively,

there is a major gap in our understanding of the

biochemical pathways, genes and genetic networks that

are affected in the flag leaf under stress to alter the

signaling, synthesis, accumulation, transport and use-

efficiency of primary resources.

In this report, we review the morpho-anatomical,

physiological and biochemical adaptiveness of the

cereal flag leaf for its role in grain filling under drought.

We highlight particular loci-, gene- or genome-based

studies conducted with particular reference to flag

leaves. Finally, we assess the selection or engineering

of flag leaf characteristics as a route to drought-tolerant

cereals.

Flag leaf to the fore

Screening breeding lines under reproductive-stage

drought is now popular and successful in rice, as

demonstrated through the identification of some large-

effect QTL for grain yield under stress. In cereals, grain

yield is mainly dependent on the photosynthetic

source–sink relationship dictating changes in carbo-

hydrate synthesis, accumulation and partitioning. The

top two leaves, including the flag leaf, are considered

the primary source while the developing grains are the

primary sink (Sicher 1993). In rice, the top three leaves,

including the flag leaf, export assimilates to the panicle

(Yoshida 1972). Photosynthesis in these three leaves

contributes the major part of the total grain carbon

content during grain filling. During drought, however,

the culm, internode and flag leaf sheath (Fig. 1) are

thought to play an increasingly important role as

sources of carbohydrates for grain filling (Garcia et al.

2010; Slewinski 2012). Nakano et al. (1995) observed

that when rice panicles were removed at anthesis, flag

leaf senescence and the decrease in the rate of flag leaf

photosynthesis was retarded. This led to an accumu-

lation of photosynthates in shoots and roots, increasing

their weight up to 200 and 150 %, respectively. Similar

delayed senescence of the flag leaf was observed in

wheat when spikelets were removed (Srivalli and

Khanna-Chopra 1998). In panicle-removed rice,

there was no appreciable rise in starch or sucrose
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accumulation in the flag leaf, suggesting an active

transport of assimilates out of the flag leaf. However,

more recently, rice panicle removal was shown to

increase the glucose content in leaves (Shimono et al.

2010). These results suggest that translocation of

photosynthates away from the flag leaf is a largely

irreversible default pathway and that bioconversion of

assimilates is affected in the flag leaf under stress.

Shoot culms, leaf sheaths and even roots becoming

sinks was also observed by Kato et al. (2004) in sink-

limited rice plants. In wheat, defoliation of the flag leaf

blade increased the contribution of assimilates to grain

from the stem and the chaff under normal conditions

(Alvaro et al. 2008), confirming the observations of

Garcia et al. (2010) in rice that the stem and sheath can

be an important source of assimilates. Overall, removal

of the flag leaf adversely affected grain yield under

normal or water-limiting conditions in cereals such as

rice (Nakano et al. 1995; Hirano et al. 1998; Saitoh

et al. 2002), wheat (Cruz-Aguado et al. 1999; Ali et al.

2010) and barley (Jebbouj and El Yousfi 2009). Also,

the net CO2 assimilation rate (PN) in flag leaves during

water deficit displayed a strict correlation with the

drought sensitivity of wheat (Saeedipour and Moradi

2011) and rice genotypes (Ji et al. 2012). Such studies

emphasize that morpho-anatomical, physiological,

biochemical and molecular characteristics of the

cereal flag leaf could be an important component of

predicting and/or generating drought tolerance in

cereal crops.

Morpho-anatomical characteristics of the flag leaf

under drought

Flag leaf morphology

Many studies indicate the importance of simple

morphological characteristics such as shape, size,

angle, color and viability of the cereal flag leaf in

relation to yield. Results linking yield to various traits

of the rice plant established a positive correlation with

flag leaf morphology, mainly considering flag leaf area

(18.5–44.1 cm2) using 24 rice varieties (Sedeek et al.

2009) or flag leaf length to width ratio (mean = 21.2)

using 50 accessions of upland rice (Sohrabi et al.

2012). High heritability and genetic advance were

noted in both studies of these flag leaf traits. A positive

correlation between rice flag leaf area and yield was

also noted by Li et al. (1998) and Yue et al. (2006).

Similarly, in barley (Yap and Harvey 1972), oat

(Peltonen-Sainio 1990) and wheat (Simon 1999; Quarrie

et al. 2006), flag leaf area was an important component

related to yield. Yap and Harvey (1972) also noted

high heritability and genetic advance of morpholog-

ical traits in barley as in rice above, while Simon

(1999) noted slow genetic advance in wheat. Flag leaf

area was shown to be a reliable morpho-physiological

marker for drought tolerance in 10 sorghum cultivars

(Ali et al. 2009). Similarly, flag leaf length and

width were positively correlated to rice yield under

drought in 30 cultivars (Abarshahr et al. 2011). Fifty

Table 1 Various characters affecting drought tolerance

Morphological Physiological Biochemical

Vigor Transpiration rate Accumulation of proline

Leaf and flower emergence Water-use efficiency Accumulation of polyamine

Coleoptile length Stomatal conductance Accumulation of trehalose

Leaf area Canopy temperature Accumulation of LEAa and dehydrin proteins

Leaf rolling Osmotic adjustment Accumulation of shock proteins hspb or csp

Wax content Relative water content Cell membrane integrity

Awns Leaf turgor Antioxidant actvity

Stomatal density Photosynthetic rate Nitrate reductase activity

Tillering Photosynthate storage

Root characteristics Nutrient remobilization

Cell membrane stability

Based partly on Ali et al. (2009)
a LEA late embryogenesis proteins
b Heat or cold shock proteins (hsp or csp)
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accessions of upland rice evaluated for 12 different

traits, including growth, yield and yield components,

also recorded flag leaf length to width ratio as

significantly correlated to yield (Sohrabi et al. 2012).

The erect nature of the rice flag leaf as well as its

stay-green trait are recommended for yield but the

contribution of these two traits to drought tolerance is

not clear. One of the major concepts behind the

development of the rice New Plant Type (NPT) was

the erectness of the flag leaf rising up over the

developing panicles and a sustained photosynthesis

therein (Virk et al. 2004). For rice, erect flag leaves

were highly recommended for better yield by Kropff

et al. (1994) but flag leaf angle was not seen to be

important by Sohrabi et al. (2012). Interestingly, in the

study of Yap and Harvey (1972) on barley, flag leaf

angle was not associated with yield, similar to the

results obtained by Sohrabi et al. (2012) for rice.

However, for wheat Simon (1999) found flag leaf

angle to be important in yield.

With regard to flag leaf viability, programmed flag

leaf senescence of monocarpic plants is a highly

regulated process during which cells undergo orderly

changes in gene expression, metabolism and cell

Fig. 1 Schematic details of rice flag leaf, showing traits useful

for drought tolerance. A wider (WL), thicker, actively photo-

synthesizing, late-senescing (stay-green) flag leaf is recom-

mended. A tall erect flag leaf growing over the panicle with a

35� angle between the panicle and the flag leaf (depicted here as

the arrow between the sheath and the pedicle of the three grains)

is recommended. The larger inset of the transverse section of the

wide leaf (WL) blade shows larger bulliform cells (BC), higher

stomatal density (S), more and closely spaced veins (CSV) and a

thicker epidermis (E; smaller inset), with stellate or filamentous

epicuticular wax (ECW) leading to glaucousness. The flag leaf

sheath, along with the node and culm, is known to become an

important source of carbohydrates under drought. Its length,

thickness, dry weight, glaucousness etc. are now considered

important characteristics for it to be a source of carbohydrates

for grain filling during drought. Biochemical and molecular

understanding of the morpho-anatomical and physiological

characteristics of the flag leaf under drought is critically lacking.

An improved knowledge of such aspects can lead to biochemical

and genetic markers for selecting for effective flag leaves.

Figure generated by Dr. Berta Miro of CESD, IRRI
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structure. One of the early targeted and most significant

changes in cell structure is the breakdown of the

chloroplast through autophagy (Wada et al. 2009),

resulting in a change in flag leaf color from green to pale

yellow. Catabolites from the degradation of chlorophyll

and other macromolecules are converted into exportable

nutrients supplied to the developing florets (Lim et al.

2007). The typically oblong stroma and grana thylakoids

of fully expanded flag leaves change to spherical and

swollen thylakoid membranes during natural senescence

(Zhang et al. 2010). Chen et al. (2011) demonstrated that,

under drought stress, the chloroplast and thylakoid of

drought-susceptible barley genotype Moroc9-75 chan-

ged significantly to more aberrant conformations than

those of the drought-tolerant genotype HS41-1. Treat-

ment with ABA, a commonly up-regulated hormone

during drought stress, also promoted unstacking of

thylakoid membranes, a decrease in chloroplast size and

rupture of the chloroplast envelope in rice leaves (Hurng

et al. 1988). Additional Ca?? was shown to change the

leaf senescence in Rumex obtusifolius L. as a result of the

role of calcium in maintaining cellular membranes

(Poovaiah and Leopold 1973). Similarly, the mitochon-

drial membrane and cristae are affected under drought

stress. Flag leaf stay-green trait, which is the delay in or

reduced rate of senescence as it approachesmaturity, was

not seen to have any particular effect on yield in barley

(Yue et al. 2006). However, delayed senescence of the

flag leaf was recommended by Kropff et al. (1994) for

better yield because of a concomitant prolonged photo-

synthetic activity. Nitrogenous fertilizer application later

in the growing season adds to the stay-green trait through

protection of RuBisCO from degradation which con-

tributes to yield increase from greater grain weight

(Cassman et al. 1992) in an irrigated environment.

Earlier, high and stable yield under drought in stay-green

germplasm was reported for sorghum (Rosenow et al.

1983). A positive correlation between flag leaf stay-

green and yield under drought was also shown for maize

(Banziger et al. 1999) and wheat (Hafsi et al. 2000;

Verma et al. 2004). The positive correlation of flag leaf

stay-green traits with yield was confirmed in wheat by

Blake et al. (2007).

Flag leaf glaucousness

A morphological characteristic that leads to differ-

ences in traits such as reduced epidermal conductance

and surface reflectance of light is leaf glaucousness

(Fig. 1). Although associated with epicuticular waxes,

degree of glaucousness is not strictly associated with

the amount of wax per se. For example, there was no

direct relationship between flag leaf glaucousness and

the amount of epicuticular waxes in barley (Larsson

and Svenningsson 1986; Febrero et al. 1998), oat

(Svenningsson and Liljenberg 1986) or wheat (Araus

et al. 1991). In glaucous barley lines, the flag leaf

waxes tended to increase from irrigated to rain-fed

conditions while the opposite happened in non-glau-

cous lines (Febrero et al. 1998). Reflectance as well as

the amount of epicuticular wax of the flag leaf in wheat

increased under drier conditions (Johnson et al. 1983)

and glaucous wheat lines exhibited more favorable

physiological traits for drought tolerance than non-

glaucous lines (Richards et al. 1986). Glaucous flag

leaves may afford an advantage for drought tolerance

through a still unresolved quantitative combination of

a reduction in both transpiration rate and photosyn-

thesis (Richards et al. 1986; Febrero et al. 1998). Leaf

glaucousness is associated with an increase in yield in

wheat (Johnson et al. 1983; Richards et al. 1986) and

barley (Febrero et al. 1998) but the mechanisms

invoking changes in the rate of transpiration and

photosynthesis remain to be better understood. A QTL

with a positive correlation between wheat flag leaf

glaucousness and yield was recently identified (Ben-

nett et al. 2012). Differences in wax load pattern and

degree of crystallization as related to surface reflec-

tance and in turn related to carbon and water use/

uptake efficiency may be explored further. The

structure of waxes lining the surface of the flag leaf

seems to be important since filamentous structures of

the waxes were seen to increase reflectance more than

the classical plate-like structures (Juniper and Jeffree

1983; Blum 1988). Epicuticular wax shapes associated

with glaucousness were explored at the ultrastructural

level in sorghum cultivars that exhibited stellate or

filamentous wax deposition (Tarumoto 2005). Wax

crystal morphology such as stellate, rods, ribbons,

tubes, platelets or branched versions of these struc-

tures was recently reviewed in relation to their

chemical composition and the effect of wax morphol-

ogy on surface reflectance was discussed (Shepherd

and Griffiths 2006).

It is important to distinguish between leaf glossi-

ness and glaucousness. Leaf glossiness is due to

intracuticular waxes while glaucousness is due to

epicuticular waxes on the leaf surface. Buschhaus and
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Jetter (2011) provide an extensive review of the

molecular differences between the two kinds of waxes

in a number of plants; however, only one example of

cereals (Secale) is reviewed, indicating a knowledge

gap. Within cereals, more information is available on

leaf glossiness, including the characterization of non-

glossy mutants that lack intracuticular waxes (Kunst

and Samuels 2009), than on leaf glaucousness. For

example, in rice, there is practically no information on

flag leaf glaucousness while non-glossy mutants have

been well characterized (Qin et al. 2011). However,

the correlation between epicuticular wax and a

reduction in epidermal conductance, in relation to

drought tolerance in rice, was recently explored in

genotypes of Oryza sativa and O. glaberrima and in

their interspecific progeny (Saito and Futakuchi 2010).

In flag leaves of wheat, the wax deposits on the adaxial

side covered the surface of the leaf more densely and

uniformly than those on the abaxial side (Araus et al.

1991). Sufficient genotypic variation was found in

epidermal conductance for it to be recommended as a

breeding trait (Babu et al. 2003; O’Toole 2004).

However, information on the direct relationships

between the amount, composition and structure of

surface waxes and epidermal conductance is still

limited (Shepherd and Griffiths 2006). This is espe-

cially so for the flag leaf and flag leaf sheath.

Flag leaf rolling

Leaf rolling is another morphological trait easily

scored and closely linked to drought response. Leaf

rolling is hydronasty that leads to reduced light

interception, transpiration and leaf dehydration (Ka-

dioglu and Terzi 2007). Although leaf rolling occurs

under abiotic as well as biotic stress conditions

(Kadioglu et al. 2012), it is mostly under the former

conditions that it has been used as a screen for tolerant

genotypes. It may help in maintaining internal plant

water status (Subashri et al. 2009). If cell turgor is

maintained under drought stress, it results in delayed

leaf rolling. However, increased leaf rolling under

severe stress would have the advantage of preventing

water loss and radiation damage. Variation in leaf

rolling among genotypes has a genetic basis and QTL

associated with leaf rolling were reported for pearl

millet (Sehgal et al. 2012) and rice (Price et al. 1997;

Subashri et al. 2009; Salunkhe et al. 2011). Flag leaf

rolling as a drought-adaptive mechanism was also

seen in wheat (Sarieva et al. 2010). Anatomical and

molecular aspects of leaf rolling were recently

reviewed by Kadioglu et al. (2012). Anatomically,

leaf rolling occurs through changes in the water status

of bulliform, hypodermal and schlerenchyma cells.

Flag leaf anatomy

Water stress during flag leaf development distinctly

affects flag leaf anatomy. Leaf area and thickness were

decreased but, interestingly, increased stomata, bulli-

form cells and total cell wall were noticed along with

fewer intermediate veins. The importance of smaller

intermediate veins in maintaining high photosynthetic

rates was highlighted in a comparison of leaf anatomy

of plants with C3 and C4 photosynthesis (Ueno et al.

2006). A decrease in leaf thickness was due to a

reduction in both the number and size of mesophyll

cells. These changes in flag leaf anatomy were

irreversible and indicated the development of leaf

xerophily. Certain aspects of this phenomenon could

be directly related to water conservation; that is, an

increase in cell wall due to increased intermediate

veins may reduce transpiration. Hence, a reduction in

size of the flag leaf through such anatomical changes

might lead to drought tolerance. However, it was

argued that higher flag leaf area is correlated with

drought stress tolerance and is an important compo-

nent of yield. Enlarged flag leaves were also seen to

increase grain size and yield per plant in rice, although

through a minor delay in heading (Yan et al. 2011).

The mesophyll cells of the rice flag leaf sheath were

characterized anatomically to show an active photo-

synthetic apparatus, including chloroplast number per

cell, comparable with that in the leaf blade (Guo et al.

2011). However, a clear decrease in photosynthetic

capacity was noticed, going from the top (attached to

the blade) to the bottom (attached to the culm) along

the sheath (Ishimaru et al. 2004). The vascular bundle

elements were more compact and smaller at the

bottom of the sheath, with mesophyll cells also

arranged compactly around the vascular bundles.

The top part of the sheath exhibited larger vascular

elements and relatively looser and fewer mesophyll

cells. Metabolically, there was a clear transition from

the top part being a source organ to the lower part

being a sink organ (Ishimaru et al. 2004).

Investigation of winter wheat genotypes with

contrasting drought stress tolerance revealed that the
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total number of stomata per leaf was lowest in

drought-tolerant varieties (Deák et al. 2011). Among

three Triticum species, the flag leaves with the highest

rates of photosynthesis were also the thickest (Parker

and Ford 1982) and had closely-spaced veins near the

mesophyll cells. Relatively more air-filled spaces were

present in these leaves, providing the highest ratio of

mesophyll cell surface exposed to such air-filled

spaces per unit leaf area. Wheat flag leaf net photo-

synthesis decreased with a decrease in leaf area, leaf

width and mean area per mesophyll cell. However, it

increased with increased number of veins and stomatal

frequency per mm of leaf. The relative importance of

these anatomical features for rates of photosynthesis

was not determined separately. Wheat genotypes

known for their drought resistance had more veins

per unit area in the flag leaf (Ahmed et al. 2004).

Diploid, tetraploid and hexaploid species of Triticum

and Aegilops were investigated for the relationship

between flag leaf anatomy and photosynthetic rates

per unit leaf area at light saturation. The diploid

species that showed maximum photosynthetic rates

had thinner leaves, which contained less chlorophyll

and less dry matter per unit area (Kaminski et al.

1990). However, the ratio of mesophyll cell surface

area to per unit leaf area was not substantially different

between the species in this study. The diploid species

were seen to be comparatively more drought-tolerant

(Molnár et al. 2005), perhaps due to higher compact-

ness of mesophyll cells in the leaf blade (Sasahara

1982), which may reduce the average diffusion path

length to carboxylation sites (Kaminski et al. 1990).

Study of a wheat QTL revealed a functional associ-

ation of flag leaf width with yield under drought. It was

demonstrated that cell number rather than cell size of

the leaves was responsible for the increase in flag leaf

width (Quarrie et al. 2006). Although flag leaf width

increased in QTL near-isogenic lines in comparison

with QTL-negative lines, the increment was variable

across multiple locations, which is indicative of a

genotype 9 environment (G 9 E) interaction for flag

leaf anatomy. Other QTL for wheat yield under

drought were also seen to exhibit G 9 E interaction

(Snape et al. 2007). In contrast, rice lines with a large

culm and increased flag leaf length and width were

associated with increased bundle sheath and vascular

bundle area. Larger xylem and phloem vessels were

present as well as increased interveinal distance (Wu

et al. 2011c). The plants with a large culm and flag leaf

exhibited fewer tillers, larger panicles and more and

heavier grains per panicle but lower seed-set and a

higher number of blighted grains. The total yield of

such plants was not significantly different from that of

normal-culm plants. Although no data were presented

for their performance under drought, the increased

interveinal distance may not be a suitable character-

istic, while increased leaf photosynthetic rate and

favorable culm transport characteristics may be suit-

able. However, it was shown that, despite similar

photosynthetic rates and flag leaf area, the difference

in carbohydrate storage capacity of the flag leaf sheath

contributed substantially to a yield increase (Ishimaru

et al. 2004). Soluble carbohydrate reserves in the

wheat stem were also positively correlated with yield

under drought conditions (Snape et al. 2007).

Physiological traits of flag leaves under drought

Photosynthesis serves as the main metabolic process

contributing to grain filling, but photoassimilates

stored pre-anthesis are the resource for grain filling

(Gebbing and Schnyder 1999). Over 80 % of the total

carbohydrate accumulated in rice grains is produced

by the top two leaves, which includes the flag leaf

(Gladun and Karpov 1993). Under water stress at

tillering stage, stem internodes and the flag leaf sheath

also become a source of photoassimilates for grain

filling (Garcia et al. 2010). The leaf sheath as a source

of carbohydrates for rice grain filling was also invoked

when a relationship could not be established between

the rate of grain filling and the rate of photosynthesis

during the rapid grain-filling phase (RGFP). However,

the flag leaf itself could be the major source of

photoassimilates accumulated in stem culms and leaf

sheaths. This was evident when a female sterile rice

line was used to measure the rate of photosynthesis in

the flag leaf during the ripening stage, in comparison

with a normal variety (Kato et al. 2004). In wheat, too,

the transport of assimilates from vegetative organs to

kernels increased under water stress and was higher in

the drought-tolerant genotype (Plaut et al. 2004).

Estimation of the relative contribution of pre- and

post-anthesis assimilates to grain yield in wheat

indicated that stability in yield and drought tolerance

was characterized by substantial mobilization of pre-

anthesis assimilates. In the drought-resistant wheat

cultivar Hongwangmai, remobilization of pre-anthesis
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assimilates to the grain declined under drought while a

higher net photosynthetic rate was maintained in the

flag leaf. In contrast, remobilization increased in the

drought-susceptible cultivar Haruhikari, suggesting an

early senescence of the flag leaf, which in turn led to

lower yield under drought (Inoue et al. 2004). The role

of flag leaf sheaths in storing and later transporting

assimilates to the developing grains seems to be more

important than functioning as photosynthetic organs

after the onset of senescence. It is suggested that the

accumulation of carbohydrates in leaves might some-

how trigger senescence simultaneously in the flag leaf

blade and sheath. An effective translocation system in/

of the flag leaf could avoid carbohydrate accumula-

tion, in turn avoiding onset of senescence. The

question that remains to be addressed is: which is

better for grain filling under drought, an increased rate

of flag leaf photosynthesis or an increased rate of

assimilate delivery from the sheath?

The source for grain filling under drought may be

rerouted from the flag leaf to other vegetative organs, but

the flag leaf suffers distinctly under stress, not least

through reduced photosynthesis. Water deficit led to a

reduction in the net CO2 assimilation rate in flag leaves

of the susceptible variety earlier than in the tolerant

variety (Saeedipour 2011). Signs of water deficit-

associated senescence, that is, loss of chlorophyll and

soluble proteins, were also more and earlier in the

susceptible variety. In the tolerant variety, fructose

content increased in the culm and peduncle but fructan

content fell, apparently due to rerouting assimilates to

the grain in the form of fructans (Saeedipour 2011).

Another study using the young flag leaves of fully-

grown wheat recombinant inbred lines (RILs) showed

that drought stress significantly decreased the photo-

synthesis rate while net photosynthesis and stomatal

conductance were found to be more sensitive than

intercellular CO2 concentration of the flag leaf. In rice,

Guóth et al. (2009) did not find a strict correlation

between drought sensitivity of the genotypes and net

CO2 assimilation rate or chlorophyll a fluorescence

parameters in flag leaves during soil water deficit.

However, a physiological study in two contrasting rice

genotypes with respect to drought stress susceptibility at

the reproductive stage revealed a more severe reduction

in the osmotic potential of leaves in drought-susceptible

Zhenshan97B than in drought-tolerant IRAT109 (Ji

et al. 2012). The photosynthetic and transpiration rates

along with stomatal conductance of the rice flag leaf

declined significantly under severe drought stress while

the canopy temperature was significantly higher.

Drought stress impaired photosystem II (PS II)

activity in the flag leaf under high light/energyconditions

in both rice (Pieters and El Souki 2005) and wheat (Yang

et al. 2006). Studies with different species have shown

that PS II is rather tolerant of water deficit. This implied

that, with high solar energy input in tropical environ-

ments, down-regulation of PS II could be an important

factor limiting photosynthetic capacity and yield. A

decrease in photosynthetic activity with the onset of

water deficit includes decreased photochemical effi-

ciency of PS II, diffusional limitations due to early

stomatal closure, a reduction in amounts and activities of

key photosynthetic enzymes, altered carbon metabolism

shown by changes in leaf sugar content and composition,

and changes in activities of key enzymes of carbohydrate

metabolism, especially when drought is combined with

light stress. Total flag leaf photosynthesis and its duration

appear to be more relevant than net photosynthesis of the

plant for grain yield under drought. The flag leaf

possesses higher tolerance or avoidance of dehydration

than the lower leaves. The photosynthesis rate of the flag

leaf was found to be significantly higher and less affected

by drought in resistant wheat cultivar Hongmangmai

(Inoue et al. 2004). The intercellular CO2 concentration

in the flag leaf of the resistant cultivar was lower than that

of the susceptible cultivar in spite of a similar rate of

reduction in stomatal conductance, which might be due

to higher photosynthetic rate. The flag leaf has a lower

water potential, solute potential and turgor pressure than

the lower leaves but has a high rate of photosynthesis,

nitrogen assimilation and dry matter per unit area. In a

study of the yield of 30 wheat genotypes across three

irrigation regimes of severe, moderate and no water

deficit, three physiological traits of the flag leaf, carbon

isotope discrimination (CID), flag leaf senescence (FLS)

and canopy temperature (CT), together explained 92 %

of the total phenotypic variation in grain yield. Flag leaf

CID was positively correlated with grain yield whereas

FLS and CT were negatively correlated (Li et al. 2012).

Biochemical changes in flag leaves under drought

Hormones

Extensive literature is available on hormonal transi-

tions in plants under drought, but limited information
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exists on such changes specifically within the flag leaf.

Considering its importance in source–sink transition

under drought, it can be predicted that flag leaves

would show substantial, and most likely dynamic,

changes in the level of different hormones.

The differential response of cereal genotypes to

water stress was associated with differential abscisic

acid (ABA) concentration in the flag leaves. Between

drought-tolerant and susceptible wheat genotypes,

Nayyar and Walia (2004) saw higher content of ABA

in flag leaves of the tolerant genotype while Saeedi-

pour and Moradi (2011) saw higher ABA content in

flag leaves of the susceptible one. The discrepancy

may be the result of an underlying dynamic ABA

homeostasis within and between the flag leaf and the

developing grain under drought (Seiler et al. 2011;

Govind et al. 2011). Such homeostasis may be

influenced by source–sink transition at the develop-

mental stage at the time of drought application and at

the time of sampling the source/sink tissues for

analysis. Progressive accumulation of leaf ABA with

more severe drought was also shown in wheat (Ali

et al. 1999).

Under terminal drought stress, ABA and its degra-

dation products (phaseic acid and diphaseic acid)

increased in barley flag leaves and 19 of the 41 ABA

metabolism genes exhibited differential regulation in

flag leaves (Seiler et al. 2011). For rice under drought

stress, increased ABA in the peduncle was shown to be

detrimental to peduncle elongation, thus leading to

sterility (Muthurajan et al. 2011). The adverse effect of

ABA on the peduncle could be reversed with external

application of the growth hormone gibberellic acid.

ABA is known to positively regulate abiotic stress

tolerance by affecting stomatal guard cells, but it

negatively affects growth by impairing photosynthe-

sis. Such effects of ABA on plant growth, develop-

ment and stress response were recently reviewed

(Sreenivasulu et al. 2012), stressing the contrapuntal

role of ABA during drought stress.

Cytokinins regulate many important aspects of

plant development in aerial and subterranean organs

and also have roles in the response to abiotic stress. A

reduced level of cytokinins in the leaf might induce the

onset of senescence (Noodén et al. 1990). Hormone-

induced changes in source–sink relationships have

been proposed to improve the drought tolerance of rice

(Peleg et al. 2011). Cytokinin-mediated source–sink

modifications using the cytokinin biosynthesis gene

isopentenyltransferase (IPT) were reported to improve

drought tolerance and increase grain yield in rice

under water stress (Peleg et al. 2011). Song et al.

(2012) proposed a coordinated regulation of cytokinin

gene expression during flag leaf development. Cyto-

kinins act antagonistically to ABA and their content

goes down under drought. Hormonal cross-talk and

hence effects of the differential content of one

hormone on another are becoming increasingly rec-

ognized; for example, the cytokinin–auxin cross-talk

and the effect of ethylene on auxin response factors is

known (Peleg and Blumwald 2011; Kohli et al. 2013).

Evolution of the gaseous hormone ethylene

increased under drought in the growing flag leaves

of wheat and concomitantly polyamine content of the

flag leaf also increased (Zhenzhu et al. 1995). Ethylene

reinforces the drought effect of shortening the grain-

filling period and reducing grain weight (Beltrano

et al. 1999). Such effects could be reversed by

application of the ethylene synthesis inhibitor amino-

ethoxyvinylglycine. Song et al. (2012) proposed that

the high b-glucosidase gene activity at the anthesis

stage could lead to the release of cytokinins from their

conjugated molecules in the leaf and provide a source

of cytokinins for the developing carpels/seeds.

Osmolytes, antioxidants and proteases

Osmoregulators such as polyamines, proline, glycine-

betaine, total sugars and reducing sugars increase in

the flag leaf under drought and such increases were

greater in tolerant genotypes of wheat (Szegletes et al.

2000; Nayyar and Walia 2004). With such osmoreg-

ulators, the tolerant genotypes had higher water

content in their flag leaves and grains. Wheat flag

leaves of tolerant genotypes exhibited relatively

increased sucrose and proline accumulation under

chemically induced drought (Sawhney and Singh

2002). Water stress also had a significant effect on

flag leaf soluble sugar and proline content in rice (Yan

et al. 2012). Drought-resistant sorghum genotypes

accumulated a higher concentration of proline, which

contributed to osmotic adjustment and turgor mainte-

nance under water stress (Castro Nava et al. 2003).

Similarly, the resistant sorghum lines accumulated

more glycine-betaine in their flag leaves (Monyo et al.

1992). Foliar application of glycine-betaine could

maintain higher photosynthetic efficiency in wheat

flag leaves under drought (Ma et al. 2006; Zhao et al.
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2007) and such leaves also maintained higher antiox-

idative enzyme activities and suffered less oxidative

stress. Under drought, flag leaves exhibit up-regula-

tion/accumulation of antioxidative enzymes such as

superoxide dismutases, catalases, peroxidases and

dehydroascorbate reductases in wheat (Osipova et al.

2011), rice (Ji et al. 2012) and millet (Dai et al. 2011).

When flag leaves of seven different wheat genotypes

were examined for four separate antioxidant enzyme

activities under four water regimes, the results

revealed up-regulation of at least two antioxidant

enzymes under low water conditions in every geno-

type (Hameed et al. 2011). Drought-tolerant genotypes

exhibited enhanced Cu/Zn-superoxide dismutase and

peroxidase activities while the susceptible ones had

enhanced Mn-superoxide dismutase and catalase

activity (Simova-Stoilova et al. 2009).

The antioxidant system generally protects mem-

branes by avoiding lipid peroxidation, as judged by the

content of malondialdehyde (MDA), a degradation

product of polyunsaturated membrane lipids. In rice, it

was shown that the severity of drought directed the

kind and extent of antioxidant enzyme/system, includ-

ing ascorbic acid, tocopherol and glutathione, thus

affecting hydrogen peroxide and MDA content, total

membrane lipids and index of unsaturated fatty acids

(IUFA) (Liu et al. 2011). These, in turn, were a

measure of membrane damage under drought. Such

membrane damage is typical of tissue senescence,

which is also accompanied by protein breakdown by

proteases. Indeed, water stress enhanced proteolytic

(endopeptidase and exopeptidase) activities in the

wheat flag leaf (Srivalli and Khanna-Chopra 1998;

Martinez et al. 2007). A decrease in soluble protein

content is a measure of senescence and this was shown

to occur under drought in the flag leaves of wheat

(Hameed et al. 2011; Saeedipour and Moradi 2011)

and millet (Dai et al. 2011). The drought-susceptible

wheat genotype exhibited comparatively more protein

degradation (Saeedipour and Moradi 2011). Proteo-

lytic action of specifically up-regulated root proteases

under drought was proposed to be linked to nutritional

requirements and drought-responsive protein process-

ing under stress (Kohli et al. 2012).

Additional biochemical changes in flag leaves under

drought are associated with the effect of drought on

photosynthesis. Post-anthesis drought substantially

accelerated the loss of chlorophyll and RuBisCO in

wheat (Martinez et al. 2003). In rice, orthophosphate

dikinase, glycine dehydrogenase, ribulose 1,5-bisphos-

phate carboxylase (RuBisCO), glycine hydroxymethyl-

transferase and ATP synthase were down-regulated

under drought in the drought-susceptible cultivar

Zhenshan97B. This suggested a reduction in carbon

assimilation capacity while in the drought-tolerant

variety IRAT109, transketolase and RuBisCO were

down-regulated but RuBisCO activase and peptidyl-

prolyl cis–trans isomerase, which might alleviate

damage to RuBisCO by drought stress, were up-

regulated (Ji et al. 2012). Severe water stress during

grain filling decreased the flag leaf photosynthesis rate

through aggravation of the adverse effect on nitrogen

metabolism, such as the decreased concentrations of N,

free amino acid and soluble protein, as well as the

activities of nitrate reductase and glutamine synthetase,

and increased malondialdehyde (MDA) accumulation

and endopeptidase activity in the wheat flag leaf. The

activities of nitrate reductase and glutamine synthetase

were positively correlated with photosynthetic rate, but

those of endopeptidase were negatively correlated.

QTL, genes and omics of flag leaf traits

under drought

Flag leaf QTL

A number of QTL have been identified for flag leaf traits

in cereals (Table 2). Genes on the homoeologous group

2 chromosomes of wheat were associated with flag leaf

senescence (stay-green) variation and were the most

significant in drought interactions (Foulkes et al. 2007).

QTL for flag leaf temperature of a highly drought-

tolerant wheat genotype were reported recently, along

with additional QTL for other traits important for

drought tolerance (Kumar et al. 2012). QTL for flag leaf

senescence under normal and drought conditions were

also reported (Verma et al. 2004). Similarly, a flag leaf

width QTL as well as the underlying candidate gene

were identified for rice (Ding et al. 2011).

A rice curly flag leaf mutant was used to identify the

gene Cfl1, which negatively regulated leaf cuticle

development through interaction with a class IV

homeodomain gene, HDG1 (Wu et al. 2011b). HDG1,

in turn, regulates two cuticle development genes (BDG

and FDH) downstream, by binding to a specific cis-

element L1 box in the promoters of these two genes.

Rice histone deacetylases (HDACs) were seen to have a

758 Mol Breeding (2013) 31:749–766

123



specific spatio-temporal expression pattern. Suppres-

sion of a rice HDAC (HDA740) affected plant height and

also flag leaf morphology, whereby the flag leaf was

severely twisted (Hu et al. 2009). The stress-associated

NAC (SNAC) gene, which promotes stomatal closing

(Hu et al. 2006), was reported to be predominantly

expressed in the root and flag leaf (Nuruzzaman et al.

2012), thereby reducing water loss from the flag leaf.

Expression of two genes, TaeIF3g involved in protein

translation initiation and TaVAP involved in protein

sorting in response to drought stress, was modulated in a

coordinated manner in the flag leaf of the two wheat

cultivars, which may contribute to homeostasis under

stress (Singh et al. 2007). Sharoni et al. (2012) reported

the flag leaf-specific expression of an AP2 domain-

containing protein gene. Similarly, a grain protein

content gene (Gpc-B1) plays a role in early flag leaf

senescence and nitrogen remobilization to ears during

grain filling (Kade et al. 2005; Uauy et al. 2006;

Distelfeld et al. 2007). Gpc-B1 belongs to the group of

NAC transcription factors and it regulates an extensive

list of GPC-regulated genes, including transporters,

hormone-regulated genes and transcription factors

(Cantu et al. 2011).

Flag leaf omics

Microarray-mediated analysis of changes in gene

expression under drought revealed up-regulation of

582 genes and down-regulation of 795 genes in rice

(O. sativa L. ssp. indica cv. Minghui 63) flag leaves

(Zhou et al. 2007). This was comparable to the change

in shoot and panicle. However, nearly four times more

genes were up-regulated in the flag leaf than in the

shoot or panicle after 48 h of rehydration. These data

indicated the importance of the flag leaf in response to

changing water availability. Drought stress altered the

expression pattern of a significant number of genes

involved in transcription and cell signaling in a largely

organ-specific manner in the flag leaf. Similarly, Xu

et al. (2011) observed that about 65 % of all

transcription factors identified in rice were preferen-

tially expressed in the flag leaf. Some transcription fac-

tors such as a C2H2-type zinc finger were up-regulated

Table 2 QTL identified for better flag leaf morphology/physiology

Species Cross Chromosomes Environment Main traits References

Rice Pus1266/Jaya 1–4, 6–8, 10, 12 Field Flag leaf length Marathi et al.

(2012)

Rice IRAT109 9 Zhenshan 97 4 Field Flag leaf width Ding et al.

(2011)

Rice Zhenshan 97 9 IRAT109 3–6, 7, 10 PVC pipe Flag leaf length/size Yue et al.

(2006, 2008)

Rice Lemont (J) 9 Teqing (I) 1–5, 6, 8, 12 Field Flag leaf length, width Mei et al.

(2003, 2005)

Rice M23/AK 1-6, 8, 10, 11, 12 Field Flag leaf length, width Kobayashi et al.

(2003)

Wheat Kukri 9 RAC875 3A Field Flag leaf glaucousness Bennett et al.

(2012)

Wheat Halberd 9 Karl92 1B, 2D, 2D, 3B,

5A

Field Flag leaf length, width, temperature

depression

Mason et al.

(2011)

Wheat Hanxuan 10

(H10) 9 Lumai 14

(L14)

1A, 2B, 3B, 5A,

7A, 7B

Field Flag leaf CID Wu et al.

(2011a)

Wheat Beaver 9 Soissons 2B, 2D Field Flag leaf senescence Verma et al.

(2004)

Barley Yerong 9 Franklin 2H, 3H, 6H Field Flag leaf chlorophyl content, length,

width, length/width

Xue et al.

(2008)

Barley Harrington 9 OUH602 2H, 4H, 5H, 7H Field Flag leaf length, width Gyenis et al.

(2007)

Sorghum Inbred line

654 9 LTR108

1, 2, 3, 4, 6, 7,

10

Field Flag leaf length, width Zou et al.

(2012)
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more than two-fold only in the flag leaf, suggesting a

role for it in drought response. The promoter regions of

induced genes possessed relative enrichment of two

cis-elements (ABRE core and DRE core) known to be

associated with water stress. Studies on barley under

terminal drought demonstrated that there was a

difference between the regulation of transcripts of

plastidic enzymes and cytosolic enzymes (Seiler et al.

2011).

Apart from the analysis of transcripts of known

genes, differential expression of small RNA molecules

and their targets can also inform on the role of flag

leaves under drought. Certain miRNAs preferentially

or specifically expressed in flag leaves have been

noticed under non-drought conditions. Yao et al.

(2007) reported that the expression of miR156 was

higher in wheat flag leaves than in spikes. A small

RNA, miR172, had maximum accumulation in the rice

flag leaf during the late vegetative and panicle

development stage, suggesting a possible role in regu-

lating the transition between vegetative and reproductive

tissue development (Zhu et al. 2009). Overexpression

of OsmiR393 led to expression of auxin receptor gene

homolog OsTIR1 only in rice flag leaves (Xia et al.

2012). Transgenic plants overexpressing miR393a/b

displayed a deformed phenotype, including enlarged

flag leaf inclination (Bian et al. 2012). Further detailed

exploration of miRNA may provide insight into

engineering flag leaves with improved drought-toler-

ance traits.

Conclusions

Cereal flag leaf traits have been much better studied

under normal irrigated conditions and that under-

standing has led to appreciating their possible role in

grain filling under drought conditions. The review of

the literature presented above indicates that, despite a

central role for the cereal flag leaf in grain filling, an

understanding of flag leaf functionality under drought

is critically lacking. The limited information available

is predominantly from studies on wheat flag leaves

under drought. As a first step, therefore, functionality

of additional cereal flag leaves under drought must be

explored, especially for rice. Studies on flag leaves

under drought indicate that achieving increased leaf

width and thickness without reducing the number of

transverse veins and longitudinal vein density would

be a highly useful trait. Though exploring such

properties of the flag leaf blade has attracted the

attention of many researchers, the flag leaf sheath,

along with the stem internode and culm, apparently

performs the important function of remobilizing

stored assimilates for grain filling under stress. More

research on the flag leaf sheath is called for, especially

on its source-to-sink transition and the nature of

carbohydrates along its length. Screening the germ-

plasm for favorable sheath characteristics may facil-

itate the identification of tolerant varieties. Leaf

glaucousness has been shown to be useful in avoiding

photo-damage due to high light intensity, which

occurs simultaneously with drought. Further studies

on the overall contribution of this trait to drought

tolerance would be useful. Combining useful sheath

traits with delayed senescence and an appropriate

number of stomata per unit leaf area of the blade could

lead to a better assimilate source for grain filling. The

role of changes in the amount of fructans, reducing

sugars and non-structural carbohydrates in the flag leaf

under drought must be explored in detail along with

the expression of transporters, in order to understand

the dynamics of carbohydrate mobilization for grain

filling under drought. An extensive understanding of

the kind and amounts of antioxidants and osmoregu-

lators specifically in the flag leaf is needed, as these

can affect flag leaf survival and photosynthesis

therein. Effects of hormonal cross-talk are only just

starting to become clear. Some of these aspects are

shown in Fig. 1. Finally, the identification of flag leaf-

specific genes and promoters or control elements will

be important in validating the role of candidate genes

relevant to flag leaf expression or for silencing genes

specifically in the flag leaves.

There is a trend to move away from using so-called

secondary traits, such as flag leaf or root characteristics,

as screening methods for identifying (or generating)

tolerant rice varieties. However, yield under drought, as

a primary screen, is largely a manifestation of adapta-

tions in such secondary traits. Screening for yield under

stress is no doubt the most effective approach and the

only one that has been successful in terms of developing

new drought-tolerant varieties. However, understanding

the mechanism will involve the identification of the

most highly contributing factors. Flag leaf and sheath

characteristics such as stay-green, assimilate transport,

and water and radiation use efficiency under stress,

along with root characteristics, are among the foremost
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such factors. Using the genetic material generated by

yield under stress as the primary screen, detailed studies

on flag leaves and roots may help to identify character-

istics that would reduce screening time and resources

required. Since such material was not readily available

previously, limited knowledge has been generated.

However, with novel drought-tolerant cereal lines being

generated, a rapid understanding, facilitated by high-

throughput approaches, can be expected. This would, in

turn, lead to the judicious use of resources to screen for

better and more tolerant varieties suited to specific eco-

geographies.
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B, Papp I (2011) Investigation of physiological responses and

leaf morphological traits of wheat genotypes with contrasting

drought stress tolerance. Acta Biol Szeged 55(1):69–71

Ding X, Li X, Xiong L (2011) Evaluation of near-isogenic lines

for drought resistance QTL and fine mapping of a locus

affecting flag leaf width, spikelet number, and root volume

in rice. Theor Appl Genet 123(5):815–826

Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak

H, Saranga Y, Fahima T (2007) Multiple QTL-effects of

wheat Gpc-B1 locus on grain protein and micronutrient

concentrations. Physiol Plant 129(3):635–643

FAO (1996) Trends of yield and productivity of modern rice in

irrigated rice systems in Asia. IRC Newslett. www.fao.

org/docrep/v6017t/V6017T03.htm

Farooq M, Wahid A, Lee DJ, Ito O, Siddique KHM (2009)

Advances in drought resistance of rice. Crit Rev Plant Sci

28(4):199–217

Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010)

Broader leaves result in better performance of indica rice

under drought stress. J Plant Physiol 167(13):1066–1075

Febrero A, Fernandez S, Molina-Cano JL, Araus JL (1998)

Yield, carbon isotope discrimination, canopy reflectance

and cuticular conductance of barley isolines of differing

glaucousness. J Exp Bot 49(326):1575–1581

Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape JW

(2007) Identifying physiological traits associated with

improved drought resistance in winter wheat. Field Crops

Res 103(1):11–24

Garcia A, Dorado M, Perez I, Montilla E (2010) Effect of water

deficit on the distribution of photoassimilates in rice plants

(Oryza sativa L.). Interciencia 35(1):46–54

Gebbing T, Schnyder H (1999) Pre-anthesis reserve utilization

for protein and carbohydrate synthesis in grains of wheat.

Plant Physiol 121(3):871–878

Gladun IV, Karpov EA (1993) Production and partitioning of

assimilates between the panicle and vegetative organs of

rice after flowering. Russ J Plant Physiol 40(5):629–633

Govind G, Seiler C, Wobus U, Sreenivasulu N (2011) Impor-

tance of ABA homeostasis under terminal drought stress in

regulating grain filling events. Plant Signal Behav 6(8):

1228–1231

Guo Z-W, Deng HF, Li SY, Xiao LT, Huang ZY, He Q, Huang

Z, Li HS, Wang RZ (2011) Characteristics of the meso-

phyllous cells in the sheaths of rice (Oryza sativa L.). Agric

Sci China 10(9):1354–1364
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