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Abstract Linkage mapping based on multiple-line

crosses is a promising strategy for mapping quantita-

tive trait loci (QTL) underlying important agronomic

traits. The main goal of this survey was to study the

advantages of QTL mapping across versus within

biparental populations using experimental data from

three connected sugar beet (Beta vulgaris L.) popula-

tions evaluated for beet yield and potassium and

sodium content. For the combined analysis across

populations, we used two approaches for cofactor

selection. In Model A, we assumed identical cofactors

for every segregating population. In contrast, in Model

B we selected cofactors specific for every segregating

population. Model A performed better than Model B

with respect to the number of QTL detected and the

total proportion of phenotypic variance explained. The

QTL analyses across populations revealed a substan-

tially higher number of QTL compared to the analyses

of single biparental populations. This clearly empha-

sizes the potential to increase QTL detection power

with a joint analysis across biparental populations.

Keywords QTL mapping � Epistasis �
MC-QTL mapping � Sugar beet

Introduction

Linkage mapping based on multiple-line crosses (MC)

has been suggested as a promising strategy for

identifying quantitative trait loci (QTL) underlying

important agronomic traits (Blanc et al. 2006; Verho-

even et al. 2006; Coles et al. 2010). In contrast to

linkage mapping based on a single biparental popu-

lation, MC-QTL mapping shows an enhanced statis-

tical power of QTL detection and an improved

precision for estimating QTL locations (Rebaı̈ and

Goffinet 1993; Muranty 1996; Blanc et al. 2006;

Buckler et al. 2009, Coles et al. 2010; Negeri et al.

2011). Moreover, MC-QTL mapping allows the

investigation of variation in allele substitution effects

across different genetic backgrounds (Steinhoff et al.

2011), which is of paramount importance in evaluating

the stability of diagnostic markers.

MC-QTL mapping relies on a high colinearity

among genetic maps of different biparental popula-

tions. For sugar beet, contrasting results ranging from
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high (Hallden et al. 1996; Schneider et al. 2007) to low

colinearity (Schumacher et al. 1997; Weber et al.

1999) among genetic maps have previously been

reported. It is therefore important to study the

colinearity among genetic maps before conducting

MC-QTL mapping studies in sugar beet.

Different biometric models have been suggested for

MC-QTL mapping assuming either random (e.g., Xu

1998) or fixed QTL effects (e.g., Rebaı̈ and Goffinet

1993). Random allele effect models are powerful

in situations with a large number of segregating

families, because the number of QTL parameters is

independent of the number of families. Therefore, the

number of parameters in the model does not increase

with the number of parental lines as in a fixed model.

When the number of segregating families is low, fixed

allele effect models possess a higher QTL detection

power compared to random allele models (Blanc et al.

2006). Rebaı̈ and Goffinet (2000) proposed two fixed

allele models, termed the disconnected and connected

models.

We used experimental data from three connected

elite testcross populations of sugar beet evaluated for

beet yield as well as potassium and sodium content and

studied the QTL detection power and mapping reso-

lution of fixed allele effect MC-QTL mapping

approaches. In particular, the objectives of our work

were to (1) study the colinearity of genetic maps

among three biparental populations sharing one par-

ent, (2) examine the consistency of QTL results across

three biparental populations, (3) compare the QTL

detection power by applying two different MC-QTL

mapping models based on the selection of cofactors

across segregating populations (Model A) and on a

cofactor selection specific for every segregating

population (Model B), and (4) evaluate the importance

of epistatic interactions for agronomic traits in sugar

beet.

Materials and methods

Plant materials and field experiments

Four sugar beet (Beta vulgaris L.) inbred lines (A, B,

C, and D) from the pollen parent pool were crossed

using an incomplete diallel mating design and three

populations (Pop-A9B with 74 individuals, Pop-A9C

with 82 individuals, Pop-A9D with 83 individuals)

with a total of 239 F2 families were produced

(Table 1). The 239 F2 families were crossed with an

F1 CMS (cytoplasmic male sterility) tester from the

seed parent pool, i.e., a tester representing the opposite

heterotic pool. The test crosses were carried out with

cloned F2 plants. The test-cross progenies were

evaluated in an alpha-lattice design at six locations

with two replications in Germany, France, and the

Netherlands. Data recorded were the agronomically

important traits beet yield (BY, Mg ha-1), potassium

content (K, decamol Mg-1), and sodium content (Na,

hectomol Mg-1). The latter two traits are important

characteristics for the quality of sugar beet for sugar

production. All plant materials used in this study are

Table 1 Mean, range, genotypic variance (r2
G), variance due

to genotype 9 environment interactions (r2
G9E), error vari-

ance (r2
e), and broad-sense heritability (H2) of three sugar beet

test-cross populations evaluated at six locations for beet yield

(BY; Mg ha-1), potassium content (K; decamol Mg-1), and

sodium content (Na; hectomol Mg-1)

BY K Na

Pop-A 9 B

Mean 79.96 44.43 35.76

Min 75.26 40.97 28.15

Max 84.21 48.09 45.75

r2
G 5.45** 2.04** 8.97**

r2
G9E 2.77** 0.80** 5.30**

r2
e 5.96 2.03 11.40

H2 0.94 0.91 0.83

Pop-A 9 C

Mean 86.26 42.96 41.99

Min 80.81 39.74 34.47

Max 92.77 46.38 50.08

r2
G 8.47** 1.58** 10.11**

r2
G9E 4.71** 0.78** 7.30**

r2
e 6.68 1.66 13.90

H2 0.89 0.91 0.90

Pop-A 9 D

Mean 77.94 40.67 30.68

Min 73.56 37.48 26.93

Max 82.63 44.05 39.92

r2
G 4.28** 2.20** 4.80**

r2
G9E 3.95** 0.42** 5.73**

r2
e 8.12 1.96 10.55

H2 0.90 0.87 0.84

*, ** significantly different from zero at the 0.05 and 0.01 level

of probability

280 Mol Breeding (2013) 31:279–287

123



proprietary to KWS SAAT AG (Einbeck, Germany).

Beet yield was determined by weighing the washed

harvested beets. Sodium and potassium content were

measured with a photometer based on the fine pulp of

the harvested beets, which was cleaned with alumin-

ium sulphate (Al2(SO4)3).

Phenotypic data analysis

Ordinary lattice analyses of variance were performed

for each location separately (Cochran and Cox 1957).

Adjusted means were used for a combined analysis

across locations, applying the following statistical

model: Yim = l ? gi ? lm ? eim, where Yim was the

adjusted mean of the ith test-cross family in the mth

environment, l was an intercept term, gi was the

genetic effect of the ith test-cross family, lm was the

effect of the mth location, and eim was the residual.

Variance components were determined by the

restricted maximum likelihood (REML) method

assuming a random model. Heritability (H2) on an

entry-mean basis was calculated as the ratio of

genotypic to phenotypic variance. In addition, best

linear unbiased estimates (BLUEs) across environ-

ments were estimated assuming fixed effects for test-

cross families (Supplementary File S1). Analyses

were performed using SAS statistical software (SAS

Institute 2008). Simple correlation coefficients

(r) were calculated between all traits based on BLUEs

of the test-cross progenies of each population.

Genotyping and linkage map construction

Single nucleotide polymorphism (SNP) markers and

simple sequence repeat (SSR) markers were provided

by KWS Saat AG, where genotyping was conducted.

The markers have not been used in other studies

previously. The genotyping was done by 384er

muliplex GoldenGate assay with VeraCode Technol-

ogy (Illumina). Observed genotypic frequencies at

each marker locus were checked for deviations from

Mendelian segregation ratios and allele frequencies of

0.5 using a v2 test. High-quality molecular data, i.e.,

markers adhering to the expected Mendelian segrega-

tion ratio and with less than 20 % missing values, were

produced for 481 SNP and 40 SSR markers. The

software JoinMap Version 3.0 (van Ooijen and

Voorrips 2001) was used to construct maps of the

three populations, applying the Kosambi mapping

function (Kosambi 1944). A LOD threshold of 2.0–4.0

was used to construct nine linkage groups. Single

maps were used to create an integrated genetic map.

Colinear markers were removed, resulting in an

integrated map of 394 markers, which was used for

further analyses.

QTL mapping in individual populations

For each trait and each population, QTL mapping was

conducted based on the integrated genetic map

applying composite interval mapping (CIM) by the

regression approach (Haley and Knott 1992) in

combination with the use of cofactors (Jansen and

Stam 1994). An additive genetic model was chosen for

the analysis of test-cross progenies, as described by

Utz et al. (2000). Testing for the presence of a putative

QTL in an interval was performed using a likelihood-

ratio test. The experiment-wise type I error was

determined to be P \ 0.10 based on 2,000 permuta-

tion runs (Doerge and Churchill 1996). The LOD

threshold of 3.8 for Pop-A9B, between 3.3 and 3.4 for

population Pop-A9C, and 3.6 for Pop-A9D was used

for all three traits. Based on simulation studies on the

size of confidence intervals for different scenarios

(Visscher et al. 1996), we defined two QTL to be

distinct if their estimated map position had a genetic

map distance larger than 20 cM, due to the fact that we

used a 1-LOD support interval.

QTL mapping in combined populations

For the joint QTL analyses across the three popula-

tions, two different fixed allele models were proposed:

(1) in the disconnected model specific QTL effects are

assumed for every population (Model A), and (2) in

the connected model specific QTL effects for parental

lines are assumed (Model B) (Blanc et al. 2006). For

our data set, the degrees of freedom do not vary

between the two models and they therefore yield the

same results.

We implemented the models outlined above as

described by Steinhoff et al. (2011, 2012a, b). We

applied a two-step procedure for QTL detection. In the

first step, we identified cofactors using PROC GLM-

SELECT implemented in the statistical software SAS.

Here, we varied the way cofactor selection was
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implemented: in Model A, we assumed that cofactors

are the same for every segregating population. In

contrast, in Model B, we selected cofactors specific for

every segregating population. For both models, all

markers were used for cofactor selection. Cofactor

selection was based on stepwise selection using

the Schwarz Bayesian Information Criterion (BIC,

Schwarz 1978). In the second step, testing for presence

of a putative QTL in an interval was performed by

a likelihood-ratio test using the statistical software R

(R Development Core Team 2010). A LOD threshold

of 3.5 was used in Model A, and a LOD score between

5.1 and 5.2 was used in Model B, which correspond to

an experiment-wise type I error of P \ 0.10, based on

2,000 permutations (Doerge and Churchill 1996).

Permutation was performed within the segregating

populations and cofactors were estimated for each

permutation run.

The proportion of the genotypic variance explained

by all detected QTL was estimated as pG = R2
adj/H

2.

For both single population QTL analyses and com-

bined analyses, the support of a QTL was defined as a

LOD fall-off of 1.0 expressed as position on the

chromosome (Lander and Botstein 1989) and cofac-

tors were excluded where the genetic map distance to

the marker interval under consideration was smaller

than 10 cM.

In addition, we performed a full two-dimensional

scan for pairwise interactions using Model A. The

two-dimensional scan was based on a comparison of a

full versus a reduced model (Steinhoff et al. 2012a).

The full model included all selected cofactors plus the

main effects of the two loci under consideration and

the interaction effect between the loci. The reduced

model included all factors of the full model except the

interaction term between the two loci under consid-

eration. We used an a-level of 0.05 and followed the

suggestion of Holland et al. (2002) dividing the a-level

by the number of possible independent pairwise

interactions between chromosome regions, assuming

two separate regions per chromosome (P \ 3.3e-4).

Results

The genotypic variances were significantly larger than

zero (P \ 0.01) for all three agronomic traits and in all

three populations (Table 1). Heritability (H2) for each

trait was high in all three populations with values

above 0.83. Consequently, the quality of the pheno-

typic data represents a solid base for QTL analyses.

The integrated map of sugar beet had a total length

of 543 cM with 395 polymorphic markers distributed

across nine chromosomes with an average interval of

1.4 cM between adjacent markers (Supplementary

Fig. S1). Average marker densities for the genetic

maps of individual populations were between 2.4 cM

(Pop-A9B, Pop-A9C) and 2.9 cM (Pop-A9D) and

the maximum genetic map distances between adjacent

polymorphic markers were smaller than 10 cM with

only a few exceptions (Supplementary Fig. S2). The

comparison between the genetic maps of the individ-

ual populations revealed a high overall colinearity in

marker order (Supplementary Fig. S3). We observed

significant (P \ 0.01) deviations from the expected

segregation ratio on chromosome 3 for Pop-A9B and

on chromosome 8 for Pop-A9C (Fig. 1).

QTL analyses of individual populations detected

between two and seven QTL for potassium content

and ten QTL for beet yield (Table 2). The proportion

of phenotypic variance explained by all QTL in single

populations ranged from 24.0 % for beet yield in Pop-

A9B to 79.5 % also for beet yield in Pop-A9C. The

length of the support intervals averaged across all

three populations and traits was 7.1 cM.

The analyses across populations revealed as many

as 27 QTL for all three traits for Model A compared to

20 QTL for Model B (Table 2, Fig. 2). The total

proportion of phenotypic variance was also higher for

Model A compared to Model B for all three traits. The

length of the support intervals averaged 2.9 cM for

Model B and 3.9 cM for Model A. The overlap of QTL

detected with single populations as well as Model A

and B ranged from 40 % for sodium content to 56 %

for potassium content (Fig. 3). The allele substitution

effects estimated in each population for the QTL

detected with Model A revealed large variation among

populations (Supplementary Fig. S4).

Two-dimensional genome scans for all three traits

revealed a total of four significant epistatic interac-

tions (Supplementary Fig. S4). Three of these inter-

actions involved chromosome 7, which interacted with

regions on chromosomes 5 and 6 for sodium content

and with chromosome 3 for beet yield. For potassium

content, we observed an epistatic interaction between

chromosomes 4 and 5. In addition, main effect QTL

were detected for some of the regions involved in the

epistatic interactions detected.
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Discussion

Resequencing projects revealed large variation in the

presence or absence of specific genomic regions within

species (Medini et al. 2005), which can ultimately lead

to a strong variation in the locus order of genetic maps.

MC-QTL mapping relies on a high colinearity among

genetic maps of single populations. In contrast to some

previous findings in sugar beet (Weber et al. 1999,

2000), we observed a good congruency of locus order

among genetic maps of the three populations (Supple-

mentary Fig. S3). This underlines the robustness of the

constructed integrated map used for the QTL mapping

across populations (Supplementary Fig. S1). Results of

a simulation study suggested that for linkage mapping

a marker density of 10 cM is necessary to detect QTL

with optimal power (Piepho 2000). We observed only a

few adjacent marker pairs with a genetic map distance

larger than 10 cM and never exceeding 20 cM (Sup-

plementary Fig. S2). Therefore, in this study the QTL

detection power is not limited by the marker density.

Single population based QTL analysis

The reliability of the QTL detected and their useful-

ness in marker-assisted selection (MAS) is largely

influenced by congruency in QTL position estimates

and their effects across different populations. Previ-

ously in sugar beet, no common QTL were observed

between two unrelated biparental populations (Weber

et al. 1999). In contrast to this, we observed at least

two to three congruent QTL for each trait across two

populations. The average degree of overlap was

26.7 %, which is in the range observed in previous

studies for other crops like maize (Beavis et al. 1991;

Mihaljevic et al. 2004; Blanc et al. 2006; Steinhoff

et al. 2011). The observed moderate congruency of

QTL can be partly explained by the absence of QTL

with large effects and low population size with, on

average, 82 individuals per population, which led to

reduced power of QTL detection.

Multiple-line cross QTL mapping

Joint analyses across populations have been proposed

to increase the power of detecting QTL in multiple-line

Fig. 1 Segregation distortion in the three populations studied.

The significance threshold (P \ 0.01) is indicated as a dashed
line
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crosses (Blanc et al. 2006; Negeri et al. 2011; Steinhoff

et al. 2011). In accordance with this expectation, we

observed a higher number of QTL for Models A and B

than in the single population analyses, resulting in a

substantially larger proportion of explained pheno-

typic variance (Table 2). This is in agreement with

previous studies in maize for grain yield, grain

moisture, and flowering time (Steinhoff et al. 2011,

2012a, b) and clearly underlines the potential of

increasing QTL detection power with a joint analysis

across biparental populations.

Besides the higher QTL detection power, the

support intervals of each QTL detected with Models

A and B were smaller compared to the QTL detected

in single populations (Table 2). This finding is in

agreement with previous studies in maize (Coles et al.

2010; Negeri et al. 2011; Steinhoff et al. 2011).

Consequently, the joint analyses also allow estimating

QTL positions with higher precision compared to a

single population analysis.

We observed a higher QTL detection power for

Model A compared to Model B (Table 2, Fig. 2). This

finding can be explained by differences in the selection

of cofactors: in Model A, cofactor selection was

implemented across the three segregating populations.

In contrast, in Model B cofactors were selected

specific for every segregating population. This

resulted in a higher number of cofactors for Model A

than Model B (Supplementary Tables S1, S2, S3). A

lower number of cofactors can lead to an increase in

the genetic background noise and consequently also in

a higher significance threshold determined by permu-

tation analysis. Consequently, our findings suggest

that cofactor selection should be implemented across

populations as this can result in a higher power of

detecting QTL of interest compared to cofactor

selection specific within populations.

Variation in allele substitution effects and presence

of epistasis

We observed a large variation in allele substitution

effects across the three segregating populations (Sup-

plementary Fig. S4). Explanations that have been

suggested for the observed variation in allele substi-

tution effects include multiple alleles (Buckler et al.

2009, Steinhoff et al. 2012a), variation in allele

frequencies (Steinhoff et al. 2012b), and presence of

epistasis (Jannink and Jansen 2001).

Previously, significant epistatic interactions were

reported for agronomic traits in sugar beet (Reif et al.

2010; Würschum et al. 2011a, b, 2012). In accordance

with this, we also observed a total of four significant

pairwise epistatic interactions in the full two-dimen-

sional genome scan for beet yield, potassium content,

and sodium content (Supplementary Fig. S5). It must

be noted here that for test-cross populations only a

limited proportion of the variance can be exploited for

the detection of epistatic QTL as compared to QTL

detection based on per-se performance. The fact that,

despite this, epistatic QTL were detected confirms the

contribution of epistasis to the expression of complex

agronomic traits in sugar beet. Consequently, epistasis

may be one of the potential causes for the observed

variation in allele substitution effects (Supplemen-

tary Fig. S6). The analysis of epistatic interactions

Table 2 Number of detected QTL and percentage of total

phenotypic variance explained (R2) using single-population

QTL analyses as well as the disconnected or connected model

for three sugar beet populations evaluated at six locations for

beet yield (BY; Mg ha-1), potassium content (K; decamol

Mg-1), and sodium content (Na; hectomol Mg-1)

Trait Single population analyses Combined analyses

Pop-A 9 B Pop-A 9 C Pop-A 9 D \� Model A Model B

Number of QTL (R2)

Beet yield 2 (24.0) 7 (79.5) 2 (32.3) 10 11 (78.1) 9 (70.1)

Potassium content 4 (64.4) 3 (40.6) 2 (54.6) 6 8 (65.9) 5 (55.6)

Sodium content 2 (31.2) 4 (66.8) 4 (42.3) 8 8 (60.6) 6 (49.0)

Length of support intervals (cM)

Beet yield 6 8 6 6.7 4.4 3.7

Potassium content 8 10.3 6.6 8.3 4.6 2.2

Sodium content 4 7.5 7 6.2 2.8 2.7

� \ refers to the number of different QTL detected across the three populations
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Fig. 2 LOD curves of three

agronomic traits based on

single-population analysis

and joint QTL analyses

applying Model A and

Model B
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involving the main effect QTL detected, however,

revealed a distribution of P values similar to that

expected in the absence of epistasis (Supplementary

Figs. S7, S8, S9). This suggests that the variation in

allele substitution effects observed in this study may

primarily be caused by multiple alleles at the QTL.

Conclusions

We observed a higher power for detecting QTL and

resolving QTL position for the joint versus the single

population QTL analyses. In addition, our study

suggests that cofactor selection in multi-population

QTL analyses should be implemented across popula-

tions rather than fitting cofactors specific for the single

populations. This cofactor selection contributes sub-

stantially to a higher QTL detection power.

We applied a QTL mapping approach exploiting

identical by-descent probabilities, assuming that the

four parental lines are unrelated by pedigree (for

review, see Würschum 2012). Switching approaches,

which in addition take the relatedness among parental

lines into account, promises to further increase QTL

detection power and mapping resolution in multi-cross

designs. The basic requirement for such approaches is

a higher marker density (Liu et al. 2012). With the first

draft of the sugar beet genome (Weißhaar et al. 2011)

dense marker information is no longer a limiting factor

and opens new avenues for unraveling the genetic

architecture of relevant agronomic traits.
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