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Abstract Diversity arrays technology (DArT) and

simple sequence repeat (SSR) markers were applied to

investigate population structure, extent of linkage

disequilibrium and genetic diversity (kinship) on a

genome-wide level in European barley (Hordeum

vulgare L.) cultivars. A set of 183 varieties could be

clearly distinguished into spring and winter types and

was classified into five subgroups based on 253 DArT

or 22 SSR markers. Despite the fact, that the same

number of groups was revealed by both marker types,

it could be shown that this grouping was more distinct

for the SSRs than the DArTs, when assigned to a

Q-matrix by STRUCTURE. This was supported by the

findings from principal coordinate analysis, where the

SSRs showed a better resolution according to seasonal

habit and row number than the DArTs. A considerable

influence on the rate of significant associations with

malting and kernel quality parameters was revealed by

different marker types in this genome-wide associa-

tion study using general and mixed linear models

considering population structure. Fewer spurious

associations were observed when population structure

was based on SSR rather than on DArT markers. We

therefore conclude that it is advisable to use indepen-

dent marker datasets for calculating population struc-

ture and for performing the association analysis.
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Introduction

Genome-wide association studies (GWAS) are a novel

tool in crop genetics for identifying significant marker-

trait correlations. In contrast to conventional

bi-parental segregation-based mapping, which exploits

allelic differences between two parental lines only,

whole-genome association scans use the complete

genetic variation across a wide spectrum of germ-

plasm. This implies that many traits will vary in a

GWAS, and can thus be addressed, whereas in a

bi-parental population only those traits that vary

between the parents can be mapped. Other advantages

are the finer mapping resolution compared to classical

mapping in bi-parental populations (Remington et al.

2001) and the direct use of existing genetic variation in

diverse genotype collections instead of the need to
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create bi-parental crosses and time-consuming

development of segregating populations. However,

the statistical tools required to perform the analysis are

more complex (Falush et al. 2003), since false-positive

or false-negative associations between a marker and a

trait can occur due to population structure. Such

structure can be caused by artificial or natural selec-

tion, genetic drift or the species-dependent mating

system (Flint-Garcia et al. 2003). In crops, domestica-

tion and breeding processes also add to the population

structure. In cultivated barley, the main population

structure is based on the distinction between spring and

winter gene pool. Whole-genome association scans

were performed earlier on barley. These studies used

diversity arrays technology (DArT; Pswarayi et al.

2008; Zhang et al. 2009; Comadran et al. 2009) or

single nucleotide polymorphism (SNP) markers

genotyped by the Illumina method (Comadran et al.

2011). In association mapping, the probability of

getting type I and type II errors is higher compared to

bi-parental quantitative trait locus (QTL) analysis.

Type I error, or false positives, can arise from

unaccounted subdivisions in the sample as a result of

population structure (Pritchard et al. 2000). If the

presence of related subgroups in the sample set is not

included explicitly in the model, they could create

covariances among individuals and generate bias in the

estimates of allele effects (Kennedy et al. 1992). An

increased type II error rate, or reduced power in

association analysis, has at least three causes: (1) lower

correlation between markers and genes due to the

decay of linkage disequilibrium leading to an under-

estimation of true associations; (2) unbalanced design

derived from the presence of alleles at different

frequencies; and (3) multiple-testing problems. There-

fore, the association mapping approach has a limited

application for detection of rare variants or alleles that

are variable between populations but almost fixed

within subpopulations. Yu and Buckler (2006) pro-

posed to use a set of random markers to estimate

population structure (Q), which is incorporated in the

general linear model (GLM) in order to reveal signif-

icant associations. Considering population structure

and kinship allows improved control of both type I and

type II error rates, as described by Yu et al. (2006).

Another issue that creates type I errors is the fact that in

multiple tests false positives will appear by chance;

Benjamini and Hochberg (1995) proposed ways of

correcting for this effect, where the gain in statistical

power is more substantial compared to the Bonferroni–

Holm procedure (Holm 1979).

The number and marker type used for investigating

population structure has an effect on the rate of

significant associations that can be identified. This was

shown in simulation studies for one human candidate

gene locus by Pritchard and Rosenberg (1999), and

recently by van Inghelandt et al. (2010) for the

outcrossing species maize. In this regard, nothing is

known so far for barley. In order to find the true

associations, the false discovery rate was revealed here

by incorporating the different matrices of population

structure (Q-matrices) that were generated on the basis

of the two different random marker types, namely

simple sequence repeats (SSRs), and DArTs and

comparing their impact on the identification of

marker–trait associations (MTA) in barley breeding

material.

In contrast to the detection of SNPs in candidate

genes, the DArT can detect and type DNA variation at

several hundred genomic loci in parallel without the

need of sequence information (Wenzl et al. 2004,

2006). The polymorphisms detected in the DArT

analysis include SNPs, insertions-deletions (InDels)

and heritable methylation changes (Jaccoud et al.

2001). While the DArT provided by Triticarte Pty.

Ltd. (Canberra, Australia) is a biallelic marker system

and enables whole-genome profiling without sequence

information, SSRs comprise a codominant multiallelic

marker system. Both marker systems are mainly based

on genomic sequences.

The aims of this study were (1) to determine

population structure patterns and kinship in the set of

183 European barley cultivars with two random

marker types (DArT and SSR), and (2) to compare

the influence of the resulting population structure and

kinship on the rate of significant associations with

linear models.

Materials and methods

Germplasm selection and phenotypic data

In total, 183 European cultivars released for commercial

use in the period from 1985 to 2007 were studied. Seeds

were obtained directly from the breeders, or from the

gene bank of the IPK in Gatersleben. The set of barley

cultivars investigated here consisted of 92 two-row
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spring, and 91 (59 two-rowed and 32 six-rowed) winter

types, mostly of German origin. Phenotypic data are

accessible in the MetaBrew database (Weise et al.

2009). The data on the four kernel and malting traits

considered here for association studies have already

been described by Matthies et al. (2009a, b).

Marker analysis and estimation of intra-

chromosomal linkage disequilibrium

Genomic DNA was extracted from bulked young

leaves of six plantlets according to a modified protocol

of Plaschke et al. (1995). For DArT analysis, diluted

DNA samples were sent to Triticarte Pty Ltd.

(Canberra, Australia; http://www.triticarte.com.au), a

whole-genome profiling service laboratory using the

Barley PstI (BstNI) vers. 2.0 array which comprises

2,304 clones known to be polymorphic in a wide range

of barley cultivars (Wenzl et al. 2004, 2007). The

reproducibility of the genotyping was verified by

analysing some cultivars in duplicate or in triplicate. In

total, 1,915 DArT markers were investigated of which

1,088 were mapped. The patterns of 22 SSRs resulting

in 23 loci (Varshney et al. 2007) were analysed by

PCR-amplification detection with ALF-express

(Automated Laser Fluorescent Sequencer from GE

Healthcare, formerly Amersham-Pharmacia, Sweden)

according to Malysheva-Otto et al. (2006). All marker

data were managed in an in-house database.

The polymorphism information content (PIC) values

were calculated for each DArT and SSR marker set

using the formula PIC ¼ 1�
P

Pið Þ2, where Pi is the

proportion of the population carrying the ith allele

(Botstein et al. 1980; Smith et al. 2000), with the

software PowerMarker vers. 3.25 by Liu and Muse

(2005).

To estimate the quality of the marker data, the data

resolution (DR) values of the DArT and SSR datasets

were calculated according to the method described by

van Hintum (2007). The Jaccard distance (Jaccard

1908; Sneath 1957) was used for the binary DArT

datasets and the Nei–Li distance (Nei and Li 1979) for

the multi-allelic SSR dataset.

Furthermore, principal coordinates (PCoA) were

calculated from each marker set with TASSEL

vers. 2.1 (Bradbury et al. 2007) by applying the

covariance matrix and Manhattan’s distance and

plotted for all 183 cultivars.

Genome-wide intra-chromosomal linkage disequi-

librium (LD) amongst all accessions was studied by

using all mapped DArTs after removing 5% minor

alleles. LD was determined by the estimation of

squared allele frequency distributions (r2) among all

loci according to Hill and Robertson (1968) by the

software TASSEL vers. 2.1. Statistical significance

(p value) of the observed LD was estimated by Monte-

Carlo approximation of Fisher’s exact test (Weir

1996), with 1,000 permutations for unlinked loci and

for loci on the same chromosome (unlinked r2 and

linked r2), respectively. When plotting the linked r2

against map distance over all chromosomes, the

second-degree LOESS curve (Cleveland 1979) was

drawn using the statistical program SPSS vers. 16. The

critical r2 value, as an evidence of linkage, was derived

from the distribution of the unlinked r2. A square root

transformation was performed with all unlinked r2

estimates to approximate a normally distributed

random variable. The population-specific critical

value of r2, beyond which LD was likely to be caused

by genetic linkage, was derived from the parametric

95th percentile of this distribution. Map positions of

DArT loci (Wenzl et al. 2006) were used to calculate

averages of intra-chromosomal LD.

Population structure, kinship and association

analysis

To reveal spurious associations, the genetic structure

among all 183 cultivars was investigated either

with 22 SSR markers or a representative set of 253

DArT markers (Electronic Supplementary Material

Table 1). This subset was selected from the total set of

1,088 mapped markers on the basis of their distance,

one marker approximately every 5 cM. All 862 DarTs,

after considering 5% minor allele frequency (MAF),

were randomly distributed across the genome. Only

chromosome 4H showed less marker coverage. The

population structure was determined with the

STRUCTURE software vers. 2.2 (Pritchard et al.

2000; Falush et al. 2003), using the admixture option

with uncorrelated allele frequencies. This model-based

procedure probabilistically assigns accessions to an

assumed number (k) of different subgroups. In order to

ensure consistent estimates, STRUCTURE was run

with five iterations independently, with k ranging from

1 to 20 in each run, setting a burn-in period of 100,000

and burn-in length of 100,000 Markov Chain Monte
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Carlo iterations. For each value of k, STRUCTURE

produces a Q-matrix that lists the estimated member-

ship coefficients for each accession in each subgroup.

To decide on the appropriate number of clusters (k),

the estimated normal logarithm of the probability of fit,

provided in the STRUCTURE output, was plotted

against k (Electronic Supplementary Material Fig. 1).

This value reaches a plateau when the number of groups

that best describe the population substructure has been

achieved (Pritchard et al. 2000). The mean of the five

iterations of each k showing the maximum likelihood

was applied to assign all genotypes with a membership

probability to a certain subgroup surpassing the thresh-

old p \ 0.50 for each of the two marker types. The

assignment to groups that resulted from STRUCTURE

was studied for each marker type by comparing the

consistency of the assignments over runs, and by

calculating the frequencies of accessions according to

their seasonality (spring and winter) and row number

(2r and 6r) according to their affiliation to different

Q-groups (Electronic Supplementary Material Table 2).

Based on either 22 SSRs or 253 DarTs, the kinship

(K-) matrix was determined with SPAGeDi (Hardy

and Vekemans 2002) using the coefficient of Ritland

(1996). Negative values between individuals were set

to 0, which indicates their lower relation compared to

random individuals. This K-matrix was used in the

mixed linear model (MLM) to define the degree

of covariance between pairs of individuals. Four

different MLMs were calculated using the Q-matrices

from STRUCTURE and the kinship matrix derived

from SPAGeDi created by the two marker types:

MLM 1 ¼ Q5-DArT þ K-DArT

MLM 2 ¼ Q5-SSRþ K-DArT

MLM 3 ¼ Q5-DArT þ K-SSR

MLM 4 ¼ Q5-SSRþ K-SSR:

Once every accession was assigned to one of the

groups for both marker types, the association analysis

was performed. The general and mixed linear model

(GLM, MLM, Searle 1987) was applied in order to

reveal significant associations using the TASSEL

software vers. 2.1. Population structure is incorporated

into the model by using covariates that indicate the

relative contribution in each genotype. If population

structure percentages sum to 100% for each genotype,

one of the populations should be excluded from the

analysis in order to obtain valid F-tests of the

population covariates. Four kernel and malting traits

were selected for the GWAS: thousand-grain weight

(TGW), glume fineness, extract and friability. Geno-

typing of the 183 cultivars was performed using all

1,088 mapped DArT markers. After removal of those

markers with an allele frequency below 5%, 862

DArTs were considered in the GWAS. All terms in the

model are considered to be fixed. Multiple testing

corrections were performed by applying the Bonfer-

roni–Holm procedure (Holm 1979).

Results and discussion

Genotyping of the barley varieties

In this barley collection, the population was examined

with SSRs and DArTs. Multiallelic SSRs are highly

polymorphic markers and represent an excellent

molecular marker system for population studies.

DArT markers have shown to be repeatable high-

throughput multi-locus dominant biallelic markers for

whole-genome profiling of barley (Wenzl et al. 2004,

2006). In total, 1,915 DArT markers were generated

by Triticarte but only the 1,088 mapped ones were

used for the GWAS. A subset of 253 equally spaced

DArTs was used for the determination of the popula-

tion structure. The average PIC was 0.53 for the 22

SSRs, 0.28 for the 253 selected DArTs and 0.24 for the

1,088 mapped DArTs, respectively, which is similar to

the findings of Zhang et al. (2009) in Canadian barley

accessions. Out of these, 862 DArT markers (77.5%)

were sufficiently polymorphic in the investigated set

of 183 barley cultivars and were used for GWAS. The

remaining 22.5% were either monomorphic or pos-

sessed a MAF of \5% and were therefore excluded

from further analysis (Electronic Supplementary

Material Table 1).

Data resolution of DArT and SSR markers

The data resolution (DR) is an indicator of the extent

to which the markers are able to describe genetic

structure. The DR of the 1,088 DArT markers using

the Jaccard distance was 0.938, the reduced set of 253

markers had a DR of 0.832, implying that if the dataset

is randomly split in half, and the pairwise similarities

of the accessions are calculated on the basis of each
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half, these similarities would have an average corre-

lation of 0.938 and 0.832, respectively (van Hintum

2007). The complete set of 22 SSR markers had a DR

of 0.421 using the Nei–Li distance. This implies that a

DR of 0.5 could be reached with 72 DArT markers of

the complete set, 51 DArT markers of the reduced set

or 32 SSR markers, respectively (Fig. 1).

These results would imply that the population

structure as described by the 253 DArT markers is

more stable, and more repeatable, than that characterized

by SSR markers. However, the structures described by

the different marker types are not necessarily the

same, as they are the result of different population

genetic effects. The degree of polymorphism as

measured from highly multiallelic SSRs provides

more allelic information than that from biallelic

DArTs. As a result, SSR markers serve as a better

estimator for the population structure.

The advantage of the cost-effective DArT markers

is their ideal suitability for high-throughput genome-

wide association analysis (Zhang et al. 2009). On the

other hand, they suffer to a certain degree of clustering

(Wenzl et al. 2006).

Population structure and linkage disequilibrium

in European barley

It could be shown that the barley population investi-

gated is highly structured, mainly according to

seasonal habit but to a lesser extent according to row

number. Either 22 genomic SSRs, representing all

seven chromosomes and yielding in total 206 alleles,

or a subset of 253 selected random DArT markers

representing 506 alleles was applied. The total

population of 183 European cultivars could be clearly

distinguished into the two main groups according to

seasonal habit and further divided into five subgroups

by STRUCTURE analysis with both marker types

(Fig. 2). Two subgroups were found for the 92 two-

rowed spring cultivars, and three for the 91 winter

varieties. When looking at the assignments of all

analysed cultivars to the different groups in the Q5-

Matrix, clear differences were obtained depending on

the marker type investigated. Taking a threshold of

\50% of membership probability to a certain sub-

group revealed by STRUCTURE, only 12 of all 183

analysed cultivars characterised with SSR could not be

assigned clearly to one group, in contrast to 19

cultivars with the DArTs (Table 1). A detailed over-

view of the grouping of all cultivars studied and their

origin is given in Electronic Supplementary Material

Table 2. For most association mapping methods,

genotypes are not assigned to subgroups, but the
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Fig. 1 Data resolution (DR) curves of the three data sets: the 22

SSR markers, the subset of 253 DArT markers selected every

5 cM, and all 1,088 mapped DArT markers. The DR of all 1,088

markers in this set is 0.938

Fig. 2 Population structure of the total set of 183 European cultivars studied with two marker types (22 SSRs and 253 DArTs)

illustrated by bar plots. Subclustering in five subgroups for Q5-SSR (a) and Q5-DArT (b)
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matrices from STRUCTURE comprising the mem-

bership probabilities are used as cofactors (Yu et al.

2006). Therefore, it is expected that the differences in

absolute membership probabilities between SSRs and

DArTs must have an influence on the results of

association mapping approaches as investigated here

in barley. This has been studied for SSRs and SNPs by

van Inghelandt et al. (2010) in maize.

Grouping of this set of genotypes with SSRs was

more distinct than with DArTs (Table 1 and Fig. 2).

The population structure matrix obtained with the

SSRs also reflects the assignment of the cultivars

according to seasonal habit and row number more

clearly than the DArTs and is in accordance with the

principal coordinate analysis (PCoA), shown in Fig. 3.

Notably, only a few genotypes were assigned to the

fourth and fifth group of the Q-matrix with DarTs, in

contrast to the SSRs. Furthermore, the frequencies

were different due to the grouping algorithm. Most of

the spring cultivars were assigned to Q1 with the SSRs

but to Q2 with the DArTs. The majority of the two-

rowed winter accessions clustered in Q1 when

analysed with the DArTs, whereas they split in two

subgroups (Q3 and Q5) as revealed by SSRs. All six-

rowed winter varieties were mostly assigned to Q2

with the SSR and Q3 with the DArT markers

(Table 1). No clear grouping was found for 12

genotypes with the SSR and for 19 genotypes with

the DArT markers. From these, two cultivars

(‘Baccara’ und ‘Maris-Otter’) could not be affiliated

clearly to one of the groups either with SSRs or DArTs

(Electronic Supplementary Material Table 2). Due to

their multiallelic state, SSR alleles show a more

diverse pattern in the investigated germplasm (Fig. 3).

With both marker types, a clear differentiation could

be obtained into three main clusters according to

seasonal habit and row number (2r-spring, 2r-winter,

6r-winter). A higher amount of genetic variation is

explained by the first two principal axes with the 253

Table 1 Assignment of all 183 investigated cultivars to groups (Q1 to Q5) revealed by STRUCTURE and ordered by frequency

Q2-DArT

(2r-S)

Q3-DArT

(6r-W)

Q1-DArT

(2r-W)

Q4-DArT

(2r-S)

Q5-DArT (mixed) \50%-DArT Total

SSR

Q1-SSR (2r-S) 32 4 5 3 3 10 57

Q2-SSR (6r-W) 4 24 4 – – 2 34

Q3-SSR (2r-W) 3 3 25 1 – – 32

Q4-SSR (2r-S) 9 2 2 9 – 4 26

Q5-SSR (2r-W) 3 17 1 1 – 22

\50%-SSR 2 1 3 3 – 3 12

Total DArT 53 34 56 17 4 19 183

Groups containing the majority of the cultivars referring to seasonal habit (S = spring, W = winter) and row number (2r, 6r) are

indicated by underscores
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Fig. 3 Principal coordinate analysis (PCoA) of all 183

European barley cultivars characterized by 22 SSRs (a) or 253

genome-wide mapped DArT markers, selected every 5 cM (b).

The percentage of variance explained by each axis is given.

Different plot symbols and colours are indicate the three

subpopulations of 2-rowed spring as well as 2- and 6-rowed

winter barley cultivars
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DArTs (32.1%) compared to 26.4% with the SSRs

(Fig. 3).

Linkage disequilibrium statistics (r2, p values) were

calculated for each pair of intra-chromosomal DArT

markers and presented in a heat plot (Electronic

Supplementary Material Fig. 2). The extent of intra-

chromosomal LD was estimated relative to the LD

observed among unlinked markers from different

chromosomes and a significance threshold for r2 of

0.21 was determined. Consistently, a low genome-

wide intrachromosomal LD was found which serves as

a good prerequisite for performing GWAS. There is no

intersection of the LOESS curve fit to the critical r2 of

0.21 (Electronic Supplementary Material Fig. 2).

The LD decay extends for less than 10–15 cM, and

therefore GWAS is possible. This rapid intra-chromo-

somal LD decay within the first few centimorgans is in

accordance with other studies in barley cultivars

(Waugh et al. 2009; Rostoks et al. 2006; Comadran

et al. 2011) and indicates that most of the markers are

not tightly linked to each other. The key to association

mapping is the LD between functional loci and

physically linked markers. The decay of LD over

physical distance in a population determines the

density of marker coverage needed to perform an

association analysis. For example, if LD decays

rapidly, a higher marker density is required to capture

markers located close enough to functional sites (Yu

and Buckler 2006). In other words, fast LD decay

results in a fine resolution of loci. The extent and

distribution of LD were visualised by plotting intra-

chromosomal r2 values (significant at p \ 0.001)

against the genetic distance in centimorgans shown

in Electronic Supplementary Material Fig. 3.

Unlinked r2 estimates were square-root transformed

to approximate a normally distributed random variable

and the parametric 95th percentile of that distribution

was taken as a critical value of r2 (0.21), beyond which

LD is probably caused by genetic linkage (Breseghello

and Sorrells 2006). All linked pairwise marker

estimates of r2 smaller than 0.21 were probably due

to genetic linkage and higher than 0.21 were due to

population structure. This is another strong indicator

for a highly structured population. The frequency of

physically linked pairs versus non-physically linked

pairs according to higher genetic distance follows a

logarithmic function (Electronic Supplementary

Material Fig. 3). Long-range genome-wide LD decay

is often caused by population structure and/or epistasis

which can be addressed by incorporating population

structure or kinship information as cofactors in the

model and indicates the amount of putative false

positives (Yu et al. 2006; Comadran et al. 2009). The

remaining significant LD is caused by genetic linkage

and residual population structure effects. The

observed extent of LD was strongly affected by

population structure. This was also noticed by Rostoks

et al. (2006).

Effects of population structure on association

results

The effects of population structure employing either

22 multiallelic SSRs or 253 biallelic DArTs on the rate

of significant associations was assessed. The informa-

tion obtained about population structure (Q5-Matrix)

from both marker types was incorporated in the GLM

in order to elucidate significant associations for

important malting and kernel quality parameters.

When performing GWAS including the Q-matrix

from structure with TASSEL vers. 2.1, it should be

noted that this software does not include those

genotypes with a group assignment below 50% in

the calculation process (Table 1).

Examples of genome-wide associations with ran-

dom DArTs are shown here for four kernel and

malting quality parameters in barley: glume fineness,

TGW, extract and friability. Cultivars with fine

glumes and high TGW are preferred for the malting

process. Genotypes delivering a high extract and good

friability values are desired. The friability parameter

describes the effects of germination factors, the

modification process during malting and also the

homogeneity of the sample. The extract represents all

water-soluble substances in the fine coarse meal.

The marker positions are given on the barley

integrated map (Wenzl et al. 2006) and 862 mapped

DArTs considering 5% MAF were used as genomic

marker data in the association analysis by applying the

GLM with regard to population structure. The results

from the GWAS were compared for each trait

considering two different Q-matrices calculated

with two different marker systems (Q5-SSR, and

Q5-DArT) obtained from STRUCTURE. There is an

effect on the rate of significant MTAs when employing

either SSR or DArT for analysing population structure

(Figs. 4, 5). Considering the cumulative p values, the

association model including five subgroups for the
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total population determined by SSRs results in a lower

rate of significant MTAs and seems to be more specific

for correcting population structure effects (Fig. 4).

However, assuming the same number of subpopulations,

a difference could be observed in the number of

significant associations depending on the marker type

in the GLM (Fig. 5 and Electronic Supplementary

Material Table 3). This is also true for all four traits

considered here applying the MLM (Electronic

Supplementary Material Table 4 and Figs. 4 and 5).

Assessing population structure and kinship using

the subset of 253 random DArT markers each leads to

more spurious associations, with a higher significance

(MLM_1) followed by MLM_3 with the combination

of Q5-DArT with K-SSR (Electronic Supplementary

Material Fig. 4a, c) for all four traits. This is strikingly

obvious for the GWAS regarding malt extract but less

clear for TGW (Electronic Supplementary Material

Fig. 5a, b). Yu et al. (2006, 2009) also stated a specific

impact of the kinship estimation with molecular

markers on the model fitting for different quantitative

traits. In particular, TGW in barley is structure-

dependent, since the grouping is predominantly

determined by seasonal habit and row type. These

parameters are highly correlated with this trait. Linear

models accounting for relatedness (K) have a better fit

even when a small number of background markers

were used in estimating kinship (Yu et al. 2009),

which can also be confirmed here for barley. Further-

more, the Q also provides more explanation. The

robustness of population structure estimates from

random background markers has been studied previ-

ously (Pritchard et al. 2000) and validated (Camus-

Kulandaivelu et al. 2007). The robustness of kinship

estimates with varied numbers of background markers

provides further insight into the application of the

mixed-model approach in the context of association

mapping. There is also a clear marker effect. The SSRs

give a better estimation of the kinship than DArTs,

resulting in less spurious associations (Electronic

Supplementary Material Fig. 5).

Even though a lower number of markers are applied

(22 SSRs compared to 253 DArTs), it can be

concluded that the population structure based on 206

SSR alleles results in a better differentiation than the

506 DArT alleles. This is also supported by the

findings according to DR. Fewer SSR markers than

DArTs are needed to obtain the same DR (Fig. 1).

Another possible explanation may be that the SSR data

used for population structure represent an independent

marker set, while DArTs are also used for defining the

genotype in the association algorithm. When tracing

the population structure with DArTs instead of SSRs,

this biallelic marker type was used for both, as

genotype and for population structure. To our

knowledge, this effect has not been investigated so

far. We assume that the biallelic state of DArT

markers provides less information than multiallelic

SSRs. Microsatellites are also ‘‘older’’ in an evolu-

tionary context, being mostly located in untranscribed

regions. Accordingly, the SSRs were probably less

exposed to genetic selection pressure than the DArTs.

These markers were generated mostly from expressed

sequence tags based on microarray hybridisations

(Wenzl et al. 2004). SSR analysis provided a higher

resolution and allowed a better discrimination

between genotypes (Russell et al. 2000, 2004).
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Fig. 4 Comparison of association results by applying the GLM,

when different marker types were used for revealing population

structure: a GLM = Q5_SSR, and b GLM = Q5_DArT. The

following traits were considered: glume fineness, thousand-

grain weight (TGW), extract and friability. The cumulative

distribution of the observed p values is shown
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Fig. 5 Genome-wide association studies of 183 barley culti-

vars considering the GLM for four traits: a glume fineness,

b thousand-grain weight, c extract, and d friability. Population

structure was taken into account by using the Q5 matrix

calculated either with SSR or DArT markers. The calculated

p values were converted into -log10p. The significance

thresholds p \ 0.05 and p \ 0.001 are indicated by dashed
lines. The location of mapped genes for row number (vrs1, vrs5)

is shown
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Approaches which appropriately control type I

errors should approximate to a uniform distribution

of the p values. This is the case when the GLM with a

population structure of five subgroups derived from

SSR data was applied (Fig. 4a) in contrast to

Q5_DArTs which resulted in more spurious associa-

tions and false positives (Fig. 4b). SSRs are less

conserved and are more informative when used for

population structure than DArTs. Notably, this effect is

not so clear for the quantitative yield component TGW

(Figs. 4, 5b). The significance of DArT markers when

using different marker systems for determination of

population structure after association performed with

all 183 cultivars assuming GLM for four traits is

depicted in Fig. 5. No coincidences of highly signif-

icant MTAs for all four traits with known genes coding

for row number in barley (vrs1, vrs5) were observed.

Their mapping positions (Wenzl et al. 2006; Pourk-

heirandish and Komatsuda 2007; Ayoub et al. 2002)

are indicated on the whole-genome scan (Fig. 5).

Except for TGW, far more significant MTAs were

found for glume fineness, extract and friability with

the GLM when considering the population structure

matrix derived with the DArTs. In contrast, the lower

rate of MTAs for these three traits when taking the Q5-

SSR into account seems to be more specific. Associ-

ation mapping is a method for detection of gene effects

based on LD that complements QTL analysis in the

development of tools for molecular plant breeding.

Significantly associated genomic regions were linked

to known QTLs, available from the website http://

www.graingenes.org and summarised in Table 2, for

the yield component TGW and for the malting quality

parameter extract in Table 3. No known reference

QTLs colocalising with significant MTAs for TGW

were found on chromosome 6H and for extract on 3H

and 7H. Eight QTL regions for TGW did coincide with

significant MTAs (Table 2). Schmalenbach et al.

(2009) identified six QTLs in a backcross study with

introgressions lines of H. spontaneum on 2H, 4H, and

6H for this trait. Beattie et al. (2010) found also a

highly significant relationship for bPb-0351 with malt

extract in their GWAS with DArTs in malting barley

(Table 3). Such comparisons were not feasible for

glume fineness and friability.

Differences in the rate and chromosomal position of

significant hot spots could be shown for each trait.

Disregarding TGW, many highly significant associa-

tions with a negative log10p [3.0 were found for the

GLM with Q5-DArT, which are not reflected in the

GLM with Q5-SSR (Fig. 5). Therefore, we conclude

that the use of an independent dataset for assessing

population structure is preferable for determining

reliable associations compared to using the same data

for determining population structure and associations.

Nevertheless, the choice of the appropriate number of

subgroups also has an impact on the quality of the

association result. It is always recommended to

compare different association models in order to sort

out the false positives. The following two factors were

important to consider in order to obtain reliable

association results and to avoid false positives or false

negatives: correction for population structure is

necessary in this type of analysis, especially in

structured populations such as the set of barley

cultivars investigated here. Furthermore, the number

and kind of markers used to determine population

structure for the association study has an influence on

the result. We found here that even a higher number of

DArTs is less meaningful and leads to more spurious

significant association results than a lower number of

SSRs. A comparison of multiallelic SSRs and biallelic

SNPs was recently performed by van Inghelandt et al.

(2010), in which they suggest the use of between seven

and eleven times as many SNPs than SSRs for

analysing population structure and genetic diversity

in maize breeding material. To our knowledge, no

comparative studies investigating the accuracy and

discrimination power of random markers such as SSRs

and DArTs in barley have been undertaken to date.

The same or even a higher number of SSRs for

revealing population structure was used in barley

(Stracke et al. 2009; Haseneyer et al. 2009) or in maize

(van Inghelandt et al. 2010). Up to now, there have

been no specific studies available in barley adressing

the optimal number and type of markers which should

be used for determination of population structure. The

population type and size might have also an impact on

the structure of the estimated set of genotypes. The

effect of population structure on the association results

depends in particular on the number of ancestral

groups and on the trait analysed (Mezmouk et al.

2011). We can observe a clear marker effect, when we

assume the same number of groups revealed by

different kind of markers.

This is the first study to reveal the impact of the

marker type on the association result. Hamblin et al.

(2007) compared the usefulness of 89 SSR and 847

960 Mol Breeding (2012) 30:951–966
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SNP markers in maize and found a better performance

of even a lower number of SSRs when assessing

relatedness and genetic diversity. Similar findings are

obtained here in terms of population structure, where

SSRs led to less false-positive results than DArTs.

In this study, we were able to demonstrate the

impact of marker type used in STRUCTURE and the

resulting Q-matrix on the number of significant

associations when considering the GLM. This same

phenomenon was also evident when applying the

kinship with different kind of markers in the MLM

considering Q and K.

Conclusions and outlook

The marker type (SSR or DArT) used for analysing

population structure and kinship has a strong influence

on the number and significance of the GWAS detected

when applying either the GLM or MLM. It could

be shown that our barley population was highly

structured, mainly by seasonal habit, and the marker

system used has a strong effect on the association

results. Multiallelic markers such as SSRs present a

more effective tool for assessing accurately the

population structure than biallelic DArT markers.

We propose that independent marker sets should be

used to assess population structure and to reveal

significant marker–trait associations in GWAS. Fur-

thermore, correction for population structure in a set of

barley accessions is needed in order to avoid false

positives. These are important prerequisites in order to

perform meaningful association studies and to provide

breeders with well-defined marker–trait associations,

which is fundamental for marker-assisted selection in

barley breeding for traits such as enhanced kernel and

malting quality.
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