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Abstract The availability of whole genome shotgun

sequences (WGSs) in Brassica oleracea provides an

unprecedented opportunity for development of micro-

satellite or simple sequence repeat (SSR) markers

for genome analysis and genetic improvement in

Brassica species. In this study, a total of 56,465 non-

redundant SSRs were identified from the WGSs in

B. oleracea, with dinucleotide repeats being the most

abundant, followed by tri-, tetra- and pentanucleotide

repeats. From these, 1,398 new SSR markers (desig-

nated as BoGMS) with repeat length C25 bp were

developed and used to survey polymorphisms with a

panel of six rapeseed varieties, which is the largest

number of SSR markers developed for the C genome

in a single study. Of these SSR markers, 752 (69.5%)

showed polymorphism among the six varieties. Of

these, 266 markers that showed clear scorable poly-

morphisms between B. napus varieties No. 2127 and

ZY821 were integrated into an existing B. napus

genetic linkage map. These new markers are prefer-

entially distributed on the linkage groups in the C

genome, and significantly increased the number of

SSR markers in the C genome. These SSR markers

will be very useful for gene mapping and marker-

assisted selection of important agronomic traits in

Brassica species.
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Introduction

The genus Brassica includes a diverse range of

species of global economic importance. Rapeseed

(mainly B. napus) has become an important agricul-

tural product during the past 30 years and is now the

world’s third leading source of both vegetable oil and

oil meal (Snowdon et al. 2006). The Brassica crops

not only provide oil, vegetables, fodder and condi-

ment, but also are a valuable source for dietary fiber,

vitamin C and other beneficial factors such as

anticancer compounds (Fahey and Florens 1995).

Brassica crop species are also popular for producing

high-quality biodiesel due to their relatively low

polyunsaturated and saturated fatty acids. The major

crop types include three diploid species, B. rapa (AA,

2n = 20), B. nigra (BB, 2n = 16) and B. oleracea

(CC, 2n = 18), and also three amphidiploid species,

B. juncea (AABB, 2n = 36), B. napus (AACC, 2n =

38) and B. carinata (BBCC, 2n = 34). The genetic

Electronic supplementary material The online version
of this article (doi:10.1007/s11032-010-9509-y) contains
supplementary material, which is available to authorized users.

H. Li � X. Chen � Y. Yang � J. Xu � J. Gu �
J. Fu � X. Qian � S. Zhang � J. Wu � K. Liu (&)

National Key Laboratory of Crop Genetic Improvement

and National Center of Plant Gene Research (Wuhan),

Huazhong Agricultural University, Wuhan 430070, China

e-mail: kdliu@mail.hzau.edu.cn

123

Mol Breeding (2011) 28:585–596

DOI 10.1007/s11032-010-9509-y

http://dx.doi.org/10.1007/s11032-010-9509-y


relationship of the crop Brassica species has been well

studied and is referred to as U’s triangle (U N 1935).

The long history of cultivation and artificial selection

of the Brassica crop species has resulted in various

crop types with an extraordinary level of intraspecific

morphological phenotypic variation in their adaptation

for cultivation under varied agroclimatic conditions

(Liu 1983). For instance, well-established garden

vegetables in B. oleracea comprise a number of mor-

phologically diverse crops, including cabbage, broc-

coli and cauliflower.

Microsatellites, or simple sequence repeats (SSRs),

are tandem repeats of 1–6 nucleotides present in all

eukaryotic genomes. Because SSRs are easily detect-

able by PCR, amenable to high-throughput analysis,

codominantly inherited, multi-allelic, highly poly-

morphic, abundant and evenly distributed in genomes,

and also require only a small amount of DNA for

analysis (Gupta and Varshney 2000), they have

become valuable tools for genetic mapping (Padmaja

et al. 2005; Saito et al. 2006), association mapping

(Breseghello and Sorrells 2006), comparative map-

ping (Iniguez-Luy et al. 2009; Suwabe et al. 2006),

diversity analysis (Chen et al. 2008, 2010; Hasan et al.

2006), quantitative trait locus analysis (Chen et al.

2007b; Delourme et al. 2006; Lombard and Delourme

2001; Long et al. 2007; Qiu et al. 2006; Zhao et al.

2006) and marker-assisted selection (Zhang et al.

2003; Zhou et al. 2003).

Extensive efforts have been made to develop SSR

markers in B. napus and its two diploid progenitors,

B. rapa and B. oleracea, through genomic library

screening using probes containing repeated motifs and

followed by DNA sequencing (Kresovich et al. 1995;

Lowe et al. 2004; Plieske and Struss 2001; Suwabe

et al. 2002; Szewc-McFadden et al. 1996; Uzunova and

Ecke 1999; Varghese et al. 2000). However, as

indicated at the Brassica Microsatellite Information

Exchange (http//www.brassica.info/ssrinfo.htm), the

total number of currently mapped SSR markers in

Brassica is still too limited. Experimental methods to

develop SSR markers are laborious, time-consuming

and expensive. With the ever-increasing number of

sequences in public databases, development of SSR

markers using in silico approaches has become a

practicable and inexpensive alternative for many crop

species (Chen et al. 2007a; McCouch et al. 2002;

Shoemaker et al. 2008; Shultz et al. 2007; Song et al.

2005).

Recently, several genome sequencing projects

for Brassica species, especially for B. rapa and

B. oleracea, have been conducted for various pur-

poses (Ayele et al. 2005; Katari et al. 2005; Lim et al.

2006; Yang et al. 2005). B. rapa ssp. pekinensis,

which has the smallest genome among Brassica

species (Johnston et al. 2005), was selected as the

representative for Brassica A-genome sequencing in

the Multinational Brassica Genome Project (MBGP)

(Yang et al. 2005; see also http://www.brassica.info)

with the aim of identifying the complete sequence of

this genome using a BAC-by-BAC strategy. A total

of 200,017 BAC-end sequences (BESs) and 128,582

expressed sequence tags (ESTs) were generated from

the B. rapa genome. At the same time, the Institute

for Genomic Research, Cold Spring Harbor Labora-

tories and Washington University carried out the

B. oleracea whole genome shotgun (WGS) sequenc-

ing project and obtained 595,321 random shotgun

sequences. The sequences were aligned against the

Arabidopsis genome sequence using BLAST, and the

results were compared with the annotation to improve

the Arabidopsis annotation by identifying genes that

were missed in the previous annotation (Ayele et al.

2005; Katari et al. 2005). The availability of Brassica

genomic sequence data offers an unprecedented oppor-

tunity to conduct a detailed comparative analysis of

the relationships between the Brassica A and C gen-

omes, and also between these two Brassica genomes

and the complete genome of the model plant Arabid-

opsis thaliana. Using the WGSs in B. oleracea and

BESs in B. rapa, the transposable elements (TEs) in

the B. oleracea and B. rapa genomes were analyzed

and compared with the model plant, A. thaliana, to

understand the dynamics of TE-mediated genome

expansion (Hong et al. 2006; Zhang and Wessler

2004). The availability of large quantity of Brassica

DNA sequences also provides a vast resource with

which to survey SSR motifs and marker development.

Hong et al. (2007) estimated the abundance and dis-

tribution of SSRs in the B. rapa genome using the BES

data, and compared it to that in Arabidopsis. Several

preliminary studies had been conducted to develop

SSR markers from ESTs and genome survey sequen-

ces (GSSs), including BESs and WGSs, for B. rapa

(Choi et al. 2007; Kim et al. 2009; Ling et al. 2007),

B. oleracea (Iniguez-Luy et al. 2008), B. juncea

(Hopkins et al. 2007) and B. napus (Batley et al.

2007). However, the number of SSR markers with
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good quality available to the Brassica community was

still too limited to carry out gene tagging and molec-

ular marker-assisted breeding in Brassica species.

In this paper, we identified SSRs from the WGSs in

B. oleracea. Our objectives were to assess the distri-

bution of SSRs in the B. oleracea genome, develop a

large number of SSR markers for the Brassica

community, and integrate the newly developed mark-

ers into an existing B. napus genetic linkage map.

Materials and methods

Plant materials

A panel of six rapeseed varieties (S1, S2, M201

M202, No. 2127 and ZY821) that had been used as

parents for three established mapping populations

was used for SSR polymorphism screening. A

double-haploid (DH) population with 88 individuals

derived from the cross between No. 2127 and ZY821

(Cheng et al. 2009; Xiao et al. 2007) was used for

linkage mapping. In addition, six cabbage cultivars,

Jingfeng 1, Chunmian, Qiangli55, Xinfeng, Shuangh-

uan E and Xinglv Chunfeng, were used to test the

amplification of those markers that did not produce

any PCR products in B. napus.

Total DNA was isolated from young leaves of the

six B. napus varieties, the six cabbage cultivars and the

88 DH lines using the cetyltrimethylammonium bro-

mide (CTAB) method (Doyle and Doyle 1987). Total

DNA was adjusted to a concentration of 25 ng/ll and

used as templates for PCR amplification.

Source of sequences and SSR identification

The WGSs of B. oleracea were downloaded in

FASTA format from GenBank using the Entrez query

‘‘Brassica oleracea and GSS (genome survey

sequence)’’, and used for SSR mining and marker

development. These WGSs contained mitochondrial

and chloroplast genome sequences and were redun-

dant, so a protocol was designed to remove mito-

chondrial, chloroplast and redundant sequences, as

indicated in Fig. 1.

To reduce the task of removing the chloroplast

and mitochondrial genome sequences and redundant

sequences, we first identified and selected the SSR-

containing sequences from the WGSs using SPUTNIK

software (http://espressosoftware.com/pages/sputnik.jsp).

The criteria for SSR selection were set at six repeats for

dinucleotides and four repeats for tri-, tetra- and pen-

tanucleotides. The resulting SSR-containing sequen-

ces were selected for subsequent analysis.

The second step was to remove the contaminated

mitochondrial and chloroplast genome sequences. A

total of 124 published complete genome sequences of

chloroplast and 1,945 complete genome sequences of

mitochondrion with accession numbers were obtained

from GOBASE (http://gobase.bcm.umontreal.ca/). The

SSR-containing sequences were then searched against

the chloroplast and mitochondrial DNA sequences

using Seqclean (http://compbio.dfci.harvard.edu/tgi/

software/) to remove the matching sequences.

The third step was to remove the redundant SSR-

containing sequences. The repetitive sequences were

masked using RepeatMasker (http://www.repeatmasker.

org/). The masked sequences were then assembled

using CAP3 software (http://pbil.univ-lyon1.fr/cap3.

php) with overlap length cutoff of 40 nucleotides and

overlap percent identity cutoff of 95. After removing

redundancy, the resulting consensus sequences of

contigs and singletons were again mined for GSS-SSRs

for further analysis.

Marker development and polymorphism detection

Primer3 software (Rozen and Skaletsky 2000) was

used to design PCR primers flanking SSR sequences

from the non-redundant SSR-containing sequences

obtained previously. The primer length was between

595,577 B. oleracea WGSs

Screening for SSRs using SPUTNIK

60,704 SSR- containing WGSs

60,357 valid SSR-containing WGSs

Trashing mitochomdrion, chloroplast DNA sequences

35,450 singletons and 9,231 contigs 

Assembling using CAP3

44,681 non-redundant SSR-
containing sequences

Removing redundant sequences

Fig. 1 The protocol for removing mitochondrial, chloroplast

and redundant DNA sequences from the WGSs in B. oleracea
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18 and 23 nucleotides, with an optimum size of 20

nucleotides. The melting temperatures ranged from

50 to 70�C, with an optimum temperature of 55�C.

The optimum GC content was set to 50%, with a

minimum of 30% and a maximum of 70%. The

predicted PCR products ranged from 100 to 400 bp.

A total of 1,398 SSRs with repeat length of 25 bp

or longer were selected for marker development.

The newly developed GSS-SSR markers were desig-

nated as ‘‘BoGMS’’, representing Brassica oleracea

genomic microsatellites. Primers were synthesized by

GeneRay Biotech Company (Shanghai, China).

All SSR markers were subjected to polymorphism

detection using a panel of six rapeseed varieties as

described above. PCR amplification, product separa-

tion and staining were performed as described

previously (Cheng et al. 2009).

Linkage analysis and map construction

The mapping population comprised 88 DH individ-

uals derived from the cross between No. 2127 and

ZY821 (Cheng et al. 2009; Xiao et al. 2007). The

newly developed BoGMS markers were integrated

into the existing B. napus genetic linkage map

consisting of 244 SSR markers (Cheng et al. 2009)

using JoinMap3.0 (Van Ooijen and Voorrips 2001).

The threshold for goodness-of-fit was set to B5.0,

with a recombination frequency of \0.4 and mini-

mum logarithm of odds (LOD) scores of 2.0. All

genetic distances were expressed in centimorgans

(cM) as derived by the Kosambi function (Kosambi

1944). The segregation of each marker in the DH

population was analyzed by a chi-square test for

‘‘goodness-of-fit’’ to an expected 1:1 ratio.

Results

Identification and characterization

of GSS-SSRs in B. oleracea

A total of 595,577 B. oleracea shotgun reads with an

average length of 677 bp (Ayele et al. 2005; Katari

et al. 2005) were downloaded from GenBank. The total

length of these sequences was 403 Mb, which was

estimated to cover 0.58 of the genome, assuming that

the size of the B. oleracea genome is approximate

696 Mb (Johnston et al. 2005). After downloading,

searches were made using the SPUTNIK procedures

for SSR motifs containing di-, tri-, tetra-, and pentanu-

cleotide repeats in each sequence. A total of 60,704

SSR-containing sequences were identified, suggesting

an average frequency of one SSR in every 6.6 kb in the

WGSs.

However, it should be noted that the WGSs are

redundant and were contaminated by the chloroplast

and mitochondrial DNA sequences. Seqclean searches

identified 347 chloroplast and mitochondrial DNA

sequences. After removing the matching sequences,

a total of 60,357 SSR-containing sequences were

obtained. Cluster analysis with CAP3 revealed 35,450

singletons and 9,231 contigs. The contigs were com-

posed of 24,907 sequences with an average of 2.70

sequences per contig. Most of the contigs (6,528) only

contained two sequences, 2,616 contigs each contained

three to ten sequences, and 84 contigs each contained

11–100 sequences. Three contigs each had more than

100 sequences, and one had as many as 322 sequences.

After removing these redundant sequences, 44,681 non-

redundant SSR-containing sequences were obtained.

Analysis of SSR motifs in the non-redundant SSR-

containing sequences identified 56,465 GSS-SSRs, with

5,563 contigs and 30,263 singletons each having one

SSR. The remaining contigs and singletons each con-

tained two or more SSRs. The SSR repeat lengths ranged

from 12 to 432 bp, with dinucleotide SSRs showing

the greatest range and highest average repeat length

(Table 1). Among the repeats longer than 40 nucleo-

tides, the dinucleotide repeats were much more

frequent than the other repeat types.

Of the total GSS-SSRs, dinucleotide repeats (DNRs)

(28,755, 50.9%) were the most abundant, followed

by trinucleotide repeats (TNRs) (23,137, 41.0%), tetra-

nucleotide repeats (2,874, 5.1%) and pentanucleotide

repeats (1,699, 3.0%). Table 1 lists the numbers of the

major SSR types identified from the B. oleracea WGSs.

In DNRs, (AT)n was the most abundant repeat motif

(28.8%), followed by (AG)n (19.3%) and (AC)n (2.8%).

(GC)n repeats were very rare. All ten possible combi-

nations of TNRs were observed in the GSS-SSRs.

Among the TNRs, the (AAG)n motif was the most

common (12.7%), followed by the (AAT)n (7.8%),

(ATC)n (5.0%), (AGG)n (4.2%), (AAC)n (4.1%) and

(ACC)n (2.9%) motifs. The (ACT)n, (ACG)n, (CCG)n

and (AGC)n motifs were the least abundant (Table 1).

Thirty-three combinations of tetranucleotide repeats

and 78 combinations of pentanucleotide repeats were
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observed in the GSS-SSRs. The distributions of tetra-

nucleotide and pentanucleotide repeats were uneven,

with (AAAT)n being the most abundant tetranucleotide

repeat (1.9%) and (AACCG)n being the most frequent

pentanucleotide repeat (1.0%). All the other repeat types

were very rare in the B. oleracea genome.

Microsatellite marker development

and polymorphism detection

Microsatellites are usually classified into two catego-

ries based on the length of SSR tracts. Empirical data

had indicated that Class I microsatellites (SSRs C 20

nucleotides) are hypervariable (Temnykh et al. 2001;

Yi et al. 2006) and Class II microsatellites (SSRs C 12

but \20 nucleotides) are less variable. In order to

increase the efficiency of marker development, 1,398

Class I microsatellites with repeat length C25 nucle-

otides were selected for primer design and are desig-

nated as ‘‘BoGMS’’ markers hereafter. They included

871 (62.3%) di-, 232 (16.6%) tri-, 59 (4.2%) tetra- and

84 (6%) pentanucleotide repeats and 152 (10.9%)

composite microsatellites that consisted of more than

two repeat motifs (Table 2).

All these 1,398 BoGMS markers were evaluated

for successful PCR amplification and useful poly-

morphism by testing the genomic DNA of a panel of

six oilseed rape cultivars for three established

permanent mapping populations. Of these, 1,040

(74.4%) successfully amplified at least one fragment

from the B. napus genome, 42 (3.0%) amplified

smear PCR products, and 316 (22.6%) did not give

Table 1 Distribution of

major SSR types identified

from the WGSs in

B. oleracea

a Numbers in parentheses

are percentage of motifs per

total SSR

Motifs Numbera (%) Range (bp) Total

length (bp)

Average

length (bp)

Dinucleotide 28,755 (50.9) 12–432 556,052 19.34

AT 16,264 (28.8) 12–122 316,998 19.49

AG 10,877 (19.3) 12–432 214,864 19.75

AC 1,587 (2.8) 12–60 23,832 15.02

CG 27 (0.1) 12–20 358 13.26

Trinucleotide 23,137 (41.0) 12–198 327,147 14.14

AAG 7,153 (12.7) 12–93 101,631 14.21

AAT 4,398 (7.8) 12–198 64,185 14.59

ATC 2,813 (5.0) 12–66 40,044 14.24

AGG 2,376 (4.2) 12–183 34,482 14.51

AAC 2,300 (4.1) 12–39 31,254 13.59

ACC 1,624 (2.9) 12–78 22,233 13.69

AGC 900 (1.6) 12–33 12,351 13.72

CCG 687 (1.2) 12–30 8,892 12.94

ACG 496 (0.9) 12–33 6,771 13.65

ACT 390 (0.7) 12–51 5,304 13.60

Tetranucleotide 2,874 (5.1) 16–116 57,072 19.86

AAAT 1,092 (1.9) 16–44 20,160 18.46

AATT 366 (0.7) 16–68 10,584 28.92

AAAG 331 (0.6) 16–68 6,528 19.72

AAAC 262 (0.5) 16–28 4,640 17.71

Others 823 (1.5) 16–116 15,160 18.42

Pentanucleotide 1,699 (3.0) 20–410 38,840 22.86

AACCG 567 (1.0) 20–50 12,315 21.72

AAAAT 211 (0.4) 20–50 4,675 22.16

AAAAG 103 (0.2) 20–40 2,310 22.43

Others 818 (1.5) 20–410 19,540 23.89

Total 56,465 (100.0) 12–432 979,111 17.34
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any amplification. Among the successful markers,

310 detected a single locus, 394 detected two loci in

each cultivar, and 336 detected three or more loci,

which is consistent with the allotetraploid nature of

B. napus and genome triplication of its two progen-

itor species, B. oleracea and B. rapa. A subset of 752

(69.5%) BoGMS markers showed polymorphism

among the six varieties. Information on the new

markers is listed in Electronic Supplementary Mate-

rial Table 1, which includes the GSS accession ID in

GenBank, microsatellite ID, type of repeat motifs,

number of repeats, expected amplicon size, forward

and reverse primers, scorability, and polymorphism

among the six B. napus varieties.

We evaluated the efficiency of marker develop-

ment based on the success rate of PCR amplification

and the level of polymorphism for each SSR motif

(Table 2). The overall success rate of PCR amplifi-

cation was 77.4%. DNR (71.8%) and TNR (70.0%)

markers had the highest levels of polymorphism,

followed by composite repeats (62.5%), pentanucle-

otide repeats (60.7%), and tetranucleotide repeats

(60.5%). The (ATC)n, (AAG)n and (AG)n motifs had

the highest level of polymorphisms (76.3, 72.9 and

74.4%, respectively), while the (AAC)n repeat motif

had the lowest level of polymorphism (45.5%). The

other motifs had polymorphism levels in excess of

50%. There was no obvious correlation between

polymorphism level and repeat length or repeat

number of SSR markers in B. napus.

For the 316 markers that did not produce any

amplification in the B. napus genome, we further

tested their amplification in B. oleracea, the source

genome of these markers, using six cabbage cultivars.

Fifty markers successfully amplified least one frag-

ment from the B. oleracea genome, suggesting that

the targets of these markers might be deleted or the

binding sites mutated in the B. napus genome due to

extensive rearrangement including deletion or inser-

tions or mutations after polyploidization.

Integration of newly developed SSR markers

into existing linkage map

A total of 282 BoGMS markers that detected clear

and scorable polymorphisms between No. 2127 and

ZY821 were selected to survey the DH population.

Among these, 266 markers, corresponding to 312

BoGMS loci, could be integrated into the existing

B. napus genetic linkage map constructed previously

using the same population (Cheng et al. 2009), and 16

BoGMS markers failed to be integrated into any

linkage groups. These unmapped markers might be

distributed to the extreme ends of chromosomes and

Table 2 Characteristics of

B. oleracea SSR markers

and efficiency of marker

development

a Numbers in parentheses

are percentage of designed

primers per total primers
b Numbers in parentheses

are percentage of

successfully amplified

primers per designed

primers
c Numbers in parentheses

are percentage of

polymorphic markers per

amplified primers
d GC-rich TNRs: the SSRs

contain repeat motifs with

two or three G/C

Motifs No. of designed

primersa
No. of amplified

primersb
No. of polymorphic

primersc

Dinucleotide 871(62.3) 671(77.0) 482(71.8)

AC 14 (1.0) 11 (78.6) 8 (72.7)

AG 469 (33.5) 371 (79.1) 276 (74.4)

AT 388 (27.8) 289 (74.5) 198 (68.5)

Trinucleotide 232 (16.6) 203 (87.5) 142 (70.0)

AAC 13 (0.9) 11 (84.6) 5 (45.5)

AAG 107 (7.7) 96 (89.7) 70 (72.9)

AAT 35 (2.5) 27 (77.1) 17 (63.0)

ACT 3 (0.2) 2 (66.7) 1 (50.0)

ATC 40 (2.9) 38 (95.0) 29 (76.3)

GC-rich TNRsd 34 (2.4) 29 (85.3) 20 (69.0)

Tetranucleotide 59 (4.2) 43 (72.9) 26 (60.5)

Pentanucleotide 84 (6.0) 61 (72.6) 37 (60.7)

Composite 152 (10.9) 104 (68.4) 65 (62.5)

Total 1,398 (100.0) 1,082 (77.4) 752 (69.5)
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could not be grouped with other markers. The

majority of markers (247) detected a single locus,

while 25, 9 and 1 markers detected 2, 3 and 4 loci,

respectively. The integrated linkage map contained

312 BoGMS loci and 286 anchor loci from previous

linkage maps (Chen et al. 2007b; Cheng et al. 2009;

Piquemal et al. 2005; Suwabe et al. 2008), and

covered a total length of 1,842.9 cM with an average

interval of 3.08 cM between adjacent loci (Fig. 2).

The 19 linkage groups were designated as A1–A10

and C1–C9 based on the nomenclature proposed at

the MBGP Steering Committee meeting (http://www.

brassica.info/resource/maps/lg-assignments.php).

Of the mapped BoGMS loci, 233 loci were located

on the C genomes, while the other 79 loci were

located on the A genome, indicating that these GSS-

SSRs obviously skewed to the C genome. These

BoGMS loci were randomly distributed all over the A

and C chromosomes. The number of BoGMS loci

varied dramatically from chromosome to chromo-

some. In the A genome, A5 and A9 had as many as

12 and 18 BoGMS loci, respectively, while A2 and

A8 each had only two BoGMS loci. In the C genome,

C3 had as many as 48 BoGMS loci, while C4 and C5

only had 11 and 9 loci, respectively. The other

chromosomes in the C genome had 17–35 BoGMS

loci. Most of the markers segregated with the

expected 1:1 Mendelian ratio in the DH population.

However, 192 (32.1%) loci including newly devel-

oped SSR markers and anchored markers deviated

significantly (P \ 0.01) from this ratio (Fig. 2). The

biased loci were distributed unevenly: most of them

were on A2, A3, A4, A6, C3, C4 and C9. The loci

that biased to the same parent were clustered

together, with 79 loci skewed towards ZY821 and

113 loci skewed towards No. 2127.

Discussion

The WGSs in B. oleracea represent a random

sampling of the genome, which permitted an estima-

tion of the abundance and distribution of SSRs and

comparison with related species. In this study, SSRs

were identified from a total of 403 Mb of whole

genome shotgun sequences, which covers 0.58 of the

genome of B. oleracea. In B. oleracea, (AT)n was the

most abundant repeat motif, followed by (AG)n and

(AC)n, which is similar to B. napus and A. thaliana

(Cheng et al. 2009; Lawson and Zhang 2006), while

in the B. rapa and Oryza sativa genomes, (AG)n is the

most abundant dinucleotide repeat, followed by

(AT)n and (AC)n repeats (Hong et al. 2007; Lawson

and Zhang 2006). In human and Drosophila, (AC)n is

the most frequent DNR, followed by (AT)n and

(AG)n (Katti et al. 2001). (GC)n is extremely rare in

all eukaryotic genomes studied so far and this is also

the case for B. oleracea. The frequency of SSR

occurrence is one every 6.6 kb in the B. oleracea

genome, which is much lower than that reported in

the B. rapa (one every 4.7 kb, Hong et al. 2007) and

B. napus genomes (one every 4.0 kb, Cheng et al.

2009). The genome size of B. oleracea (*696 Mb) is

significantly larger than that of B. rapa, which is

*529 Mb (Johnston et al. 2005). Hence, the number

of SSRs was estimated to be about 1.05 9 105 in

B. oleracea, which is similar to that estimated in the

B. rapa genome (1.12 9 105) (Hong et al. 2007).

In this study, the majority of the successful markers

detected two or more loci, one or two derived from the

A genome, the other one or two from the C genome,

which is consistent with the allotetraploid nature of

B. napus and genome triplication of its two progenitor

species, B. oleracea and B. rapa. However, there were

also a large number of markers (310) which detected a

single locus in the B. napus genome. Most of the

single-locus SSR markers (247) had been mapped on

the B. napus genetic linkage map and were preferen-

tially randomly distributed on the C genome in

B. napus, suggesting that these single-locus markers

were C genome-specific. Previous studies also

reported that the majority of the primer pairs were

able to produce specific products in B. oleracea

whereas almost half failed to amplify in most B. rapa

accessions (Mitchell et al. 1997). Earlier investiga-

tions have shown that SSR markers developed from

B. rapa tend to amplify a product only in the A

genome, rather than in the C genome in B. napus

(Lowe et al. 2004; Suwabe et al. 2008), which has

been proved to be an efficient strategy for construction

of a high-density genetic linkage map of the A

genome in B. rapa, B. napus and B. juncea (Kim et al.

2009; Lowe et al. 2004; Suwabe et al. 2008).

Extensive efforts had been taken to develop

SSR markers for Brassica species (Batley et al. 2007;

Cheng et al. 2009; Iniguez-Luy et al. 2008; Ling et al.

2007; Lowe et al. 2004; Suwabe et al. 2002), and

several SSR-based genetic linkage maps have been
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Fig. 2 The integrated

genetic linkage map of

B. napus constructed using

88 DH lines derived from

the F1 hybrid between

No. 2127 and ZY821.

Markers indicated in italics
with underline represent the

anchor SSR markers from

previous linkage maps

(Chen et al. 2007b;

Piquemal et al. 2005;

Suwabe et al. 2008; Cheng

et al. 2009). Markers

indicated in bold represent

new SSR markers

developed in this study.

Markers in superscript
letters indicate segregation

distortion; superscript letter
A represents markers

deviated toward No. 2127,

and superscript letter B
represents markers deviated

toward ZY821
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constructed for gene mapping and molecular marker-

assisted breeding (Chen et al. 2007b; Cheng et al. 2009;

Choi et al. 2007; Iniguez-Luy et al. 2009). In previous

studies, more attention was paid to the B. rapa genome,

especially after the initiation of the B. rapa whole

genome sequencing project. Recently, a large number

of SSR markers have been developed for B. rapa from

SSR-enriched genomic libraries, genome survey

sequences (GSSs) and sequenced BACs (Choi et al.

2007; Kim et al. 2009; Ling et al. 2007; Suwabe et al.

2002). Although 587 SSR markers had also been

developed from the WGSs in B. oleracea (Iniguez-Luy

et al. 2008), the number of SSR markers was still much

less than that in B. rapa. Thus, the distribution of SSR

markers was uneven between the A and C genomes.

The lack of enough markers in the C genome will slow

down the pace of gene mapping, cloning and marker-

assisted selection for agronomically important traits in

the C genome. In this study, 1,398 BoGMS markers

were developed from the WGSs of B. oleracea, and

266 have been integrated into the existing B. napus

genetic linkage map. To date, this is the largest number

of SSR markers developed for the C genome in a single

study. These SSR markers will be very useful for

constructing a high-density genetic linkage map and

facilitating gene mapping and marker-assisted selec-

tion of agronomic traits in Brassica species.
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