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Abstract Hydroxysafflor yellow A (HSYA), an

important active compound in treating focal cardiac

and cerebral ischemia, is uniquely present in flower

petals of Carthamus tinctorius. In this study, inher-

itance and molecular marker analyses for HSYA trait

in safflower were carried out. HSYA contents in

parents, cross hybridized F1 and F2 individuals were

analyzed by high performance liquid chromatogra-

phy. Results revealed that the presence/absence of

HSYA was controlled by one major nuclear gene

termed HSya. A total of 48 AFLP primer combina-

tions were screened, and bulked segregant analysis

was performed by preparing two pools of 10 present-

HSYA and ten absent-HSYA plants selected from the

498 individuals of the F2 segregating population.

Four AFLP markers, AFLP-5, AFLP-7, AFLP-15 and

AFLP-16, were identified to be closely associated

with HSya. Of those, AFLP-16 was the closest to

HSya, estimated at about 9.4 cM in genetic distance.

The dominant AFLP-16 marker was converted into a

simple sequence characterized amplified region

marker based on the sequence information of the

cloned flanking regions of the AFLP fragment and

was designated as SCM16. Our result has direct

application for marker-assisted selection of quality

breeding in safflower.
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Bulked segregant analysis (BSA) �
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SCAR (sequence characterized amplified region)

Abbreviations

BSA Bulked sergeant analysis

AFLP Amplified fragment length polymorphism

HSYA Hydroxysafflor yellow A

Introduction

Flos Carthami, the dried flower petal of safflower

(Carthamus tinctorius L.), is an important crude drug

in traditional Chinese medicine for promoting blood

circulation and removing obstruction in the channels

(Yang et al. 2004). It has long been used clinically in

China for the prevention and treatment of cardiovas-

cular and cerebrovascular diseases, including cerebral
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thrombus, cerebral embolism, cerebral ischemia and

lacuna embolism (Bie 2003; Jiang et al. 2005; Siow

et al. 2000; Liu et al. 1997; Luo et al. 2004). Many

studies show that chemical constituents in Flos

Carthami mainly include flavanoids, indoles, ligna-

noids, alkyldiol, organic acids and sterols (Li and

Chen 1998; Masao et al. 1992; Obara and Onodera

1979; Onodera et al. 1981, 1989; Zhou et al. 2006).

Hydroxysafflor yellow A (HSYA) is one of the

main active components in Flos Carthami and its

structure was first reported in 1993 (Meselhy et a1.

1993). (Two new quinoch alcone yellow pigment

from C. tinctorius and Ca2? antagonistic activity of

Tinctormine. Chem Pharm Bull 4l 1796.) Many

studies have demonstrated that HSYA is a good

potential agent for the protection and treatment of

focal cardiac and cerebral ischemia (Sato et al. 2005;

Jin et al. 2004; Zhang et al. 2005), and the underlying

mechanism is supposed to be associated with its

inhibitory effects on the thrombogenesis and platelet

aggregation and with its beneficial action on regula-

tion of PGI2/TXA2 and blood rheological changes in

rats (Hai et al. 2005). HSYA is found to increase

hypoxia tolerance significantly, dilate the coronary

artery and promote coronary blood flow, and inhibit

ADP-induced platelet aggregation in rabbits (Zhu

et al. 2005). Therefore, HSYA in Flos Carthami is an

economically important trait for safflower breeding

and medicinal production.

To date, the inheritance and molecular marker for

the HSYA trait of safflower have not been reported.

In this present study, we focused on genetic analysis

and development of a molecular marker linked to this

unique compound in safflower. We found that HSYA

is genetically controlled by one dominant nuclear

gene termed as HSya. Moreover, we studied the

HSya-related gene fragment with bulk segregate

analysis (BSA) (Michelmore et al. 1991) by using

the optimized safflower amplified fragment length

polymorphisms (AFLP) reaction system (Zhang et al.

2006). Four DNA fragments linked to the HSya and

designated as AFLP-5, AFLP-7, AFLP-15 and AFLP-

16, were identified, respectively. One of the AFLP

markers closely linked to HSYA trait was also

converted into a SCAR marker. The conversion of a

dominant AFLP marker into a simple, SCAR marker

has direct application for marker-assisted selection

(MAS) in safflower breeding. The following is our

first report of the study.

Materials and methods

Plant material

Two parental strains (No. 0016 and No. 0025) of

what were selected from the Chinese populations by

our laboratory, HSYA was found in the former (P1)

with a content of 2.11% ± 0.09% (n = 83), while

HSYA was not found in the latter (P2) with a content

of 0.00% ± 0.00% (n = 89). The reciprocal crosses

(P1 9 P2, P2 9 P1) were made, resulting in 87, 93 F1

seeds, artificially by hand, in the summer of 2003 at

Medicinal Plant Garden of Second Military Medical

University, Shanghai, China. The F2 seeds of the

crosses were produced in field of Sanya, Hainan

province, by bagging F1 plants in paper bags prior to

florescence during 2003 and 2004. A segregating F2

population was obtained by sifting a single F1 plant in

2004 and 2005 in the garden mentioned. Four

hundred and ninety-eight segregating F2 individuals

were obtained.

Determination of HSYA content by HPLC

in C. tinctorius L.

HSYA standard sample (C27H32O16) was extracted

from Flos Carthami in our laboratory. Its purity was

estimated at 99.5% by HPLC analysis and its structure

was shown in Fig. 1 (Guo et al. 2006). Chromatogra-

phy was performed with Agilent1100 (USA) Model

510 binary gradient equipment; an Agilent1100

chromatography workstation was equipped with an

injection valve with 20-ll sample loop. HSYA was

separated on a 250 9 4.6 mm (i.d.), 5 lm particle,

ZORBAX SB-C18 column (Agilent Company). Opti-

mum HPLC separation was achieved by use of 10%

aqueous acetonitrile at a 1.0 ml/min low rate. Detec-

tion wavelength was 403 nm and temperature was

22�C. Dry safflower florets (*0.5 g) were weighed

accurately into a 250 ml tube, and HSYA was

O

OHHO

HO Glc

Glc COCH CH OH

Fig 1 The formula of HSYA (C27H32O16)
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extracted with 100 ml water by soaking overnight,

sonicated for 20 min in a sealed, and filtered through a

0.45 ml Nylon syringe filter (Millex-HN, Ireland)

before injection for HPLC analysis.

AFLP and BSA

DNA was extracted from safflower plants using a

modified CTAB method (Zhang et al. 2006). AFLP

fingerprints were generated based on the protocol

described by Vos et al. (1995) with minor modifica-

tions. All reagents required for AFLP analysis were

obtained from NEB Company. PCR reactions were

performed in a Biometra T gradient PCR thermal

cycler. Genomic DNA (250 ng) was restricted with

EcoRI and MseI (2.5 U each) in restriction buffer

(50 mM Tris–HCL, Ph 7.5, 50 mM Mg-acetate,

250 mM K-acetate) in a final volume of 25 ll. EcoRI

and MseI adapters were subsequently ligated to the

digested DNA fragments. The adapter-ligated DNA

was pre-amplified with AFLP primers, each having

one selective nucleotide using the following cycling

parameters: 20 cycles of 30 s at 94�C, 60 s at 56�C

and 60 s at 72�C. The pre-amplified DNA was diluted

(1:50), and an aliquot was used for selective ampli-

fication with the EcoRI and MseI primers having

three selective nucleotides at the 30 ends. The

following cycling parameters were used for selective

amplification: 1 cycle of 30 s at 94�C, 30 s at 56�C

and 60 s at 72�C. The annealing temperature was

then lowered by 0.7�C per cycle during the first

12 cycles, and then 23 cycles were performed at

94�C for 30 s, 56�C for 30 s and 72�C for 60 s. The

reaction products were resolved in 6% polyacryl-

amide gels and silver-staining. For BSA–AFLP

analysis, DNA of 10 present- and 10 absent-HSYA

individuals with contents C2.00% and 0.00% were

randomly selected from 498 F2 progenies and bulked

into two pools.

Data analysis

To determine the inheritance of the HSYA trait, the

v2-test was applied to evaluate the goodness-of-fit for

F2 data based on a gene segregation model. Linkage

analysis for AFLP markers was performed using the

213 plants selected randomly from the F2 segregating

population and the program MapMaker V3.0b

(Lander et al. 1987).

Cloning of AFLP markers

The 11 AFLP fragments (Table 2) amplified specif-

ically for either presence or absence of bulks were

cloned for analysis. These AFLP bands were excised

from dried polyacrylamide gels, re-hydrated in TE for

1 h at room temperature and transferred to a 500 ll

elution buffer (0.5 MNH4AC, 10 mM magnesium

acetate, 1 mM EDTA, pH 8.0, 0.1% SDS) at 37�C.

1.0 ll supernatant was used as template for PCR

amplification using primers and reaction conditions

similar to those used for AFLP reaction. The

amplified products were electrophoresed in 1%

agarose gel. The bands were excised from the gel,

and the DNA was cloned into the plasmid vector

PMD18D (Takara Company). Recombinant plasmid

DNA was isolated and sequenced using the dideoxy

method.

Conversion of AFLP marker into SCAR marker

Based on the sequence analysis of the cloned fragments

obtained after AFLP analysis, the SCAR primers were

designed and synthesized. Sequences of this pair of

SCAR primers are as follows: SCM16 primer 1

(Forward): 50-GACTGCGTACCAATTCACT-30; SC

M16 primer 2 (Reverse): 30-GATGAAGTCCTGAGT

AACAG-50. The PCR-amplified method was adopted

to genomic DNA from present- and absent- HSYA

individual lines by using primer pair SCM16. Genomic

DNA (50-ng aliquots) was used in a standard PCR

reaction containing 2.5 mM MgCl2, 2.0 mM dNTPs

and 0.5 U Taq polymerase. PCR conditions for ampli-

fication were 94�C for 3 min, followed by 40 cycles of

94�C for 45 s, 69�C for 45 s, 71�C for 1.5 min. The

PCR products were visualized after agarose gel

eletrophoresis.

Results

Inheritance of present- and absent-HSYA

in safflower

In reciprocal crosses of two parental strains, HSYA

were found in all F1 individuals. The content of

HSYA was 1.97% ± 0.13% and 2.03% ± 0.17%,

respectively. Therefore, the presence of HSYA was

considered dominant over the absence of HSYA. In

Mol Breeding (2009) 23:229–237 231
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the F2 generation, individuals were classified in two

distinct groups confirming to the presence and

absence ratio of 3:1 (the presence type had a content

of 1.65% ± 0.51%, whereas the absence type had a

content of 0.00% ± 0.00%) (Table 1). Therefore, it

implied that HSYA trait was controlled by a single

major nuclear gene with two alleles, in which HSya

was completely dominant over hsya (the allele for

absence).

AFLP markers linked to gene HSya

To identify markers linked to gene HSya, a total of 48

primer combinations were used to test DNA from the

parents No. 0016 and No. 0025. Of these, 16 primer

pairs (date not shown) revealed polymorphisms

between parents were selected for BSA. The primers

were amplified *40–70 bands per assay. A total of

769 bands were obtained from the six different primer

combinations and revealed 16–43% polymorphism

between the parents. AFLP bands present in one pool

and absent in the other were regarded as candidate

markers. Four primer combinations produced DNA

fragments present only in one pool and absent in the

other. Eleven AFLP bands specific either to the

present- and absent-HSYA pool were identified

(Table 2).

AFLP linkage map

To confirm the linkage of candidate AFLP markers

to the HSya locus, 213 segregating F2 individuals

were screened for polymorphism. Figures 2 and 3

show a representative amplification profile with two

different primer combinations. With the primer

combination EcoRI-ACT-MseI-CAG two bands at

936 bp and 852 bp (indicated by arrows in Fig. 2)

were almost present in the present-HSYA parent

No. 0016 and individuals which were present-

HSYA. They were designated as AFLP-5 and

AFLP-7 (Fig. 2). These bands were not present in

the absent-HSYA parent No.0025 and absent-

HSYA segregating individuals. With the primer

combination of EcoRI-ACC-MseI-CTC, a fragment

Table 1 Content and classification of the plants in the F1 and F2 generations for present- and absent- HSYA

Generation Present-HSYA Absent-HSYA Expected ratio v2 P

Content

(Mean ± SD, %)

Number of

plants

Content

(Mean ± SD, %)

Number of

plants

F1(P1 9 P2) 1.97 ± 0.13 87 0.00 ± 0.00 0 – – –

F1(P2 9 P1) 2.03 ± 0.17 93 0.00 ± 0.00 0 – – –

F2 1.65 ± 0.51 372 0.00 ± 0.00 126 3:1 0.011 0.900

Table 2 AFLP fragments

specific to the bulks
Primer designation Primer combination AFLP Marker

designation

Approximate size

of marker (bp)

Specificity

of HSYA

AF26356 E-CAT ? M-AGC AFLP-1 750 Present

AF26356 E-CAT ? M-AGC AFLP-3 550 Absent

AF26356 E-CAT ? M-AGC AFLP-4 335 Absent

AF26361 E-ACT ? M-CAG AFLP-5 936 Present

AF26361 E-ACT ? M-CAG AFLP-7 852 Present

AF26363 E-AAC ? M-AGG AFLP-9 550 Present

AF26363 E-AAC ? M-AGG AFLP-10 350 Present

AF26363 E-AAC ? M-AGG AFLP-12 250 Present

AF26363 E-AAC ? M-AGG AFLP-14 150 Absent

AF26386 E-ACC ? M-CTC AFLP-15 730 Present

AF26386 E-ACC ? M-CTC AFLP-16 277 Present

232 Mol Breeding (2009) 23:229–237
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of 730 bp and a fragment of 277 bp (indicated by

arrows in Fig. 3) were almost present in the

present-HSYA parent No. 0016 and individual

present-HSYA ones. They were designated as

AFLP-15 and AFLP-16. Evaluated with the

program MapMaker V3.0b, the genetic distances

of AFLP-7, AFLP-5, AFLP-15 and AFLP-16 from

the HSya locus were 14.2, 11.8, 9.9 and

9.4 cM(Fig. 4), respectively. The sequence data of

these fragments were as follows:

1  2  3  4  5  6 7  8 9 10 11 12 13 14  15 16  17 18 19 20 21 22 23 24 M 

AFLP-5 
AFLP-7 

Fig. 2 A portion of the

AFLP Silver-staining

generated with primer

combinations EcoRI-ACT-

MseI-CAG for Carthamus
tinctorius L. DNA. 1–9

Segregating individuals of

absent-HSYA. 10 #, No.

0025 Parent of absent-

HSYA. 11 Bulk of absent-

HSYA. 12 Bulk of present-

HSYA. 13 $, No.0016

Parent of present-HSYA.

14–24 Segregating

individuals of present-

HSYA. M DL 2000 Marker.

The AFLP markers linked

to presence of HSYA are

indicated by arrows

AFLP-15 

AFLP-16 

1   2  3  4  5  6 7  8 9 1011 12 13 14 15 16 17 18 19 20 21   Fig. 3 A portion of the

AFLP Silver-staining

generated with primer

combinations EcoRI-ACC-

MseI-CTC for Carthamus
tinctorius L. DNA. 1–8

Segregating individuals of

absent-HSYA. 9 #, No.

0025 Parent of absent-

HSYA. 10 Bulk of absent-

HSYA. 11 Bulk of present-

HSYA. 12 $, No. 0016

Parent of present-HSYA.

13–21 Segregating

individuals of present-

HSYA. The AFLP markers

linked to present-HSYA are

indicated by arrows
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AFLP-7

AGACTGCGTACCAATTCACCGCGTACTAATT

CACTTACTCTTTTTATGGATTTGAAATATAG

CACATCCTGGAGAGGTAAGAGATAGAGGAA

CATTCCAACTGCTTAGTTGGTTAGGGGTGTT

ACTCCAGGACTCATCAGCTTCCTTCCAAANG

GGGAGAAGAGGAAAGCAAAGAAGATTGTG

AAAGAAGCTATAGACTGCGTACCAATTCAC

CGCGTACTAATTCACTTACTCTTTTTATGGA

TTTGAAATATAGCACATCCTGGAGAGGTAA

GAGATAGAGGAAC AGACTGCGTACCAATTC

ACCGCGTACTAATTCACTTACTCTTTTTATG

GATTTGAAATATAGCACATCCTGGAGAGGT

AAGAGATAGAGGAACATTCCAACTGCTTAG

TTGGTTAGGGGTGTTACTCCAGGACTCATCA

GCTTCCTTCCAAANGGGGAGAAGAGGAAAG

CAAAGAAGATTGTGAAAGAAGCTATAGACT

GCGTACCAATTCACCGCGTACTAATTCACTT

ACTCTTTTTATGGATTTGAAATATAGCACAT

CCTGGAGAGGTAAGAGATAGAGGAAC AGA

CTGCGTACCAATTCACCGCGTACTAATTCAC

TTACTCTTTTTATGGATTTGAAATATAGCAC

ATCCTGGAGAGGTAAGAGATAGAGGAACAT

TCCAACTGCTTAGTTGGTTAGGGGTGTTACT

CCAGGACTCATCAGCTTCCTTCCAAANGGG

GAGAAGAGGAAAGCAAAGAAGATTGTGAA

AGAAGCTATAGACTGCGTACCAATTCACCG

CGTACTAATTCACTTACTCTTTTTATGGATT

TGAAATATAGCACATCCTGGAGAGG

AFLP-5

GACTGCGTACCAATTCACCTACTAATTCACTT

TGATCATATTTCTGAGAATAATCTACTGGCAG

GGGATAGAGTAATAACAGATCCTCTTGCAAG

CCTTCAGCATGGAAGCGGAAAATAAAAGATA

TAATATGGATTGCGCCAAGTGGTGGCAGGGA

CAGGCCAGCTCCTCGATGTTTGTTCTGTGTGA

ACCTGACTGCGTACCAATTCACCTACTAATTC

ACTTTGATCATATTTCTGAGAATAATCTACTG

GCAGGGGATAGAGTAATAACAGATCCTCTTG

CAGACTGCGTACCAATTCACCTACTAATTCAC

TTTGATCATATTTCTGAGAATAATCTACTGGC

AGGGGATAGAGTAATAACAGATCCTCTTGCA

AGCCTTCAGCATGGAAGCGGAAAATAAAAGA

TATAATATGGATTGCGCCAAGTGGTGGCAGG

GACAGGCCAGCTCCTCGATGTTTGTTCTGTGT

GAACCTGACTGCGTACCAATTCACCTACTAAT

TCACTTTGATCATATTTCTGAGAATAATCTAC

TGGCAGGGGATAGAGTAATAACAGATCCTCT

TGCAGACTGCGTACCAATTCACCTACTAATTC

ACTTTGATCATATTTCTGAGAATAATCTACTG

GCAGGGGATAGAGTAATAACAGATCCTCTTG

CAAGCCTTCAGCATGGAAGCGGAAAATAAAA

GATATAATATGGATTGCGCCAAGTGGTGGCA

GGGACAGGCCAGCTCCTCGATGTTTGTTCTGT

GTGAACCTGACTGCGTACCAATTCACCTACTA

ATTCACTTTGATCATATTTCTGAGAATAATCT

ACTGGCAGGGGATAGAGTAATAACAGATCCT

CTTGCAGACTGCGTACCAATTCACCTACTAAT

TCACTTTGATCATATTTCTGAGAATAATCTAC

TGGCAGGG

AFLP-15

GACTGCGTACCAATTCACCTGCGTACCAATT

CACCCGTGCACCCAGTCCATGCTGCTTTAGC

TTTTTTGATCGCGCGGATTTCCTTTATCCCCT

ATTTTTCGAAAAGCTTTCAAAACAAAATGCT

ACTCTTTCGAAATGGGGGCTACGTATTTAGC

TAGGCTAAATCGTGGGGCTAGCTAGGCCTA

GCTATTTGACTGCGTACCAATTCACCTGCGT

ACCAATTCACCCGTGCACCCAGTCCATGCTG

CTTTAGCTTTTTTGATCGCGCGGATTTCCTTT

ATCCCCGACTGCGTACCAATTCACCTGCGT

ACCAATTCACCCGTGCACCCAGTCCATGCTG

CTTTAGCTTTTTTGATCGCGCGGATTTCCTTT

ATCCCCTATTTTTCGAAAAGCTTTCAAAACA

AAATGCTACTCTTTCGAAATGGGGGCTACG

Fig. 4 Local linkage map around the HSya locus consisting of

four AFLP markers. Left map distances (Kosambi, cM); right
names of AFLP markers
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TATTTAGCTAGGCTAAATCGTGGGGCTAGCT

AGGCCTAGCTATTTGACTGCGTACCAATTCA

CCTGCGTACCAATTCACCCGTGCACCCAGT

CCATGCTGCTTTAGCTTTTTTGATCGCGCGG

ATTTCCTTTATCCCCGACTGCGTACCAATTC

ACCTGCGTACCAATTCACCCGTGCACCCAG

TCCATGCTGCTTTAGCTTTTTTGATCGCGCG

GATTTCCTTTATCCCCTATTTTTCGAAAAGC

GATGAGTCCTGAGTAACTCCTTGATGAAGT

CCTGAG TAACTC

AFLP-16

GACTGCGTACCAATTCACCAAGTCCATGTC

AGACGCCGATCCATTAGCTTGAAGGTGATG

CAATACAGAAGGTCAAATGCCGATTCCTGT

CGGGGTACATGGGGAGAATAAATATAAAAC

AAGGCACCTCCTACACTACTTCTAATAAATA

AATCGGGTCTTAGTCTAACTGCATCTGACAA

GACTGAACTTCGACTGCGTACCAATTCACC

AAGTCCATGTCAGACGCCGATCCATTAGCTT

GAAGGTGATGCAATACAGAAGGTCAAATGC

CG

Amplification of SCAR from genomic DNA

It was necessary to convert the AFLP markers into

simple PCR-based markers for safflower breeding

programs. Based on the flanking sequence of AFLP-

16 marker, which was most closely linked to the HSya

locus of the four obtained fragments, primers were

designed for direct amplification of genomic DNA as

described in the ‘‘Materials and methods.’’ Primers were

used to amplify DNA from the two parents and 213 F2

segregation. The maternal plant and present-HSYA F2

individuals produced a strong band at 298 bp, whereas

the paternal plant and absent-HSYA plants produced no

bands, whose banding patterns were similar to those of

AFLP-16 markers (partly refer to Fig. 5). Thus, a

dominant AFLP-16 marker was converted into a

co-dominant SCAR marker and was subsequently

designated as SCM16. By initial verification, SCM16

showed good specificity and stability, therefore it could

be applied to the molecular MAS for HSYA trait.

Discussion and conclusion

Our previous study and many other studies have

showed that flavonoids are the main chemical con-

stituents of Flos Carthami (Kim et al. 1992; Hattori

et al. 1992; Zhang et al. 2002, 2005), of which HSYA

plays a key role in effects of Flos Carthami against

cardiovascular and cerebral ischemia induced inju-

ries. In our study, we first used a combination of BSA

and AFLP techniques to identify markers linked to

the present HSYA in safflower. The parents obtained

in our laboratory through long systematic screening

and purification included a strain (No. 0016) stable in

HSYA content and a strain (No. 0025) stable in

absent-HSYA. Our study revealed that HSYA trait

was controlled by one major nuclear gene with two

alleles, in which HSya, was completely dominant

over hsya(the allele for absence). A high percentage

of polymorphism (17–44%) was observed between

these two parents with AFLP. Between the bulks of

F2 offspring by BSA, 11 markers were polymorphic,

and four co-segregated with present HSYA

 M  1  2  3  4  5  6  7   8  9   10  11  12  13 14  15  16  17  18  19  20   21   22  23  M  

Fig. 5 Specific amplified result with SCAR primers. 1–13:

Segregating individuals of present-HSYA.14 The bulk of

present HSYA. 15 $, No. 0016, parent of present HSYA. 16 #,

No. 0025, parent of absent HSYA. 17 The bulk of absent

HSYA. 18–23 segregating individuals of absent HSYA. M DL

2000 Marker
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individuals in the segregating population. This estab-

lished a tight linkage of the four AFLP markers to the

present HSYA in safflower. Availability of the four

markers lays a solid foundation for using molecular

marker-assisted genetic selection in safflower breed-

ing, making it possible to shorten the breeding cycle.

Although we identified AFLP markers in a short

period of time, they are generally expensive to

generate, thus limiting large-scale application in

marker-assisted plant for ease of use, AFLP markers

need to be converted into simple SCAR markers. This

methodology involves characterization of the linked

marker and design of locus-specific primers (Negi

et al. 2000). The conversion of a linked marker to

SCAR has been applied successfully in a number of

cases involving RAPD markers (Naqvi and Chattoo

1996) and AFLP markers (Adam-blondon et al.

1994).

In our study, the polymorphic markers linked to

presence of HSYA obtained after AFLP analysis

were in size from 277 to 936 bp. Based on their end

sequences, the primers for SCM16 produced a strong

band in the presence of HSYA in parent of No. 0016

and the individuals, and it turned out to be a useful

SCAR marker, namely SCM16.

To sum up, in our present study DNA fragment

was successfully employed for the identification of

markers associated with the HSYA content trait in

Flos Carthami. AFLP is an important molecular

marking technique, but to our knowledge, no report

has been seen in the study of the relationship between

DNA molecular marker and the content in the

secondary metablite of medicinal plants. Our research

has obtained the AFLP fragments and a SCAR

marker linked to the content of HSYA in Flos

Carthami. We hope that our findings would provide

clues for evaluating the quality at the molecular level

and lay a foundation for further study of directional

regulation of the property of Flos Carthami.
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