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Abstract
In this article, novel thiazol-indolin-2-one derivatives 4a–f have been synthesized via treatment of thiosemicarbazide (1) with 
some isatin derivative 2a–f and N-(4-(2-bromoacetyl)phenyl)-4-tolyl-sulfonamide (3) under reflux in ethanol in the presence 
of triethyl amine (TEA). The structures of new products were elucidated by elemental and spectral analyses. Moreover, all 
compounds were investigated for their in vivo anti-inflammatory activity using celecoxib as a reference drug. The target 
compound 4b was the most active anti-inflammatory candidate and exhibited higher edema inhibition (EI = 38.50%) than 
that recorded by celecoxib (EI = 34.58%) after 3 h. Furthermore, the most active compounds 4b and 4f were subjected to 
a molecular docking study inside COX-2 enzyme to show their binding interactions. Both compounds 4b and 4f showed 
good fitting into COX-2 binding site with docking energy scores − 11.45 kcal/mol and − 10.48 kcal/mol, respectively which 
indicated that compound 4b revealed the most promising and effective anti-inflammatory potential.
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Introduction

Inflammation is a biological reaction to a disturbance in 
tissue homeostasis and body defense chemicals in which 
cells penetrate the affected tissue causing increasing 
blood flow, vascular permeability, and vasodilatation [1, 
2]. Non-steroidal anti-inflammatory drugs (NSAIDs) are 
the most commonly used medications for relieving pain 
and inflammation by inhibiting Cyclooxygenase (COX) 
enzymes [3, 4]. The constitutive COX-1 performs numer-
ous physiological activities as protecting gastric mucosa, 
vascular homeostasis and platelet aggregation, while the 
other isoform, the inducible COX-2 is concerned with 
prostaglandins that promote inflammation and modulate 
pain [5–7].

The use of traditional NSAIDs as aspirin, indometha-
cin and phenazone causes gastrointestinal side effects due 
to the inhibition of both COX isoforms [8–10]. Selective 
COX-2 inhibitor medications as celecoxib, valdecoxib, 
and rofecoxib have been prepared to avoid the side effects 
produced by traditional NSAIDs [11, 12]. Unfortunately, 
rofecoxib and valdecoxib were taken off the market due to 
their cardiovascular side effects including myocardial infarc-
tion and the occurrence of high blood pressure [13–15]. So, 
there is a great demand for selective COX-2 inhibitors with 
diminished side effects. Indole is one of the most widely 
used scaffolds in a broad range of anti-inflammatory agents 
[16–18]. Many research investigations have focused on 
indole-based NSAIDs such as indomethacin (I) to enhance 
their COX-2 selectivity and decrease the ulcerogenic adverse 
effects that linked to their strong COX-1 selectivity and 
drugs acidic properties [19–21]. Knaus and co-workers 
synthesized a new set of indole derivatives substituted at 
N-1 and C-3 [22]. From the prepared indole derivatives, 
compound II was the most selective (SI > 312) and potent 
(COX-2  IC50 = 0.32 µM) COX-2 inhibitor. In 2021, new 
indole derivatives having thiosemicarbazone moiety were 
prepared and screened for their anti-inflammatory effect 
using carrageenan-induced paw edema assay [23]. Com-
pound III recorded superior COX-2 selectivity (SI = 23.06) 
than displayed by celecoxib (SI = 11.88).

Thiazole is a five-membered heterocyclic ring [24–28] 
with many pharmacological utilities as anticancer [29, 30], 
antioxidant [31, 32], antimicrobial [33, 34], antidiabetic 
[35], anthelmintic [36] and anti-inflammatory [37, 38]. For 
example, the thiazole derivative IV significantly inhibited 
edema (60.82%) in carrageenan-induced edema compared 
with indomethacin (53.21%) [39]. Also, thiazole derivative 
V recorded comparable edema inhibition (EI = 87%) to 
that registered by indomethacin (EI = 91%) after 4 h [40].

Considering the aforesaid data and as an extension and 
development of our previous studies [41–50], we present 

the design and construction of novel indole-thiazole 
hybrids and biologically screened for their anti-inflam-
matory effect. This work aims to get new compounds with 
selective COX-2 inhibition, favorable anti-inflammatory 
potential and minimized gastric side effects. This aim has 
been achieved by hybridization of the privileged indole 
ring with the thiazole nucleus in one chemical entity 
(Fig. 1).

Result and discussion

Chemistry

In this work, treatment of thiosemicarbazide (1) with isatin 
derivatives 2a–f and 4-(bromoacetyl)-N-(4-methylphenyl)
benzenesulfonamide (3) via three-component reaction under 
reflux in ethanol/tiethylamine (TEA). Firstly, compound 
1 was allowed to react with some isatin derivatives 2a–f 
namely; isatin (2a), 5-chloro-isatin (2b), 5-nitro-isatin (2c), 
N-methyl-isatin (2d), 5-chloro-N-methyl-isatin (2e), 5-nitro-
N-methyl-isatin (2f), then compound 3 was added until the 
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reaction completed (TLC), to obtain thiazol-indolin-2-one 
derivatives 4a–f (Scheme 1).

The chemical structure of compounds 4a–f was deter-
mined using different elemental and spectroscopic analyses 
such as 1H-NMR, 13CNMR, as well as infrared spectroscopy.

Their infrared spectra revealed the existence of new bands 
in the range 3363–3124  cm−1 corresponding to  NH. groups. 
1H NMR spectra showed, as well as the aromatic signals, 
new singlet signals in the region δ 13.30–9.03 ppm for NH 
groups. The N-CH3 proton in compounds 4d–f appeared 
as a singlet signal in the range δ 3.73–3.84 ppm, respec-
tively. Moreover, their 13C NMR spectra matched the accu-
rate chemical structure which showed the carbonyl groups 

in the range 190.6–161.2 ppm and the N-CH3 groups in 
compounds 4d–f appeared in the region δ 34.5–30.6 ppm, 
and the  CH3 groups at range δ 22.4–21.3 ppm, respectively. 
Furthermore, elemental analyses of thiazoles 4a–f provided 
the correct structure of the new products (cf. experimental).

Biological screening

Anti‑inflammatory activity

The anti-inflammaory potential of indol-3-ylidenehy-
drazino-1,3-thiazole derivatives 4a–f was estimated apply-
ing the carrageenan-induced rat paw edema method using 
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celecoxib as a standard. Each target compound was taken 
immediately before inflammation induction by carrageenan 
injection. The anti-inflammatory potential was recorded 
according to paw volume changes after 1, 3 and 5 h as dis-
played in Table 1. The obtained outcomes disclosed that 
4-{2-[2-(5-chloro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)
hydrazino]-1,3-thiazol-4-yl}-N-phenyl-4-tolylsulfonamide 
(4b) was the most active candidate with edema inhibition 
percent equal to 12.72–45.63%. Furthermore, this compound 
4b showed higher edema inhibition (EI = 38.50%) than that 
exhibited by celecoxib (EI = 34.58%) after 3 h. Moreover, 
compound 4f revealed comparable edema inhibition (3 h; 
EI = 31.94%, 5 h; EI = 41.84%) to that recorded by celecoxib 
(3 h; EI = 34.58%, 5 h; EI = 49.30%). In addition, within 
1H-indole derivatives 4a–c, the 5-chloroindole derivative 
(4b) was the most active anti-inflammatory candidate (3 h; 
EI = 38.50%, 5 h; EI = 45.63%) followed by 5-nitro ana-
logue (4c) (3 h; EI = 23.33%, 5 h; EI = 39.19%) while com-
pound 4a with no substitution at positions 1 and 5 of indole 
moiety exhibited the least anti-inflammatory activity (3 h; 
EI = 18.05%, 5 h; EI = 12.76%). In case of N-methylindole 
derivatives (4d–f), the 5-nitroindole candidate (4f) showed 
the highest edema inhibition percent (3 h; EI = 31.94%, 5 h; 
EI = 41.84%) followed by compound 4d (3 h; EI = 15.41%, 
5 h; EI = 23.76%) then the 5-chloro analogue (4e) (3 h; 
EI = 5.69%, 5 h; EI = 8.72%). From the recorded data in 
(Table 1 and Fig. 2), it is clear that compound 4b has the 

most promising anti-inflammatory potential in comparison 
with celecoxib.

Histological investigation

The impact of compound 4b on paw tissue after carrageenan 
injection, comparing the results to those observed with indo-
methacin. It has been found that compound 4b is the most 
effective of the tested products. As shown in Fig. 3, the paw 
tissues of control rats (2, A) are not inflamed. The carra-
geenan model demonstrated neutrophil migration in addition 
to acute inflammation (black arrow) and hemorrhagic edema 
(black star) (Fig. 2B). Nevertheless, the rats given Celecoxib 
showed a notable decrease in inflammation Fig. 2C. Fig-
ure 2D demonstrated the impact of test chemical 4b on paw 
tissue inflammation, demonstrating a notable reduction in 
inflammatory cells and edema.

Table 1  Anti-inflammatory 
potential of test compounds 
(4a-f) using celecoxib reference 
drug

Compound Diameter inflammation (mm) % Edema inhibition

1 h 3 h 5 h 1 h 3 h 5 h

Control 3.90 ± 0.14 3.90 ± 0.14 3.90 ± 0.14 – – –
Carrageenan 5.76 ± 0.08 7.20 ± 0.08 7.91 ± 0.15 – – –
Celecoxib 4.09 ± 0.06 4.71 ± 0.18 4.01 ± 0.14 28.99 34.58 49.30
4a 5.70 ± 0.14 5.90 ± 0.12 6.90 ± 0.15 01.04 18.05 12.76
4b 4.90 ± 0.51 4.46 ± 0.23 4.30 ± 0.33 12.72 38.50 45.63
4c 5.53 ± 0.08 5.52 ± 0.09 4.81 ± 0.23 03.99 23.33 39.19
4d 5.60 ± 0.96 6.09 ± 0.22 6.03 ± 0.59 02.77 15.41 23.76
4e 5.74 ± 0.23 6.79 ± 0.19 7.22 ± 0.23 0.34 5.69 8.72
4f 5.36 ± 0.30 4.90 ± 0.20 4.60 ± 0.06 6.94 31.94 41.84
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Fig. 2  The % of edema inhibition in response to test compounds

Fig. 3  Microscopic examination of the impact of 4b on paw tissues 
following carrageenan injection. A control group with normal paw 
tissue, B carrageenan group disclosed an acute inflammation (black 
arrow) with edema (black star), C Celecoxib group with remarkable 
attenuation of edema and neutrophils migration, D compound 4b 
treated group with significant attenuation of inflammation and edema. 
Sections stained with H&E, (× 200)
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In vitro COX inhibition screening

Using a colorimetric enzyme immunoassay (EIA), the 
most active candidates 4b and 4f inhibitory efficacy 
against COX-1/COX-2 enzymes was ascertained. For each 
hybrid, the effectiveness was measured using serial dilu-
tions to determine the concentration that inhibited 50% of 
the enzyme  (IC50) (100, 10, 1, and 0.1 M). Additionally, 
for COX-1/COX-2, selectivity indexes (SI values) against 
COX-2 were computed and compared with reference drugs 
celecoxib and indomethacin.

The results obtained from the 4b and 4f hybrids are dis-
played in (Table 2), which indicates that both compounds 4b 
and 4f exhibited higher COX-2 inhibitory effect than COX-1 
enzyme.

Compound 4b was the most potent COX-2 inhibitor 
 (IC50 = 8.26  µM), while 4f was the most COX-2 selec-
tive (SI = 4.32) compared with indomethacin (COX-2 
 IC50 = 0.77  µM, SI = 0.67) and celecoxib (COX-2 
 IC50 = 1.60 µM, SI = 4.44). Furthermore, both 4b (SI = 2.65) 
and 4f (SI = 4.32) were more COX-2 selective than indo-
methacin (SI = 0.67). In addition, the 5-nitroindole candidate 
(4f) exhibited comparable selectivity index (SI = 4.32) to 
that recorded by celecoxib (SI = 4.44).

Histological evaluation of ulcers

Most NSAIDs have been found to induce stomach ulcers. 
Finding innovative anti-inflammatory medicines that helps 
to avoid this problem is crucial because the unfavorable gas-
trointestinal adverse reactions of current anti-inflammatory 
therapies is a major disadvantage Thus, to find any gastro-
protective effects of the most potent anti-inflammatory com-
pounds 4b and 4f, we investigated how hybrids affected rat 
stomach ulcers. Figure 4 clearly depicts the changes in the 
histology of the stomachs of rats. While the indomethacin-
treated group (Fig. 4B) showed an interfered with glandular 
mucosal layer with numerous focal ulcerative zones, marked 
by the bringing of the epithelial lining and an accumula-
tion of necrotic tissue, the control group (Fig. 4A) showed 
a normal gastric mucosa without any indication of erosion 
or inflammation. Furthermore, after administration of both 
compounds 4b and 4f (Fig. 4C, D) the glandular mucosa and 

submucosa in the several regions investigated in the stomach 
mucosa exhibited largely intact histological structure with-
out any defects. More information from a new study with 
long term treatment is required to clarify the gastric effects 
of these compounds at long term of usage.

Inflammation induced by LPS in the RAW 264.7 cell line

The efficacy of synthesized compounds and their cytotox-
icity on LPS-induced RAW 264.7 cells were evaluated at 
different concentrations by using the MTT assay. As seen 
in Fig. 5, as compared to LPS-induced macrophages, none 
of the two compounds were able to stop the growth of mac-
rophages at 5 µM.

Structure–activity relationship

From the anti-inflammatory activity of the newly prepared 
compounds, some relations between their structure and 
activity could be concluded as outlined in Fig. 6.

In case of 1H-indole derivatives 4a-c, the presence of 
electron-withdrawing groups (Cl,  NO2) at C-5 of indole moi-
ety markedly improved the in vivo anti-inflammatory poten-
tial. This is obvious upon comparing the anti-inflammatory 
activity of compound 4b (3 h; EI = 38.50%, 5 h; EI = 45.63%) 
and 4c (3 h; EI = 23.33%, 5 h; EI = 39.19%) with unsub-
stituted analog 4a (3 h; EI = 18.05%, 5 h; EI = 12.76%). In 
addition, methylation of N-1 of indole derivatives attenuated 
the anti-inflammatory potential (except 4c) as observed in 
methylation of 4b (3 h; EI = 38.50%, 5 h; EI = 45.63%) to 
4e (3 h; EI = 5.69%, 5 h; EI = 8.72%). While, methylation 

Table 2  In vitro inhibitory effects of compounds 4b and 4f on COX-1 
and COX-2 enzymes

Compounds COX-1  IC50 (µM) COX-2  IC50 (µM) SI

4b 21.97 ± 1.56 8.26 ± 0.77 2.65
4f 99.50 ± 3.34 23.03 ± 0.75 4.32
Indomethacin 0.52 ± 0.06 0.77 ± 0.041 0.67
Celecoxib 7.11 ± 0.28 1.60 ± 0.036 4.44

Fig. 4  Macroscopical evaluation effect of compounds 4b and 4f 
on the integrity of gastric mucosal membranes. A control group. B 
Indomethacin-induced peptic ulcer. C 4b treated group, D 4f treated 
group. (H&E stain) magnification power × 20
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of 5-nitroindole derivative (4c) (3 h; EI = 23.33%, 5 h; 
EI = 39.19%) to 5-nitro-N-methylindole derivative 4f (3 h; 
EI = 31.94%, 5 h; EI = 41.84%) enhanced the anti-inflam-
matory potential.

Molecular docking study

To gain insights into the fundamental mechanism of action 
of newly prepared indol-3-ylidenehydrazino-1,3-thiazole 
derivatives, molecular docking of the most active candi-
dates (4b and 4f) was conducted inside COX-2 active region. 
The results of docking including docking score (Kcal/mol), 
types of interactions and the binded amino acids are listed 
in Table 3 and Figs. 7 and 8.

Compound 4b revealed good binding within COX-2 
with binding energy score = -11.45 kcal/mol. Conventional 
hydrogen bonds with ARG376, TRP139, ASP229 and 
GLY235 amino acids were detected (Fig. 7). In addition, this 
compound 4b displayed other Pi-Cation interactions with 
LYS333, Pi-Alkyl binding with LEU145, PRO538; Amide-
Pi Stacked with LEU224 and Van der Waals interactions 
with SER143 and ASN375 (Fig. 7).

Furthermore, compound 4f exhibited three hydro-
gen bonding interactions with ARG44, CYS41 and 
GLY135 amino acids with a binding energy score equal 
to − 10.48 kcal/mol. also, other binding interactions were 
registered as Pi-Alkyl binding with LYS468, PRO153 and 
ALA156; Amide-Pi binding with VAL155 and Van der 
Waals interaction with ASN34, ALA156 and ARG469 
(Fig. 8).
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Fig. 5  Cytotoxic evaluation of 4b and 4f hybrids in RAW 264.7 cells 
stimulated with lipopolysaccharides (LPS). The MTT assay was used 
to measure cell viability. The data is shown as mean ± SD (n = 3). 
Relative to the LPS-induced cells, the statistical analysis showed no 
significant differences (p > 0.05)

Fig. 6  SAR study of in vivo 
anti-inflammatory activity of 
target compounds 4a–f 
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Table 3  Outcomes of docking 
study for target candidates 4b 
and 4f inside COX-2 enzyme

Compound no Docking score 
(Kcal/mol)

Number of 
bonds

Type of interactions Amino acids Function group

4b − 11.45 11 H-bond
H-bond
H-bond
H-bond
Amide-Pi
Pi-Cation
Pi-Cation
Pi-Alkyl
Pi-Alkyl
Van der Waal
Van der Waal

ARG376
TRP139
ASP229
GLY235
LEU224
LYS333
LYS333
LEU145
PRO538
SER143
ASN375

SO2
 = N
NH
Indole NH
Thiazole
Indole
Indole
Phenyl
Methyl
 = N
Phenyl

2f − 10.48 13 H-bond
H-bond
H-bond
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alky
Amide-Pi
Van der Waal
Van der Waal
Van der Waal

CYS41
ARG44
GLY135
LYS468
LYS468
CYS36
PRO153
ALA156
ALA156
VAL155
ARG469
ALA156
ASN34

NH
SO2
NO2
Phenyl
Methyl
Thiazole
Thiazole
Indole
Indole
Indole
SO2
NO2
Indole

Fig. 7  The proposed binding mode of compound 4b within COX-2 enzyme. A 2D binding form, B 3D binding form



 Molecular Diversity

Experimental

Chemistry

All melting points were recorded on Melt-Temp II melting 
point apparatus. IR spectra were measured as KBr pellets on 
a Shimadzu DR-8001 spectrometer. 1H NMR and 13C NMR 
spectra were recorded on a Bruker at 400 MHz and 100 MHz 
using TMS as an internal reference, DMSO-d6 as solvent. 
The elemental analyses were carried out on a Perkin-Elmer 
240C Micro analyzer. All reactions were monitored by thin 
layer chromatography (TLC) using precoated plates of silica 
gel G/UV-254 of 0.25 mm thickness (Merck 60F254), with 
 Rf value 0.58–64 (eluent solvent, Hexane/EtOH, 5:1).

General Procedure for the Synthesis of thiazole 
derivatives 4a–f

An equimolar mixture of thiosemicarbazide (1) (0.01 mol, 
0.91  g) with the appropriate isatin derivative (2a–f) 
(0.01 mol) was allowed to reflux in ethanol (20 ml., 5 drops 
TEA). Then 4-(bromoacetyl)-N-(4-methylphenyl)benzene-
sulfonamide (3) (0.01 mol, 0.35 g) was added to the reaction 
mixture, and refluxing was continued for 20–30 min until 
the reaction was complete (TLC) to afford the correspond-
ing thiazole derivatives (4a–f). The reaction mixture was 

allowed to cool to room temperature and the solid precipitate 
was filtrated, and recrystallized from ethanol.

4‑{2‑[2‑(2‑Oxo‑1,2‑dihydro‑1H‑indol‑3‑ylidene)
hydrazino]‑1,3‑thiazol‑4‑yl}‑N‑phenyl‑4‑tolyl sul‑
fonamide (4a)

Yield, 85%; Mp 335–337 °C;  Rf value = 0.59; IR  cm−1: 
3363, 3178, 3120 (3NH), 3064 (C–Harom.), 1682 (C=O), 1H 
NMR δ 13.30 (br,1H, NH), 11.20 (s, 1H, NH), 10.29 (s, 
1H, NH), 7.76–6.85 (m, 13H,  CHarom.), 2.33 (s, 3H, -CH3); 
13C NMR; 166.5 (C=O), 150.9, 143.8, 141.7, 137.9, 137.0, 
132.5, 130.9, 130.3, 130.2, 130.1, 127.1, 125.0, 122.9, 
120.4, 120.2, 120.1, 111.5, 106.4, 21.3; Anal. Calcd. For 
 C24H19N5O3S2 (489.56) C (58.88%), H (3.91%), N (14.31%), 
S (13.10%); Found C (58.95%), H (3.98%), N (14.26%), S 
(13.16%).

4‑{2‑[2‑(5‑Chloro‑2‑oxo‑1,2‑dihydro‑3H‑in‑
dol‑3‑ylidene)hydrazino]‑1,3‑thiazol‑4‑yl}‑N‑phenyl‑
tolylsulfonamide (4b)

Yield, 88%; Mp 341–343 °C;  Rf value = 0.58; IR  cm−1: 
3308, 3124 (3NH), 3061 (CH- arom.), 1671 (C=O), 1H 
NMR δ: 13.24 (s,1H, NH), 11.26 (s, 1H, NH), 10.29 (s, 1H, 
NH), 8.39–6.81 (m, 12H,  CHarom.), 2.33 (s, 3H, -CH3); 13C 

Fig. 8  The proposed binding mode of compound 4f within COX-2 enzyme. A 2D binding form, B 3D binding form
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NMR δ: 163.3 (C=O), 150.9, 143.9, 143.8, 141.0, 140.2, 
138.7, 137.9, 137.0, 131.3, 130.2, 129.9, 127.1, 127.0, 
127.0, 125.8, 121.8, 120.4, 120.1, 119.4, 21.3; Anal. Calcd. 
For  C24H18ClN5O3S2 (524.01) C (55.01%), H (3.46%), N 
(13.36%), S (12.24%); Found; C (54.98%), H (3.39%), N 
(13.29%), S (12.18%); MS: m/z: 524 [M]+.

4‑{2‑[2‑(5‑Nitro‑2‑oxo‑1,2‑dihydro‑3H‑in‑
dol‑3‑ylidene)hydrazino]‑1,3‑thiazol‑4‑yl}‑N‑phenyl‑ 
tolysulfonamide (4c)

Yield, 78%; Mp 312–314 °C;  Rf value = 0.60; IR  cm−1: 
3247- 3154 (3NH), 3085 (C–Harom.), 1654 (C=O), 1H NMR 
δ: 10.28 (s,1H, NH), 9.14 (s, 1H, NH), 8.64–7.11 (m, 13H, 
 CHarom +  NH.), 2.32 (s, 3H,  CH3), 13C NMR δ: 163.5 (C=O), 
146.6, 146.2, 144.9, 134.1, 133.5, 133.0, 131.5, 130.0, 130.7, 
130.3, 128.9, 128.7, 128.6, 127.2, 123.8, 123.6, 123.4, 22.4; 
Anal. Calcd. For  C24H18N6O5S2 (534.56); C (53.92%), H 
(3.39%), N (15.72%), S (12.00%) Found: C (53.86%), H 
(3.46%), N (15.65%), S (12.06%); MS: m/z: 534 [M]+.

(4‑(2‑(2‑(1‑methyl‑2‑oxoindolin‑3‑ylidene)hydrazi‑
nyl)thiazol‑4‑yl)‑N‑(p‑tolyl) benzene sulfonamide 
(4d)

Yield, 82%; Mp 328–330 °C;  Rf value = 0.64; IR  cm−1: 
3217, 3161 (2NH), 3078 (C–Harom.), 1658 (C=O), 1H NMR 
δ 13.16 (br,1H, NH), 10.45 (s, 1H, NH), 7.75–7.02 (m, 13H, 
 CHarom.), 3.73 (s, 3H, N-CH3), 2.30 (s, 3H,  CH3); 13C NMR 
δ: 161.2 (C=O), 152..4, 143.8, 142.1, 138.7, 137.1, 133.0, 
131.2, 130.2, 129.8,128.9, 127.2, 123.3, 122.2, 120.5, 119.5, 
119.3, 115.4, 34.5, 21.3; Anal. Calcd. For  C25H21N5O3S2 
(503.36); C (59.62%), H (4.20%), N (13.91%), S (12.73%) 
Found; C (59.69%), H (4.16%), N (13.84%), S (12.85%); 
MS: m/z: 503 [M]+.

4‑{2‑[2‑(5‑Chloro‑2‑oxo‑1,2‑dihydro‑N‑me‑
thyl‑3H‑indol‑3‑ylidene)hydrazino]‑1,3‑thia‑
zol‑4‑yl}‑N‑phenyl‑4 tolylsulfonamide (4e)

Yield, 92%; Mp 330–335 °C;  Rf value = 0.62; IR  cm−1: 
3190, 3167 (2NH), 3047 (C–Harom.), 1661 (C=O), 1H NMR 
δ 12.27 (s,1H, NH), 10.33 (s, 1H, NH), 7.79–6.99 (m, 12H, 
 CHarom.), 3.75 (s, 3H, N-CH3), 2.33 (s, 3H,  CH3), 13C NMR 
δ (ppm): 190.6 (C=O), 146.6, 146.5, 140.5, 137.3, 134.2, 
132.8, 131.8, 131.1, 130.8, 129.0, 128.6, 128.5, 127.5, 
126.0, 123.3, 122.7, 122.3,121.8, 118.7, 31.6, 21.6; Anal. 
Calcd. For  C25H20ClN5O3S2(538.04) C (55.81%), H (3.75%), 
N (13.02%), S (11.92%) Found C (55.86%), H (3.83%), N 
(12.97%), S (11.86%); MS: m/z: 538 [M]+.

4‑{2‑[2‑(5‑Nitro‑2‑oxo‑N‑methyl‑3H‑indol‑3‑ylidene)
hydrazino]‑1,3‑thiazol‑4‑yl}‑N‑phenyl‑4‑tolylsulfon‑
amide (4f)

Yield, 86%; Mp 305–307 °C;  Rf value = 0.60; IR  cm−1: 3251, 
3126 (2NH), 3085 (C–Harom.), 1654 (C=O), 1H NMR δ 9.18 
(s,1H, NH), 9.03 (s, 1H, NH), 8.64–7.11 (m, 12H,  CHarom.), 
3.84 (s, 3H, N-CH3), 2.34 (s, 3H,  CH3), 13C NMR δ: 162.3 
(C=O), 154.2, 153.0, 151.0, 150.3, 146.3, 133.2, 132.7, 
132.6, 132.3, 131.7, 130.7, 129.8, 129.7, 129.3, 128.6, 
124.4, 123.0, 30.6, 22.0; Anal. Calcd. For  C25H20N6O5S2 
(548.59); C (54.73%), H (3.67%), N (15.32%), S (11.69%) 
Found: C (54.69%), H (3.73%), N (15.26%), S (11.78%). 
MS: m/z: 548 [M]+.

Biological evaluation

In vivo anti‑inflammatory activity

For the in vivo assessment of the test compounds' anti-
inflammatory activity, male Wister rats weighing 180 ± 10 g 
each were employed, with celecoxib serving as the refer-
ence drug. All animals had to acclimate to the criteria set 
by the Institutional Animals Ethics Committee (IAEC) of 
the Faculty of Science at Sohag University for at least one 
week prior to the investigations (permit No;). For this in vivo 
evaluation, 40 adult male Westar rats (n = 4) were randomly 
assigned. The selected agents were suspended in 1% newly 
prepared carboxy methyl cellulose (CMC) prior to being 
administered orally by gavage. Following a sub plantar 
injection of 100 µL of freshly prepared carrageenan gel (1% 
distilled water) into each rat's left hind paw, changes in paw 
thickness were observed [46]. Rats were administered test 
compounds orally via gavage one hour before the injection 
of carrageenan. Paw thickness was measured one, three, and 
five hours after the development of inflammation. The tested 
compound's effects were quantified as a percentage of edema 
inhibition. The anti-inflammatory potential is expressed as 
a percentage suppression of paw edema and quantified [52].

Histopathological analysis of the tissues in the paws

Prior to being embedded in paraffin, the tissues from the 
paws were stored in a 10% formalin-neutral buffer. Hema-
toxylin and eosin (H&E) were used to stain the slides after 
thin sections of 5–6 µm were cut using a microtome. The 
slides that were made with a light microscope exhibit patho-
logical changes in them.

In vitro COX inhibition Screening

By utilizing the appropriate Human enzyme immune assay 
(ELIA) kits (Cayman Chemical, USA) and adhering to the 
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manufacturer's instructions, the inhibitory activities of the 
test hybrids 4b and 4f versus COX-1, and COX-2 enzymes 
were assessed. The results were expressed as an  IC50 value 
(µM). The data for studies conducted in triplicate are shown 
as  IC50 ± SD. As positive controls, we employed the well-
known COX-1, and COX-2 inhibitors indomethacin and 
celecoxib [53].

Histological evaluation of ulcers

To assess the ulcerogenic potential of different hybrids, 
twenty-four  adult male Albino Wistar rats weighing 
180 ± 20 g were divided into four groups. Water was sup-
plied to the animals as needed throughout their overnight 
fast before treatment. The chosen hybrids were given orally 
at a dose of 50 mg/kg, whereas the positive control was 
indomethacin (30 mg/kg suspension in 1% CMC orally). 
Four hours later, the rats were slaughtered, and to assess 
the extent of gastrointestinal injury, their stomachs were 
promptly removed, cleaned with ice-cold saline, and pre-
served in 10% formalin saline [54]. The stomach tissues 
from each group were thinly sliced and prepared into slides, 
which were then stained with hematoxylin and eosin (H&E) 
for microscopic examination [55].

Assessment of the cytotoxicity of selected hybrids on RAW 
cells

RAW 264.7 cells were seeded at 5000 cells per well in a 
96-well plate and incubated for 24 h. Following this, the 
cells were exposed to the investigated hybrids (4b and 4f) 
at five concentrations (5, 10, 20, 40, and 80 µM) for two 
hours before being stimulated with 1 µg/mL lipopolysaccha-
ride (LPS) for 48 h. The cytotoxic activity of the produced 
hybrids was determined using the MTT assay. The hybrids 
were used at subtoxic concentrations to the cells in all sub-
sequent tests to prevent any cytotoxic influence [56,57].

Docking study

The crystal structure of COX-2 was downloaded from Pro-
tein Data Bank (PDB:1CX2) and the molecular docking was 
performed following our previously reported work [52].

Statistical analysis

The obtained data were statistically analyzed using Graph-
Pad Prism version 9, and the mean values and standard 
deviations (mean ± SD) were presented as a result. The 
significance of mean differences was evaluated using 
the Tukey–Kramer test and one-way analysis of variance 
(ANOVA), with p-values of less than 0.05 being considered 
statistically significant.

Conclusion

New series of novel indole-thiazole hybrids derivatives 
4a–f were synthesized via multi-components of thiosemi-
carbazide with some isatine derivatives a–f and N-(4-(2-
bromoacetyl)phenyl)-4-methylbenzenesulfonamide (3) 
under reflux in ethanol. The chemical structures of novel 
compounds were elucidated by elemental and spectral 
analyses. All new compounds have been screened for 
their anti-inflammatory activity using celecoxib as a ref-
erence drug. It has been found that compound 4b (3 h; 
EI = 38.50%, 5 h; EI = 45.63%) has the most promising and 
effective anti-inflammatory potential. Furthermore, molec-
ular docking study of compounds 4b and 4f displayed that 
these compounds fitted into the COX-2 binding site with 
good docking energy scores.
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