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Abstract
The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-
negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential 
move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to 
discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, 
these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound 
number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular 
level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibi-
tor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of 
gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and 
that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination 
and optimization and may potentially serve as a future MPN treatment.

Keywords JAK2 inhibitors · Philadelphia-negative myeloproliferative neoplasms · Virtual screening · Biological 
validation · Molecular dynamics

Introduction

Philadelphia chromosome-negative myeloproliferative neo-
plasms (MPNs), which include polycythemia vera (PV), 
essential thrombocytosis (ET), and primary myelofibrosis 
(PMF), are malignant hematologic diseases characterized 
by excessive hematopoietic stem cell proliferation [1–3]. 
The clinical features of these MPNs are characterized by 
excessive proliferation of one or more myeloid cell line-
ages, including erythroid, granulocytic, and/or megakaryo-
cytic cells. These manifestations are often accompanied by 
splenomegaly, extramedullary hematopoiesis, arteriovenous 
thrombosis, hemorrhage, and/or severe physical symptoms 
such as itching, fatigue, fever, and night sweats. Further-
more, all three diseases may evolve into acute myeloid leu-
kemia (AML) [4]. Currently, clinical treatments comprise 
both interventional and surgical treatments, such as phle-
botomy, radiotherapy, splenectomy, or allogeneic hemat-
opoietic stem cell transplantation [5–7]. However, while 
surgery and radiotherapy have high prognosis risk, they 
can impose a significant physical burden on patients. As a 
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result, chemical drugs, such as hydroxyurea, interferon α, 
androgens, alkylating agents, immunomodulators, and anti-
coagulants, have emerged as a crucial method for treating 
MPNs [7]. Unfortunately, these drugs can only provide some 
relief from symptoms, with their effectiveness being limited 
and temporary. Moreover, many patients develop resistance 
or intolerance to these drugs, thus limiting their ability to 
prevent disease progression. Due to these limitations, the 
use of these drugs in clinical practice is limited, thus leaving 
patients with an inability to adequately address the clinical 
requirements associated with MPNs.

In previous studies, MPNs pathogenesis has been asso-
ciated with JAK2 (Janus kinases 2), MPL (myeloprolif-
erative leukemia virus oncogene), or CALR (calreticulin) 
gene mutations that subsequently contribute to the overac-
tivation of JAK2 [8, 9]. This overactivation then results in 
aberrant JAK2/STATs signaling, ultimately resulting in the 
development of MPNs. The most common MPNs muta-
tion is the V617F mutation that occurs in the JH2 region of 
JAK2 (JAK2 V617F). This mutation leads to JAK2 hyper-
activation and is identified in the blood cells of nearly all 
PV patients and ∼50% of ET and PMF patients [10–12]. 
Therefore, developing novel JAK2 inhibitors that are effec-
tive in treating MPNs has become a research hotspot. Cur-
rently, three JAK2 inhibitors (Ruxolitinib, Fedratinib, and 
Pacritinib) have been approved for the treatment of MPNs 
[13–15]. Furthermore, several additional JAK2 inhibitors 
have undergone clinical trials and demonstrated promising 
efficacy and safety profiles. JAK2 inhibitors target for the 
pathogenic site and treat the disease etiologically, with obvi-
ous advantages in improving clinical symptoms, reducing 
the physical burden on patients, and prolonging survival. 
However, due to the high degree of JAK2 conservation, 
clinical JAK2 inhibitors can have off-target effects caused by 
poor selectivity, which raises potential safety concerns [16]. 
Furthermore, many patients may develop a tolerance to the 
JAK2 inhibitors during maintenance therapy, which would 
result in a reduction in the curative effect. Therefore, it is 
still necessary to discover new JAK2 inhibitors with a low 
toxicity and high efficiency to provide alternative options 
for clinical application.

The drug development process is risky and costly, with an 
average of 10 to 15 years required to develop a new drug at a 
cost of more than $2 billion [17]. At present, computer-aided 
methods are widely used in drug design and development 
to reduce cost, shorten the development time, and reduce 
the occurrence of drug toxicity and side effects [18–20]. 
In 2017, Hinton et al. proposed a new deep learning algo-
rithm called capsule neural network (CapsNet) that aimed 
to solve the problem of information loss between multi-
ple neural network layers [21]. Additionally, CapsNet was 
shown to exhibit excellent performance for small sample 
sizes and was able to accurately identify tiny differences 

in compounds based on previous research [22, 23]. Herein, 
to identify novel JAK2 inhibitors against MPNs that pos-
sess a low toxicity and high efficiency, a multitask CapsNet 
model was employed. This enabled virtual ligand-based 
screening to predict JAK2 inhibitor compounds based on 
the ChemDiv compound libraries that contain about 1.68 
million compounds. Subsequently, structure-based molec-
ular docking was applied to further explore associations 
between the candidate inhibitors and JAK2. After analyz-
ing the results of two rounds of virtual screening, less than 
50 compounds were selected and purchased. The purchased 
compounds were then subjected to an in vitro bioactivity 
evaluation. First, the screened compounds were verified at 
the protein level using an ADP-Glo™ kinase assay. Next, the 
anti-JAK2 compound with the highest antiproliferative effect 
was selected and evaluated in JAK2 V617F mutant human 
erythroleukemia (HEL) cells. Finally, the interaction mech-
anisms between JAK2 and the candidate compound were 
explored using a molecular dynamics simulation, with the 
observed interactions compared to the clinically used JAK2 
inhibitor Ruxolitinib. Ultimately, this screening approach 
(Fig. 1) successfully identified CD4 as a promising JAK2 
inhibitor with a binding activity that future studies could 
focus on optimizing to generate a potentially new clinical 
MPN treatment.

Materials and methods

Virtual screening based on multitask CapsNet

To ensure an accurate depiction of the bioactivity for each 
compound, four JAKs (JAK1, JAK2, JAK3, and TYK2) 
were annotated based on experimental  IC50 values from 

Fig. 1  Workflow of JAK2 inhibitor discovery and evaluation
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an open-access database for drug discovery (https:// www. 
ebi. ac. uk/ chembl/). Duplicated compounds and compounds 
without  IC50 values were removed with Pipeline Pilot, 
and the compounds indicated “Not Determined” or “Not 
Active” were deleted by manual inspection. The selected 
compounds were annotated as JAK inhibitors if their  IC50 
values was < 10 μM and JAK non-inhibitors if their  IC50 
values was > 10 μM. The final dataset for the JAKs consisted 
of 14,249 molecules, of which 11,879 molecules were classi-
fied as inhibitors and 2370 molecules were classified as non-
inhibitors. Molecular fingerprints, as well as descriptors, 
were used simultaneously as characterization of compounds 
descriptors for model input. To characterize the structural 
features of the chemicals accurately, a total of five molecular 
fingerprints were generated using the chemical development 
kit (CDK), molecular access system (MACCS), extended 
connectivity fingerprint 4 and 6 (ECFP4 and ECFP6) and 
PubChem, and calculated using the PaDEL-Descriptor 
toolkit (v 2.21) [24]. In addition, a set of molecular descrip-
tors was calculated by DS 3.1, namely 13 molecular descrip-
tors (13MD), to represent the physicochemical features of 
chemicals. The detailed list of these properties is given in 
Table S1.

In this study, a multitask CapsNet framework, which 
had been developed by our team in 2021 [25], was used to 
build a ligand-based virtual screening model for the discov-
ery of novel JAK2 inhibitors. The algorithms and training 
procedures are summarized in Table S2. In the output file, 
JAK family activity was indicated as follows: “1” = JAK1, 
“2” = JAK2, “3” = JAK3, and “4” = TYK2 activity, with a 
result of “0” indicating that the predicted compound does 
not have JAK family activity. Only compounds with an out-
put result of “2” were retained for further examination.

Molecular docking

To improve active compound identification, DS 3.1 was used 
to further screen the compounds that were identified above. 
The crystal structure of JAK2 was downloaded from the 
PDB database (https:// www. rcsb. org/; PDB ID: 6VGL) [26], 
along with the small molecule ligand Ruxolitinib. Ruxoli-
tinib was the first JAK inhibitor to be marketed, and it is also 
the most used inhibitor in the treatment of MPNs [27]. This 
drug acts by competitively inhibiting the ATP-binding cata-
lytic site within the kinase domain of JAK2; thus, it was used 
as a positive control. Prior to performing docking analysis, 
the protein crystal structures were pre-processed to remove 
water molecules, small molecule ligands, and polypeptide 
chains that do not participate in docking. Next, hydrogen-
ates were added and incomplete amino acid residues were 
corrected. Then, the coordinates for the Ruxolitinib binding 
site were set as the docking site, with a site readjustment 
radius of 11 Å to ensure the entire ligand binding site was 

covered. Finally, biomolecular simulations were carried out 
using the CHARMM force field [28]. Ligand preparation 
modules were used to optimize small molecule energetics 
and generate reasonable conformations in conjunction with 
CDOCK. The obtained docking results were filtered and 
only the top 10% of candidate compounds were retained for 
further examination.

In silico ADMET, PAINS, and drug‑likeness 
assessments for JAK2 inhibitors

For the compounds of interest, various predictive ADMET 
(absorption, distribution, metabolism, excretion, and tox-
icity) parameters were assessed by using ADMETlab 2.0 
(https:// admet mesh. scbdd. com/) [29]. This online platform 
provides accurate a total of 23 ADME endpoints and 27 tox-
icity endpoints, such as Caco-2 permeability, human intesti-
nal absorption, plasma protein binding, blood–brain barrier, 
CYP450 1A2 inhibitor, CYP450 1A2 substrate, clearance, 
hERG blockers, and human hepatotoxicity.

To reduce potential false positives and ensure the success-
ful identification of a candidate drug, pan assay interference 
compounds (PAINS) were filtered out using RDKit (https:// 
www. rdkit. org) [30, 31]. To further ensure the quality can-
didate compounds, Lipinski’s rule-of-five was applied to 
eliminate molecules with potentially poor permeation or 
poor oral bioavailable using SwissADME (http:// www. swiss 
adme. ch) [32]. Additionally, to further optimize the list of 
potential drug candidates, a QED (Quantitative Estimate of 
Drug-likeness) analysis was performed using RDkit, with 
scores ranging from 0 (all properties unfavorable) to 1 (all 
properties favorable) [33].

Biological validation

Preparation of compounds

All purchased candidate compounds, as well as the posi-
tive control Ruxolitinib (TargetMol, Shanghai, China), were 
prepared by adding an amount of DMSO based on their 
respective relative molecular masses, and then allowing the 
compounds to fully dissolve to form a 10 mM masterbatch 
to be set aside.

ADP‑Glo™ kinase assay

To verify the JAK2 inhibitory effect of the identified can-
didate compounds, an ADP-Glo™ kinase assay (Promega, 
Madison, WI, USA) was employed according to the manu-
facture’s protocols. Their inhibiting capacities were deter-
mined based on their  IC50 values at the concentrations of 
50 μM, 25 μM, 12.5 μM, 6.25 μM, and 3.125 μM. Briefly, 
1 μL of the candidate compounds and the positive control 

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://www.rcsb.org/
https://admetmesh.scbdd.com/
https://www.rdkit.org
https://www.rdkit.org
http://www.swissadme.ch
http://www.swissadme.ch
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Ruxolitinib (TargetMol, Shanghai, China) were transferred 
to a 384-well plate, ensuring that the final concentration of 
the compounds in the kinase reaction system was 200 μM. 
Then, 10 µM JAK2 (Sigma-Aldrich, Darmstadt, Germany) 
was prepared with 1 × Kinase buffer (40 mM Tris–HCl, pH 
7.5; 20 mM  MgCl2; and 0.1 mg/mL bovine serum albu-
min), and 1 μL of JAK2 was added to a 384-well plate and 
incubated for 15 min at room temperature. Next, 2 μL of a 
mixture containing ATP and kinase substrate was added to 
initiate the kinase reaction and incubated for 2 h at room 
temperature. 4 μL of ADP-Glo reagent was added and 
allowed to incubate for 1.5 h. Following incubation, 8 µL 
of kinase detection reagent was added and incubated at 
room temperature for 1 h to promote ADP to ATP conver-
sion and generate luminescence that was then quantified 
on a microplate reader to establish kinase activity. Nega-
tive control wells contained all experimental components, 
but no compound was added, and the blank control wells 
contained neither inhibitor compound nor JAK2.

The inhibiting capacity of compounds obtained from the 
above screening would be verified in depth by ADP-Glo™ 
kinase Assay, and their  IC50 values are calculated. The con-
centration gradient of the compound in the system is set as 
follows: 50 μM, 25 μM, 12.5 μM, 6.25 μM, and 3.125 μM. 
Then, ADP-Glo™ is applied to evaluate the inhibition of 
JAK2 kinase activity by the hit. The levels of JAK2 kinase 
inhibition were then determined based on the luminescence 
(L) as follows: inhibition rate (%) =  (Lcontrol  −   Lsample)/
(Lcontrol −  Lblank) × 100%.

CCK‑8 assay cell proliferation assay

To evaluate the antiproliferative effect of the candidate com-
pounds, a CCK-8 assay was employed to evaluate the effect 
of the inhibitor in human erythroleukemia (HEL) cells car-
rying the JAK2 V617F mutation (Pricella Life Technolo-
gies Co., Ltd,). Cells were cultured in RPMI-1640 complete 
medium supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin–streptomycin mixture (P/S) in a 37 °C 
incubator with 5%  CO2. Then, 100 μL of HEL cellular sus-
pension was inoculated into a 96-well plate and samples 
were divided into experimental (HEL + CD4), control (only 
HEL), and blank (only media) groups. Next, 10 μL of CCK-8 
solution was added to each well, with absorbance values 
 (OD450) determined at 24 h and 48 h using a microplate 
reader. The cellular proliferation inhibition rate for each 
group was calculated according to the formula: cellular 
proliferation inhibition rate (%) =  (ODcontrol −  ODexperiment)/
(ODcontrol −   ODblank) × 100%, with all experiments per-
formed in triplicate.

Molecular dynamics simulation and analysis

To further investigate the interactions between the candi-
date compounds and JAK2, molecular dynamics simulations 
using the JAK2 crystal 6VGL structure were conducted 
using Gromacs2018 [34]. Prior to performing the molecu-
lar dynamics simulation, JAK2 protein and small molecule 
structures were hydrogenated using MOE software (https:// 
www. chemc omp. com), and the OPLS force field was applied 
to the JAK2 protein crystal structure and small molecules 
[35]. At the start of the simulation, TIP3P water was added 
to the system using the TIP3P model to create a water box 
with a size of 13 × 13 × 13  nm3, and the edges of the water 
box were at least 1.2 nm from the protein [36]; followed 
by the addition of  Na+ or  Cl− to ensure the system is elec-
trically neutral. Next, the simulation process was divided 
into three steps. First, 50,000 steps of energy optimization 
were performed on the complex system using the steepest 
descent method. Next, the system was equilibrated under 
NVT ensemble for 1000 ps at a constant temperature of 
300 K. Finally, the MD simulations were carried out in the 
NPT ensemble for 100 ns at a constant pressure of 1 bar 
and a constant temperature of 300 K. The simulation was 
repeated three times for all systems.

Binding free energy calculation

To evaluate the inhibitor/JAK2 binding strengths of the can-
didate inhibitor, the g_mmpbsa program was used to calcu-
late the binding free energy of the complex [37]. For analy-
sis, the trajectory was evaluated for the last 10 ns, with nodes 
created at every 100 ps to generate a total of 100 snapshots. 
Finally, the binding free energy (ΔGbind) was calculated 
using the molecular mechanics/Poisson-Boltzmann and sur-
face area solvation (MM/PBSA) method [38, 39] as follows:

where ΔGcomplex, ΔGreceptor, and ΔGlignad represent the free 
energy of the complex, protein receptor, and ligand, respec-
tively. The free energy of each component is composed of 
a total meteorological energy (EMM), solvation free energy 
(Gsol), and entropy contribution (TS). Additionally,  EMM 
is composed of intramolecular energy (Eint), electrostatic 
energy (Eele), and van der Waals force (Evdw), and Gsol 

(1)ΔGbind = Gcomplex − (Greceptor + Gligand)

(2)G = EMM + Gsol − TS

(3)EMM = Eint + Eele + Evdw

(4)Gsol = Gnonpol,sol + Gpol,sol

https://www.chemcomp.com
https://www.chemcomp.com
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includes non-polar solvation energy (Gnonpol, sol) and polar 
solvation energy (Gpol, sol).

Statistical analysis

All biological experiments were repeated at least three 
times. When comparing two groups for statistical signifi-
cance, a one-way ANOVA was performed with p < 0.05 
deemed significant. All graphs were generated using 
GraphPad Prism 9 software.

Results and discussion

Virtual screening based on multitask CapsNet 
and molecular docking

Following multitask CapsNet analysis, a total of 886 com-
pounds were predicted to modulate JAK2 (6VGL) bio-
activity. To establish that the applied molecular docking 
settings were reasonable, the JAK2 protein was redocked 
with Ruxolitinib, with a root-mean-square deviation 
(RMSD) value < 2 Å required when comparing the origi-
nal and docked conformations. Following re-docking with 
Ruxolitinib, a RMSD value of 0.3091 Å was noted, thus 
indicating that the docking parameters are accurate and 
reliable (Fig. 2). To further evaluate the bioactivity of the 
selected compounds, CDOCKER was employed and only 
the top 10% of ranked compounds (n = 89) were selected 
for further analysis.

Enrichment of the candidate compounds via ADMET, 
PAINS, and QED assessments

The remaining compounds (n = 89) were evaluated in 
ADMET, with a total of 23 ADME endpoints and 27 toxicity 
endpoints examined. For the endpoints, the prediction prob-
ability values are represented by six symbols: 0–0.1(− − −), 
0.1–0.3(− −), 0.3–0.5( −), 0.5–0.7( +), 0.7–0.9(+ +), and 
0.9–1.0(+ + +). Usually, the symbol ‘ +  +  + ’ or ‘ +  + ’ indi-
cates the molecule is more likely to be toxic or defective, 
while ‘ −  −  − ’ or ‘ −  − ’ represents nontoxic or appropriate. 
In addition, the predictions of each property are visualized 
as different colored dots; green, yellow, and red indicate 
that the ADME/T property of the compound is excellent, 
medium, and poor, respectively. Following analysis, a total 
of 67 compounds with probable values in the range of 0–0.5 
and with green dots remained for further examination.

PAINS screening was done to filter out false positive 
compounds having PAINS patterns. A KNIME workflow 
was utilized to implement PAINS filtering in RDKit to 
remove ligands with matching patterns, thereby reducing 
the number of candidate compounds to 64.

Herein, to be considered a drug-like molecule, each 
candidate compound had to meet the conditions of Lipin-
ski’s rule-of-five and obtain a QED value > 0.115. These 
requirements reduced the list of interest to 59 compounds. 
The chemical diversity of the space was analyzed using 
MACCS-based Tanimoto similarity to compare each com-
pound with its nearest neighbor. The analysis of the scaffolds 
for 59 compounds yielded an average Tanimoto similarity 
of 0.26, indicating a significant level of structural diversity. 
Further, ligand efficiency (LE) was employed as a guiding 
principle for lead discovery, with the criterion that the initial 
hit should have a LE score > 0.3, indicating the presence of 
potent drug-like compounds [40, 41]. After that, the number 
of compounds determined to have an acceptable modulation 
of JAK2 inhibitive activity was reduced to 49 (Table S3). 
Thus, these inhibitor compounds were purchased for bio-
logical validation.

Biological validation

Kinase activity assays

To validate the bioactivity of the candidate compounds 
(n = 49), an ADP-Glo™ kinase assay was employed, 
with luminescence quantified to determine JAK2 kinase 
activity. Of the examined compounds, CD4, CD10, 
CD31, CD48, and CD49 showed the highest levels of 
JAK2 kinase inhibition (Fig. S1). Since CD4 was associ-
ated with the lowest level of JAK2 kinase activity, thus 
suggesting a strong inhibitory affect, this compound 
was selected for further examination. To determine the 

Fig. 2  Docked Ruxolitinib conformation and original conformation 
(yellow structure is the redocked Ruxolitinib conformation, orange 
structure is the original conformation)
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optimal concentration of CD4, the ADP-Glo™ kinase 
assay was repeated with CD4 concentrations of 50 μM, 
25 μM, 12.5 μM, 6.25 μM, and 3.125 μM. A concentration 
curve was then constructed and the  IC50 value was deter-
mined to be 15.22 μM (Fig. 3). These results of virtual 
screening can be influenced by several important factors, 
including the protein structure chosen for screening, the 
size and diversity of the compound library, the docking 
strategy employed, and the manual selection of candidate 
compounds. Thus, the hits obtained by virtual screening 
are generally at the micromolar level. The aim of virtual 
screening is to obtain novel hits rapidly and low-costly. 
To improve the activity and ADME/T properties of hits, 
further structural optimization following this molecular 
design is an essential work.

Effect of CD4 on HEL/HEK‑293 T cells

Herein, DMSO was diluted to the same concentration as the 
drug and added to HEL cells and assayed using the CCK-8 
assay, Fig. S2 shows that low concentrations of DMSO do 
not have an effect on subsequent compound activity assays. 
The inhibitory effect of CD4 on proliferation was assessed by 
using a CCK-8 analysis. HEL cells were cultured with CD4 
at concentrations of 0.5 μM, 1 μM, 5 μM 10 μM, 15 μM, 
20 μM, 40 μM, 80 μM, and 100 μM. The results showed 
that the anti-proliferation rate in the CD4 treated HEL cells 
was significantly higher than that of the control (Fig. 4a, 
p < 0.05), with the inhibition rate (%) significantly increased 
in a dose-dependent manner. Furthermore, at 24 h, CD4 had 
an  IC50 = 37.24 μM, and at 48 h, the  IC50 = 46.73 μM, thus 
suggesting a relatively consistent inhibition ability.

To evaluate CD4 toxicity, human embryonic kidney 293 T 
cells (HEK-293 T) were treated with CD4 at concentrations 
of 6.25 μM, 12.5 μM, 25 μM, 50 μM, and 100 μM. After 
48 h, HEK-293 T cellular proliferation was detected using a 
CCK-8 assay. The results showed that CD4 had no inhibitory 
effect on the growth of the HEK-293 T cells, thus indicating 
that CD4 may have low toxicity (Fig. 4b).

Novel scaffold of CD4

To further characterize CD4 and its properties, its scaffold 
structure was compared to that of the three clinically used 
JAK2 inhibitors, Ruxolitinib, Fedratinib, and Pacritinib. As 
shown in Fig. 5, it is clear that CD4 consists of the following 
two main substructures: benzothiazole and methoxybenza-
mide. And the chemical structures of Ruxolitinib, Fedratinib, 
and Pacritinib mainly include pyrimidine, pyrazole, pyrrole, 
and benzenesulfonamide. Moreover, we calculated the Tani-
moto coefficient (Tc) between the four compounds through 
Morgan fingerprints to evaluate the similarity between CD4 

Fig. 3  JAK2 kinase inhibition with CD4 concentrations of 50  μM, 
25 μM, 12.5 μM, 6.25 μM, and 3.125 μM, with kinase activity quan-
tified using an ADP-Glo™ kinase assay

Fig. 4  CCK-8 assays to evaluate CD4 inhibition ability and toxicity. a Inhibition of HEL cell proliferation with CD4 at gradient concentration 
for 24 h and 48 h. b Cell viability of HEK-293 T cells treated with various CD4 concentrations for 48 h
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and the other three JAK2 inhibitors. The Tanimoto coef-
ficient measures the similarity between two compounds. 
A higher coefficient value, closer to 1, indicates a higher 
similarity between the compounds [42]. The results showed 
that CD4 does possess a novel scaffold when compared to 
Ruxolitinib (Tc = 0.074), Fedratinib (Tc = 0.151), and Pac-
ritinib (Tc = 0.119).

Molecular dynamics simulation analysis

To examine the compactness of three systems, the radius 
of gyration (Rg) value was calculated during the molecular 
dynamics simulation. A smaller Rg value indicates bet-
ter compactness and a more stable structure. As shown in 
Fig. 6, at the beginning of the simulation, the Rg values of 
the three systems slightly decrease and then gradually sta-
bilize. At equilibrium, the Rg values of all three systems 
fluctuated around 2.15 nm. Furthermore, to investigate the 

overall stability of the CD4-JAK2 and Ruxolitinib-JAK2, 
the root-mean-square deviation (RMSD) of the three sys-
tems relative to the initial conformation during the simu-
lation were calculated (Fig. 7). The RMSD of the three 
systems showed an increasing trend in the early stage of 
the simulation and reached about 20 ns; each system basi-
cally reached stability, and the RMSD values of the three 
systems stabilized at about 0.5 nm. The RMSD and Rg 
values suggest that the conformation of stabilizes as the 
system gradually equilibrates over the 100 ns simulation. 
Both complex systems closely parallel the trends observed 
for the JAK2 protein in the absence of small molecules, 
with the differences being minimal. Therefore, the JAK2 
protein–ligand complexes reached a converged state in 
the 100 ns simulation. Additionally, CD4 interacts with 
JAK2 protein as effectively as Ruxolitinib, and the bind-
ing of either small molecule does not significantly alter 

Fig. 5  Chemical structures of CD4, Ruxolitinib, Fedratinib, and Pacritinib

Fig. 6  The values of Rg variation curves for each system during 
molecular dynamics simulations (CD4-JAK2: blue, Ruxolitinib-
JAK2: red, JAK2: black; skirt is the error of three simulations)

Fig. 7  The values of RMSD variation curves for each system dur-
ing molecular dynamics simulations (CD4-JAK2: blue, Ruxolitinib-
JAK2: red, JAK2: black; skirt is the error of three simulations)
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the structural integrity of JAK2. The system’s consistency 
confirms its stability.

In addition, root-mean-square function (RMSF) values 
of JAK2 amino acid residues were calculated, which can 
reflect the volatility and flexibility of amino acid sites. As 
depicted in Fig. 8, the RMSF values for the majority of 
amino acid residues in the JAK2 protein were found to be 
less than 0.5 nm, suggesting that these residues exhibit rela-
tive stability throughout the protein. With the exception of 
the head and tail residues, which typically exhibit normal 
large fluctuations in RMSF values, only a narrow range of 
residues from 1070 to 1080 displayed slight fluctuations. 
The relatively small RMSF values observed for the CD4-
JAK2 and Ruxolitinib-JAK2 complexes in the P-loop, hinge, 
and DFG motif regions, indicating that both CD4 and Rux-
olitinib are capable of forming stable interactions with the 
respective binding pockets of JAK2.

Binding free energy analysis

To further analyze the interactions between the inhibi-
tor compounds and JAK2, the last 10 ns of the molecular 
dynamics was investigated. A total of 100 snapshots were 

taken at 100 ps and the binding free energy was calculated 
using the MM/PBSA method, with a lower energy value 
indicating a greater stability. The binding free energy is a 
measure of the stability of the complex, with lower energy 
values indicating greater stability. Table 1 lists the binding 
free energies of CD4-JAK2 and Ruxolitinib-JAK2 com-
plexes, respectively. As can be seen from the Table 1, the 
binding free energies of CD4-JAK2 and Ruxolitinib-JAK2 
were − 38.34 ± 4.39 kcal/mol and − 36.21 ± 3.49 kcal/mol, 
respectively. The lower binding free energies of the com-
plexes of CD4 with JAK2 suggest that the affinity of CD4 
with JAK2 may be stronger. Moreover, of the other three 
energies that were examined, the van der Waals force was 
significantly greater for both of the complexes. These find-
ings suggest that binding is primarily driven by the van der 
Waals force and shape complementarity.

Complex interactions analysis

Non-covalent bond interactions, such as hydrogen bonds, 
hydrophobic interactions, and salt bridges, play a crucial role 
in stabilizing the spatial conformation of a protein. These 
interactions are essential for the biological functions of pro-
teins and for the interactions between proteins and ligands. 
Thus, the mode of interaction between JAK2 and two inhibi-
tors (CD4 and Ruxolitinib) was analyzed using PLIP [43]. 
These structures revealed that both CD4 and Ruxolitinib 
can interact with amino acid residues in the ATP pocket 
of JAK2, thus confirming that JAK2 active-site binding for 
both inhibitors. Furthermore, the structures also show that 
hydrophobic interactions formed between the inhibitors 
and JAK2 are also crucial for ligand–receptor binding. In 
CD4, the benzothiazole structure extends deeply into the 
ATP pocket and forms robust hydrophobic interactions 
with the Leu855 residue in the P-loop region and the main 
chain Leu983 residue. The core structures of Ruxolitinib, 
pyrrolopyrimidine and a five-membered carbon ring, form 
hydrophobic interactions with residues Val863, Ala880, and 
Leu983.

Additionally, the ligand binding stability is also reliant on 
hydrogen bond formation. In CD4, the main hydrogen bond 
is formed between the benzamide nitrogen atom Asp994 
residue in the DFG motif. The DFG motif plays a crucial 
role in regulating kinase activity, and it has been previously 

Fig. 8  The values of RMSF variation curves for each system dur-
ing molecular dynamics simulations (CD4-JAK2: blue, Ruxolitinib-
JAK2: red, JAK2: black; skirt is the error of three simulations)

Table 1  Energy terms and binding energies for the CD4-JAK2 and Ruxolitinib-JAK2 complexes during the molecular dynamics simulation

Compounds Van der Waals (kJ/mol) Non-polar solvation 
energy (kJ/mol)

Polar solvation 
energy (kJ/mol)

Electrostatic potential 
energy (kJ/mol)

Binding free 
energy (kJ/
mol)

CD4 − 46.64 ± 4.66 − 5.62 ± 0.54 31.10 ± 7.20 − 17.20 ± 6.64 − 38.34 ± 4.39
Ruxolitinib − 42.01 ± 3.47 − 5.10 ± 0.3 38.02 ± 5.01 − 27.12 ± 5.22 − 36.21 ± 3.49
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shown that interaction with the DFG motif results in more 
potent inhibition of kinase activity [44]. Therefore, it is pos-
sible that CD4 inhibits kinase activity by interacting with the 
DFG motif. In the CD4 structure, the oxygen atom in the 
benzyloxy group forms a hydrogen bond with Lys882, creat-
ing a ‘water bridge’. This interaction strengthens the binding 
between the ligand and JAK2. In Ruxolitinib, three hydrogen 
bonds are formed between Ruxolitinib and specific regions 
of JAK2, namely the P-loop region Leu855, the hinge region 
Leu932, and the main chain Glu930. These hydrogen bonds 
serve to anchor Ruxolitinib in the ATP pocket, with each 
bond connecting to a different part of the pyrrolopyrimi-
dine portion of the compound. Moreover, the hydrogen bond 
formation with the JAK2 hinge region Leu932 residue is 
a prevalent binding characteristic that is observed in most 
JAK2 ATP competitive inhibitors [45]. When comparing the 
two complex binding models, the CD4-JAK2 complex has 
one less hydrophobic interaction and one less hydrogen bond 
when compared to the Ruxolitinib–JAK2 complex. Further-
more, the interacting residues between CD4 and JAK2 are all 
different, with CD4 failing to form a hydrogen bond with the 
important hinge residue Leu932. In future, priority should 
be given to optimizing the structure of CD4 to enhance the 
inhibitory function of CD4 on the basis of this study, so as to 
strengthen the interaction between CD4 and the key residues 
in the JAK2 active site (Fig. 9).

Conclusions

Using various computer-aided drug design platforms, espe-
cially multitask CapsNet and molecular docking, we identi-
fied 49 candidate inhibitor compounds from a pool of 1.68 

million small molecule compounds within the ChemDiv 
database. Following in vitro analysis of the 49 compounds, 
CD4 exhibited the most potent inhibitory effect on JAK2, 
as determined via an ADP-Glo™ kinase assay. Moreover, 
in HEL cells carrying the JAK2 V617F mutation, the effect 
of various CD4 concentrations on cell proliferation was 
determined using a CCK-8 assay and showed a successful 
inhibitory affect at an  IC50 value of 32.57 μM. To exam-
ine potential similarities between CD4 and three marketed 
JAK2 inhibitors, Tanimoto coefficients were determined and 
showed that the structure of CD4 is dissimilar from the oth-
ers and it possessed a unique framework. Moreover, CD4 
was found to have a high JAK2 inhibitor activity and a low 
toxicity. Finally, a molecular dynamics simulation showed 
that the CD4-JAK2 complex is stable but does not have as 
low of a binding free energy as Ruxolitinib. Overall, these 
findings provide a reliable theoretical basis for the subse-
quent optimization of the chemical structure of CD4 as a 
means to improve its inhibitory activity and increase its 
potential as MPNs therapeutic agent.
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