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Abstract
Histone deacetylases constitute a group of enzymes that participate in several biological processes. Notably, inhibiting 
HDAC8 has become a therapeutic strategy for various diseases. The current inhibitors for HDAC8 lack selectivity and target 
multiple HDACs. Consequently, there is a growing recognition of the need for selective HDAC8 inhibitors to enhance the 
effectiveness of therapeutic interventions. In our current study, we have utilized a multi-faceted approach, including Quan-
titative Structure–Activity Relationship (QSAR) combined with Quantitative Read-Across Structure–Activity Relationship 
(q-RASAR) modeling, pharmacophore mapping, molecular docking, and molecular dynamics (MD) simulations. The devel-
oped q-RASAR model has a high statistical significance and predictive ability (Q2

F1:0.778, Q2
F2:0.775). The contributions 

of important descriptors are discussed in detail to gain insight into the crucial structural features in HDAC8 inhibition. The 
best pharmacophore hypothesis exhibits a high regression coefficient (0.969) and a low root mean square deviation (0.944), 
highlighting the importance of correctly orienting hydrogen bond acceptor (HBA), ring aromatic (RA), and zinc-binding 
group (ZBG) features in designing potent HDAC8 inhibitors. To confirm the results of q-RASAR and pharmacophore map-
ping, molecular docking analysis of the five potent compounds (44, 54, 82, 102, and 118) was performed to gain further 
insights into these structural features crucial for interaction with the HDAC8 enzyme. Lastly, MD simulation studies of 
the most active compound (54, mapped correctly with the pharmacophore hypothesis) and the least active compound (34, 
mapped poorly with the pharmacophore hypothesis) were carried out to validate the observations of the studies above. This 
study not only refines our understanding of essential structural features for HDAC8 inhibition but also provides a robust 
framework for the rational design of novel selective HDAC8 inhibitors which may offer insights to medicinal chemists and 
researchers engaged in the development of HDAC8-targeted therapeutics.
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Introduction

In the modern society, cancer has become an increasingly 
prevalent disease, characterized by a gradual accumula-
tion of genetic alterations leading to the malfunctioning of 
tumor suppressor genes and/or the hyperactivity of onco-
genes [1–3]. The modulation of genes through epigenetic 
mechanisms is pivotal in reshaping structure of nucleosomes 
by modifying the interaction between DNA and histones. 
Among various epigenetic modifications, histone deacetyla-
tion, affecting the fundamental packaging units of DNA, has 
been identified as a contributor to gene expression control. 
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This process results in the formation of more condensed 
chromatin and subsequent transcriptional suppression [2, 4, 
5]. The family of histone deacetylases (HDACs) is primarily 
responsible for catalyzing deacetylation on lysine residues 
[6, 7]. Aberrant expression of various HDACs has been 
implicated in numerous human disorders, including cancer, 
making them promising targets for therapeutic intervention 
across a spectrum of human malignancies [8].

HDACs are categorized into four groups based on phy-
logenetic relationships, with Class III acting as a nicotina-
mide-adenine dinucleotide-dependent lysine deacetylase, 
while Classes I, II, and IV are zinc-dependent [7, 9, 10]. 
Among HDAC enzymes, histone deacetylase 8 (HDAC8) 
inhibition has emerged as a prominent therapeutic strategy 
for various diseases. HDAC8, a class I histone deacetylase, 
is targeted for the treatment of conditions such as parasite 
infections, cancer, and X-linked intellectual disability [5, 
11]. HDAC8 is a class I HDAC found in both the cyto-
plasm and nucleus of vital organs such as the heart, lung, 
kidney, and brain. It consists of 377 amino acids, weigh-
ing approximately 42 kDa, and lacks a C-terminal protein-
binding domain. One of its distinctive features involves an 
unexpected susceptibility to negative regulation by cAMP-
dependent protein kinase (PKA), suggesting the possibility 
of functional specialization. Notably, HDAC8 targets non-
histone proteins, including structural maintenance of chro-
mosome 3 (SMC3) cohesin protein, retinoic acid-induced 1 
(RAI1), and the tumor suppressor gene p53 [8–14]. Moreo-
ver, HDAC8 is involved in promoting the proliferation of 
gastric adenocarcinomas, lung cancers, and cervical malig-
nancies in humans [14, 15]. Additionally, it has been identi-
fied as a catalyst responsible for the in vitro deacetylation 
of several acetylated histone variants [16]. Apart from its 
implications in cancer, HDAC8 has been recognized for its 
substantial involvement in conditions like schistosomiasis 
and influenza-A infections [17].

Ongoing studies suggest that HDAC8 holds promise as 
a therapeutic target for conditions such as neuroblastoma, 
T-cell leukemia, and acute myeloid leukemia [18]. At pre-
sent, the majority of inhibitors targeting HDAC8 exhibit 
broad-spectrum activity, affecting multiple isoforms from 
class I, class II, and class IV [19]. However, the primary 
drawback of these clinically approved pan-HDAC inhibitors 
lies in their non-selective nature, resulting in various adverse 
effects. Despite their clinical approval, these medications 
fall short of fulfilling the criteria for a selective and potent 
inhibitor, crucial for the effective anticancer treatment of 
HDAC8-associated diseases [20].

In the recent past, a multitude of QSAR studies [21–32] 
have been employed to decipher the essential structural fea-
tures that impact HDAC8 inhibition (Table S1). However, 
despite the widespread use of QSAR techniques, a persis-
tent gap exists due to challenges in statistically significant 

model generation with a properly curated dataset of HDAC8 
inhibitors and also in achieving robust predictions [33]. Fur-
thermore, the diverse chemical structures of HDAC8 inhibi-
tors pose a challenge in identifying a universally applicable 
set of descriptors that can comprehensively elucidate their 
inhibitory activity. To address these challenges, we have uti-
lized Quantitative Read-Across Structure–Activity Relation-
ship (q-RASAR) which involves the study of 121 HDAC8 
inhibitors with distinct  IC50 values sourced from published 
research [34–45].

q-RASAR is a statistical modeling technique that 
improves the external predictivity of QSAR/QSPR models 
by including similarity and error-based metrics as descriptors 
in addition to the standard structural and physicochemical 
ones [46, 47]. While using similarity-based considerations, 
this method can produce models that are straightforward, 
comprehensible, and transferable. The q-RASAR technique 
holds promise in data gap filling in materials science, food 
sciences, predictive toxicology, medicinal chemistry, agri-
cultural sciences, nano-sciences, and so on [46]. The present 
study employs an integrated in silico approach to investigate 
the critical structural features required for effective HDAC8 
inhibition. The research encompasses four primary compo-
nents (depicted in Fig. 1) aimed at crafting potent HDAC8 
inhibitors: (a) Utilizing 2D-QSAR modeling to pinpoint 
essential structural characteristics of HDAC8 inhibitors, 
(b) Employing q-RASAR modeling to enhance the external 
predictability of HDAC8 inhibition, (c) Conducting a phar-
macophore mapping study to elucidate potential pharmaco-
phoric features governing HDAC8 inhibitory activity, and 
(d) Validating these identified structural features through 
molecular docking and dynamics simulation-based meth-
ods. Combining these methods provides a powerful toolkit 
for understanding, predicting, and validating the structural 
features crucial for HDAC8 inhibition, offering valuable 
insights for discovering and developing selective HDAC8 
inhibitors.

Materials and methods

2D‑QSAR modeling

Data set

This study focuses on the q-RASAR modeling of 121 
HDAC8 inhibitors with specific  IC50 values extracted 
from published research [34–45]. The dataset is consid-
ered as biologically curated since all the reported inhibi-
tors underwent evaluation for HDAC8 inhibition using the 
same method. Table S2 displays the reported  IC50 values 
for the 121 compounds. The logarithm of the reciprocal 
of the half maximal inhibitory concentration (pIC50) of 
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HDAC8 inhibitors was taken as the response variable for 
the generation of the QSAR model.

Molecular descriptor calculation

For the development of QSAR models, we utilized a 
diverse array of descriptor types [48]. Specifically, we 
employed 0D−2D descriptors for model generation. 
This choice was made to reduce the computational load 
associated with energy minimization and conformational 
analysis [49]. Several classes of 2D descriptors, including 
ring descriptors, molecular features, constitutional index, 
functional group count, and electro-topochemical atom 
descriptors,  were computed using the PaDEL-Descriptor 
program [50]. The DTC Lab's pre-treatment tool (using 
Data Pre-Treatment 1.2 from http:// teqip. jdvu. ac. in/ 
QSAR_ Tools/) eliminated the intercorrelated descriptors 
(intercorrelation cut off > 0.99) and those with minimal 
variability in values (variance cut off < 0.0001) [51, 52].

Data set division

Splitting the data set is an important step in QSAR model 
development. We segregated the dataset into training and 
test sets. The test set was dedicated to validating the estab-
lished model externally, whereas the training set primar-
ily facilitated model development. To accomplish this, we 
utilized the "datasetDivisionGUI1.2_19Feb2019" program 
[52], which implemented the sorted activity-based divi-
sion technique in our current work. The data points within 
a cluster were found to be comparable to each other but 
distinct from those found outside of it. After the organ-
ization of the complete data set by cluster number and 
related activity levels, we selected approximately 20% of 
the data points from each cluster to be used as test set com-
pounds ( Ntest = 24, pIC50 range = 4.915 to 7.066), with 
the remaining 80% treated as the training set compounds 
( Ntrain = 97, pIC50 range = 4.988 to 7.678) for the QSAR 
study.

Fig. 1  The workflow of the current study involves different approaches such as 2D-QSAR, q-RASAR, pharmacophore mapping study, molecular 
docking, and dynamics simulation

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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Feature selection and development of the QSAR model

For feature selection, we utilized the genetic algorithm (GA) 
technique [53], which relies on a fitness function based 
solely on mean absolute error (MAE) criteria. Using the 
Genetic Algorithm v4.1 [52], we identified descriptors with 
the strongest correlation to the response variable. Subse-
quently, we employed "Partial Least Squares (PLS) regres-
sion" to develop the initial QSAR models after pinpointing 
the significant descriptors.

q‑RASAR model development

To increase the QSAR model’s external predictability, a 
q-RASAR model was developed using RASAR descriptors 
along with the structural descriptors [54]. The most similar 
compounds were identified by using the "Readacross v4.2" 
tool (available from https:// sites. google. com/ jadav purun ivers 
ity. in/ dtc- lab- softw are/ home), which is based on Euclid-
ean distance (ED)-based similarity, Gaussian kernel (GK) 
function similarity, and Laplacian kernel (LK) function 
similarity [55]. After splitting the training set in an 80:20 
ratio, we got the sub-training and subtest sets, and used the 
following parameters for the optimization of the method: 
γ = 1, σ = 1, distance threshold = 1, number of close train-
ing compounds = 7, and similarity threshold = 0. Laplacian 
kernel function similarity read-across is the least error-prone 
method according to the optimization result (Table S3) and 
it is used for the RASAR descriptor calculation by using the 
"RASAR-Desc-Calc-v3.0.2." tool (available from https:// 
sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw are/ 
home) [54–56] Finally, using the Best Subset Selection 2.1 
tool [52], the pooled set of RASAR descriptors and previ-
ously selected 2D descriptors has been processed to the best 
subset selection. Partial Least Squares version 1.0 [52] was 
used to build the final PLS q-RASAR model.

ML‑based qRASAR model development

For the development of a ML regression model, we 
employed supervised machine learning algorithms such as 
AdaBoost (ADB), Extreme Gradient Boost (XGB), Lin-
ear Support Vector Machine (LSVM) and Support Vector 
Machine (SVM). These models were developed using the 
previously mentioned training ( Ntrain = 97) and test set data 
( Ntest = 24). There might be opportunities for the model to 
be improved even more, and in order to do so, hyperparam-
eter tuning was done. In the present study, we used Grid-
SearchCV algorithm for tuning the hyperparameters which 
were used for the development of ML models. For perform-
ing this optimization, we used DTC Lab’s Python-based 
tool “Optimization and Cross-validation v1.0.” (https:// 
sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw are/ 

home/ machi ne- learn ing- model- devel opment- guis). Using 
the optimized hyperparameter settings alongside the train-
ing and test sets, we developed four machine learning-based 
q-RASAR models. This was achieved using a Python-based 
tool called Machine Learning Regressor v2.0, which can 
be accessed from https:// sites. google. com/ jadav purun ivers 
ity. in/ dtc- lab- softw are/ home/ machi ne- learn ing- model- devel 
opment- guis [57].

Pharmacophore mapping

In this investigation, Discovery Studio software [58] was 
used to create ligand-based 3D QSAR pharmacophore 
models. Here, the “3D QSAR Pharmacophore Model Gen-
eration” module of Discovery Studio 3.0 [59] was applied 
for model development. The dataset comprising 121 com-
pounds was divided into training set (Ntrain = 24) and a test 
set (Ntest = 97). The training set consists of molecules with 
 IC50 activity values spanning from 21 nM to 12,170 nM, 
including highly active (< 350  nM), moderately active 
(> 350–2500 nM), and inactive (> 2500 nM) compounds. 
During the hypothesis generation procedure, the module 
determines the cost function. Equation 1 depicts the for-
mula used for estimating the cost (total cost) of a hypothesis:

where the coefficients for the error (E), weight (W), and con-
figuration (C) components are denoted by the letters e, w, 
and c, respectively.

Two other important cost values are the fixed cost and 
the null cost that can be calculated using Eqs. 2 and 3, 
respectively.

where x basically represents the deviation from the expected 
values of weight and error.

where �est is the averaged scaled activity of the training set 
molecules.

The configuration cost is determined by the complexity of 
the pharmacophore hypothesis space. An increase in the root 
mean square (rms) value leads to a corresponding increase 
in the error cost value. The rms deviations serve as a metric 
for assessing the correlation quality, primarily between the 
estimated and actual activity data [60, 61].

Molecular docking study

The molecular docking study was conducted using the zinc 
metalloenzyme-optimized  AutoDock4Zn [62] utilizing the 
AutoDock Vina program. The crystal structure of HDAC8 

(1)cost = eE + wW + cC,

(2)Fixed cost = eE(x = 0) + wW(x = 0) + cC,

(3)Null cost = eE
(

�est = �
)

+ wW + cC,

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-model-development-guis
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(PDB ID: 1T64) sourced from RCSB (https:// www. rcsb. 
org/) was employed to explore the interactions between the 
protein and ligands. The protein preparation included the 
removal of water molecules, the application of Gasteiger 
partial charges, and the addition of polar hydrogens. Five 
active compounds (44, 54, 82, 102, and 118) and the least 
active compound (34) were selected from the pharmacoph-
ore mapping study for docking analysis. The ligands were 
imported into the AutoDock Tools suite [63], where polar 
hydrogens were added. PDBQT files were generated for 
both the ligands and the HDAC8 enzyme. The protein was 
placed at the center of a grid box to cover its entire binding 
region (grid center: 61.3, 73.865, 11.247; grid box volume: 
40 × 40 × 40). Molecular docking was performed using the 
Lamarckian genetic algorithm (LGA). The ligand-binding 
interactions within the HDAC8 cavity were visualized using 
Discovery Studio 3.0 [59].

Molecular dynamics study

In this study, we have performed MD simulation study 
by employing the GROMACS 2021.1 software [64, 65] 
on the docked complexes of the most active (54) and the 
least active (34) compounds with HDAC8, implementing 
CHARM-GUI web server [66] to prepare different inputs. 
The PDB reader tool was first employed to facilitate pro-
tein pre-processing [67]. Additionally, using the OpenBabel 
program, the best-docked poses of ligands were converted 
to the “. mol2" format [68]. After that, the ligands were 
imported into the Modeler and Ligand reader tools to param-
eterize and generate topology files [69]. Subsequently, each 
protein–ligand complex was combined into a ‘.pdb’ file, 
which was then utilized in the "Solution Builder" function 
to create the GROMACS input system [70]. The entire pro-
tein structure was covered by the TIP3P water box system, 
which is rectangular. To remove steric overlapping, each 
system was neutralized using a sufficient amount of NaCl 
ions added using the Monte-Carlo method [71] and then run 
through 5000 steps of steepest descent energy minimization 
[72]. The next step involved subjecting the entire system 
to V-rescale temperature-coupling (constant coupling of 
1 ps at 310.15 K temperature) for 125000 steps to achieve 
NVT equilibration, where the number of particles, volume, 
and temperature are all constant [73]. The MD simulation 
was run with a CHARMM36 m forcefield for 500 ns [74]. 
Using the gmx__rms, gmx_rmsf, and gmx_gyrate programs, 
respectively, the simulation results were further evaluated 
for a variety of geometrical properties, including radius of 
gyration (Rg), root mean square deviation (RMSD), and root 
mean square fluctuations (RMSF) [75]. With the aid of the 
gmx_hbond program, the hydrogen bond analysis between 
ligands of interest and active site amino acid residues was 
completed [76, 77]. Subsequently, production trajectories 

were created using PyMOL [78] to analyze the binding 
poses at various time intervals.

Results and discussions

QSAR and q‑RASAR models

A dataset of 121 HDAC8 inhibitors was used for 2D-QSAR 
model development. Initially, a pool of 1444 2D descriptors 
were generated using the PaDEL-Descriptor tool. This was 
followed by the pre-treatment of the data, which generated 
813 2D descriptors. These descriptors were chosen and put 
to use in the feature selection and model building. Finally, a 
PLS regression-based QSAR model (Eq. 4) with four latent 
variables was generated for the present study.

As per the regulations provided by the OECD, the mod-
el's performance was evaluated through stringent inter-
nal and external validation. The determination coefficient 
(R2 = 0.713), leave-one-out cross-validated correlation coef-
ficient (Q2

(LOO) = 0.654), and rm
2 metrics of the training set 

[rm
2 (train) = 0.540 and Δrm

2 (train) = 0.177] are the internal 
validation metrics that demonstrate the model's robustness 
and goodness of fit. The mean absolute error of the train-
ing set  (MAEtrain) for the model is 0.255. Additionally, the 
external validation metrics was computed, which include 
external predicted variance (Q2

F1 = 0.732 and Q2
F2 = 0.727), 

mean absolute error of test set predictions  (MAEtest = 0.249), 
rm

2 (test) = 0.519, Δrm
2 (test) = 0.248, and concordance cor-

relation coefficient (CCC = 0.825).
The q-RASAR model was developed to improve the 

external predictability of the QSAR model. Utilizing PLS 
regression with four latent variables (4 LVs), we merged the 
pool of seven structural descriptors of Eq. 4 with the com-
puted read-across-based RASAR descriptors for the optimal 
subset selection and final model development (Eq. 5). The 
identified structural descriptors of Eq. 5 and their definition 
are summarized in Table 1.

Following the OECD guidelines [79], this final model has 
undergone an exhaustive validation process using several 

(4)

pIC50 = 28.8362 + 0.0003ATS6m
− 0.1550AATS0i + 0.3978AATS7s−
0.4206C3SP2 + 1.4312maxHaaCH
+ 0.0040TIC2 + 0.2586VE1_D

(5)

pIC50 = 27.5777− 0.1473AATS0i
+ 0.5759AATS7s − 0.3768C3SP2
+ 0.7308maxHaaCH + 0.0043 TIC2
+ 0.3828 sm1(LK) − 0.2546 sm2(LK)

https://www.rcsb.org/
https://www.rcsb.org/
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internal and external validation criteria. Table 2 presents a 
comparison of validation parameters before (Eq. 4) and after 
(Eq. 5) the read-across strategy. A comparison of internal 
and external validation metrics before and after the imple-
mentation of the read-across strategy is illustrated using bar 
plots in Fig. 2.

The final q-RASAR model (Eq. 5) exhibits superior sta-
tistical significance in terms of both internal and external 
validation parameters when compared to the QSAR model 
(Eq. 4). The internal validation parameters like  R2 (Train), 
Q2

(LOO) and Scaled Average rm
2 are increased, whereas Mean 

Absolute Errors (MAE-Fitted; Train and MAE-LOO; Train) 
as well as Scaled Delta rm

2 are decreased in the qRASAR 
model (Eq. 5). The external validation parameters like Q2

F1 
and Q2

F2 as well as concordance correlation coefficient 
(CCC) are also significantly increased compared to the pre-
vious model (Eq. 4). Moreover, Mean Absolute Error (MAE; 
Test) is decreased suggesting a better external predictivity 
of the q-RASAR model (Eq. 5).

Thus, external validation metric values (Q2
F1 and Q2

F2), 
as well as the model's internal validation metrics, such 

as R2, Q2
(LOO), and rm

2 metrics justified better model's 
performance in the case of q-RASAR model. The coef-
ficient plot, variable importance plot (VIP), score plot, 
and loading plot of the final q-RASAR model (Eq. 5) 
were generated by using the SIMCA-P program [80]. 
The coefficient plot is presented in Fig. 3A, and it dem-
onstrates that AATS7s, maxHaaCH, TIC2, and sm1(LK) 
are descriptors that contribute positively to the developed 
model, whereas AATS0i, C3SP2, and sm2(LK) contribute 
negatively. The variable importance plot (VIP) is shown in 
Fig. 3B to identify the significant descriptors in the QSAR 
model for HDAC8 inhibition. As per the VIP, HDAC8 
inhibition has the following order of relative relevance 
for the contributing descriptors: sm1(LK) >  sm2(LK)  
> TIC2  > AATS7s  > AATS0 i > C3S P2  >  m axHaaCH. Fig-
ure 3C displays the sco re  plo t d emonstrating that no  mol 
ecu le is recognized as an outlier. The loading plot in 
Fig. 3D further indicates that the descriptors sm1(LK), 
sm2(LK), TIC2, and AATS7s had the largest impact (as 
mentioned in Fig. 3B) on predicting the HDAC8 inhibition 
because of their distant placement from the origin.

Table 1  The structural descriptors identified in the study

S. No Descriptors Class Description

1 AATS0i Autocorrelation descriptor Average Broto–Moreau autocorrelation—lag 0/weighted by first 
ionization potential

2 AATS7s Auto correlation descriptor Average Broto–Moreau autocorrelation—lag 7/weighted by I-state
3 C3SP2 Carbon Types descriptor Doubly bound carbon bound to three other carbons
4 maxHaaCH Electro topological State Atom Type 

descriptor
Maximum atom-type H E-State: CH:

5 TIC2 Information Content descriptor Total information content index (neighborhood symmetry of 2-order)
6 sm1(LK) RASAR descriptor A novel concordance measure
7 sm2(LK) RASAR descriptor A novel concordance measure

Table 2  Comparison of 
internal and external validation 
parameters before and after the 
read-across strategy

Before RASAR After RASAR

A. Internal validation parameters
 R2 (Train):0.713 R2 (Train):0.735
 Q2

(LOO):0.654 Q2
(LOO):0.680

 Scaled average Rm2 (Train; LOO):0.540 Scaled average Rm2 (Train; LOO):0.571
 Scaled delta Rm2 (Train; LOO):0.177 Scaled delta Rm2 (Train; LOO):0.169
 Mean absolute errors (MAE-Fitted; Train):0.255 Mean absolute errors (MAE-Fitted; Train):0.244
 Mean absolute errors (MAE-LOO; Train):0.281 Mean absolute errors (MAE-LOO; Train):0.267

B. External validation parameters
 Q2

F1:0.732
 Q2

F2:0.727
Q2

F1:0.778
Q2

F2:0.775
 Scaled average Rm2 (Test):0.519 Scaled average Rm2 (Test):0.609
 Scaled delta Rm2 (Test):0.248 Scaled delta Rm2 (Test):0.197
 CCC (Test):0.825 CCC (Test):0.866
 Mean absolute errors (MAE; Test):0.249 Mean absolute errors (MAE; Test):0.221
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In addition, we attempted to develop other machine learn-
ing-based q-RASAR models, namely AdaBoost, Extreme 
Gradient Boost, Support Vector Machine, and Linear Sup-
port Vector Machine for the prediction of HDAC8 inhibi-
tory activity using seven descriptors, which were identified 
as significant contributing features in our PLS q-RASAR 
model. The statistical parameters of the ML models and 
selected hyperparameters for developing these models are 
shown in Table 3. It is evident from Table 2 that the statis-
tics of our q-RASAR PLS model outperforms the developed 
ML-based q-RASAR models. Therefore, we have continued 
further studies based on the PLS q-RASAR model.

Mechanistic interpretation of HDAC8 inhibition

Mechanistic interpretation is very important for any QSAR 
model as per OECD Guideline 5. The five structural descrip-
tors (AATS0i, AATS7s, C3SP2, maxHaaCH, and TIC2) and 
two RASAR descriptors, sm1 (LK) and sm2 (LK) [81], 
are employed for the development of the final model. The 
contribution of structural descriptors is important to gain 
insight into the HDAC8 inhibition. Among the structural 
descriptors, TIC2 has the highest impact on HDAC8 inhibi-
tion (Fig. 3B). The descriptor TIC2, which is a function of 
molecular structure, basically encapsulates the total informa-
tion content of the 2-order symmetry. Higher values of this 
descriptor typically indicate a higher degree of symmetry or 
balanced relationships, while lower values suggest a more 

asymmetric or imbalanced structure. The greater values of 
TIC2 have a positive impact on HDAC8 inhibition. Thus, the 
compounds 82, 102, and 118 exhibit higher HDAC8 inhibi-
tion due to the increased TIC2 values (Fig. 4).

The descriptor C3SP2 exhibits the greatest negative con-
tribution to the HDAC8 inhibition. The C3SP2 descriptor 
[82] basically interprets the number of carbons that are dou-
bly bound, and it is further attached to three other carbon 
atoms. The presence of the above-mentioned type of carbon 
in the structure was found to be responsible for the decrease 
in HDAC8 inhibition (compounds 22, 27 and 126). Com-
pound 54 showed significant HDAC8 inhibition due to the 
low value for the aforementioned descriptor (Fig. 4).

The variable AATS0i [83] also exhibits a significant nega-
tive contribution to the model, as observed by its coeffi-
cient value in the coefficient plot (Fig. 3A). The descriptor 
AATS0i is an averaged moreau-broto autocorrelation of lag 
0 weighted by ionization potential. This descriptor combines 
the concepts of ionization potential and the Moreau-Broto 
autocorrelation to quantify compounds' structural and elec-
tronic properties. In simpler terms, it represents how the 
ionization potential of a compound is related to its internal 
structural features, specifically focusing on the autocorrela-
tion at lag 0. In the case of compounds 52 and 69, increas-
ing the value of the AATS0i descriptor produces a decrease 
in HDAC8 inhibition. It is also noticed that compounds 44 
exhibit significant HDAC8 activity due to the lower value 
of the AATS0i descriptor (Fig. 4).

Fig. 2  Bar plot illustrating the comparison of internal and external validation metrics before and after the implementation of the read-across 
strategy
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The descriptor maxHaaCH has the least standardized 
coefficient value and it made the smallest positive contri-
bution to HDAC8 inhibition. The descriptor maxHaaCH 
indicates the maximum atom-type H and it focuses on the 
presence and arrangement of hydrogen atoms within the 
molecular structure [84]. It is used to quantify the maximum 
occurrence of a specific type of hydrogen atom or a specific 
configuration of hydrogen atoms in the molecule. It has been 
found that increasing the value of the maxHaaCH descriptor 

promotes HDAC8 inhibition as indicated in compounds 44, 
112, and 89 (Fig. 4).

The final structural descriptor of the model, AATS7s 
descriptor indicates the average Broto-Moreau autocorrela-
tion—lag 7/weighted by I-state [85]. Broto-Moreau autocor-
relation is a mathematical concept used to analyze the arrange-
ment of atoms in a molecule at different distances, and the lag 
7 part indicates that it is specifically looking at the correla-
tion between properties of atoms or substructures separated 

Fig. 3  A Coefficient plot, B variable importance plot (VIP), C score plot, and D loading plot of the final q-RASAR model (Eq. 5)

Table 3  Statistical parameters and selected hyperparameters of the ML-based q-RASAR models

Methods R2 Q2
(LOO) MAETrain RMSEC Q2

F1 Q2
F2 MAEtest RMSEp Optimized hyperparameters

AdaBoost 0.884 0.588 0.178 0.205 0.653 0.648 0.275 0.343 'loss': 'exponential',
'n_estimators': 130

Extreme
Gradient
Boost

0.595 0.544 0.292 0.384 0.709 0.704 0.272 0.315 'booster':'gblinear', 'learning_rate':0.1, 
'max_depth':None, 'n_estimators': 
150

Support Vector Machine 0.404 0.351 0.338 0.465 0.437 0.429 0.334 0.437 'C': 25.0, 'degree': 2, 'gamma': 'scale'
Linear Support Vector Machine 0.452 − 0.645 0.343 0.446 0.505 0.497 0.350 0.410 'C': 1.0
PLS
model (4LVs)

0.735 0.680 0.244 – 0.778 0.775 0.221 – –
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by a distance of 7 bonds in the molecular structure. The term 
"weighted by I-state" suggests that the autocorrelation val-
ues are adjusted or weighted based on the electronic state of 
the atoms involved. In the case of compounds 89 and 44, we 
found that increased values of the AATS7s descriptor promote 
HDAC8 inhibition, whereas decreased values of the descriptor 
reduce HDAC8 inhibition (compounds 34 and 52) (Fig. 4).

Notably, two RASAR-based descriptors, sm1(LK) and 
sm2(LK), emerged as significant in the final model. These 
descriptors represent similarity coefficients, offering a means 
to identify compounds or inhibitors with biological activity or 
HDAC8 inhibition [87]. The mathematical representations of 
these coefficients are shown below:

where MaxPos and MaxNeg denote the similarity scores of 
the nearest positive source and negative source compounds, 
respectively, concerning a specific query compound [81].

(6)sm1 =
MaxPos −MaxNeg

argmax(MaxPos,MaxNeg)
,

where PosAvgSim signifies the average similarity values 
obtained from the positive close source compounds, whereas 
NegAvgSim indicates the average similarity values derived 
from the negative close source compounds [81].

The RASAR descriptor  sm1(LK) [86]  is positively 
correlated with HDAC8 inhibition. The higher values 
of the  sm1(LK)  coefficient are observed in the case of 
compounds 54 (pIC50 = 7.678), 78 (pIC50 = 7.456), 104 
(pIC50 = 6.987), and 112 (pIC50 = 6.757). For an active 
compound to be considered ideal, its MaxPos value should 
be higher than the MaxNeg value. This condition leads to 
a positive sm1 value. Conversely, a negative sm1 value 
suggests that the MaxNeg value is higher than the Max-
Pos value. This indicates that the compound structurally 
resembles an inactive compound from a close source rather 
than an active one (e.g., compound 34, pIC50 = 4.915). The 
RASAR descriptor sm2(LK) shows a negative correlation 
with HDAC8 inhibition and is determined by the difference 

(7)sm2 =
PosAvgSim − NegAvgSim

Avg.Sim
,

Fig. 4  Identified seven 0D-2D descriptors [5 structural descriptors: 
AATS0i, AATS7s, C3SP2, maxHaaCH, TIC2 and 2 RASAR descrip-
tors: sm1 (LK) and sm2 (LK)] used in the model. Among 7 descrip-

tors, AATS7s, maxHaaCH, TIC2, sm1(LK) are the descriptors respon-
sible for positive contribution. AATS0i, C3SP2 and sm2(LK) are 
responsible for negative contribution
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between positive and negative average similarity. The higher 
values of the sm2(LK) coefficient are identified in the case 
of compounds 60 (pIC50 = 6.076), 69 (pIC50 = 5.883), 124 
(pIC50 = 5.699), and 129 (pIC50 = 6.452). This suggests that 
compounds similar to these in the training set are less effec-
tive at inhibiting HDAC8.

Pharmacophore mapping study

A total of 24 training set compounds were employed for the 
development of pharmacophore models by utilizing the “3D 
QSAR Pharmacophore Model Generation” module of Dis-
covery Studio 3.0 [59]. Chemical features such as hydrogen 
bond acceptor (HBA), hydrophobic (HYP), ring aromatic 
(RA), hydrophobic ring aromatic (HY_RA), and zinc-bind-
ing group (ZBG) features were incorporated to generate ten 
pharmacophore hypotheses, with parameters adjusted for 
weight variation and uncertainty as detailed in Table 4.

A thorough analysis of Table 4 reveals that HYP1 stands 
out as the best pharmacophore model, featuring the high-
est correlation coefficient (r = 0.969), the lowest root mean 
square (rms) of 0.944, a total cost value of 86.078, and the 
most significant cost difference value of 146.856. The inhibi-
tory activity  (IC50) of the modeling set molecules against 
HDAC8 using the HYP1 model is illustrated in Table 5.

The statistical significance of the HYP1 model was evalu-
ated using Fischer's randomization test, which involved gen-
erating 19 random pharmacophore hypotheses at a 95% con-
fidence level for cross-validation. Comparatively, the cost 
value of HYP1 was lower (Total cost = 86.078) than that of 
the 19 randomly generated hypotheses (see Fig. S1, Supple-
mentary file). In essence, this suggests that the superiority 

Table 4  List of hypotheses for 
the generated pharmacophore 
using the modeling set of 
HDAC8 inhibitors

a Null cost = 232.934
b cost difference = null cost—total cost; Fixed cost = 75.354; Configuration cost = 17.172. All cost units are 
in bits
c HBA Hydrogen bond acceptor, RA ring aromatic, HYP hydrophobic, HY_RA hydrophobic ring aromatic, 
ZBG zinc-binding group

Hypo[a] Total cost ΔCost[b] Error cost rms Correlation (r) Features[c]

HYP1 86.078 146.856 67.494 0.944 0.969 HBA1, HBA2, RA, ZBG
HYP2 101.629 131.305 82.455 1.462 0.924 HBA1, HBA2, RA, ZBG
HYP3 108.229 124.705 89.426 1.649 0.903 HBA1, HBA2, RA, ZBG
HYP4 109.058 123.876 90.380 1.673 0.899 HBA1, HBA2, HYP1, HYP2
HYP5 109.559 123.375 90.682 1.680 0.899 HBA1, HBA2, HYP_RA, ZBG
HYP6 109.801 123.133 90.790 1.683 0.898 HBA1, HBA2, HYP_RA, HY
HYP7 110.178 122.756 91.143 1.692 0.897 HBA1, HBA2, HYP_RA, ZBG
HYP8 110.894 122.040 91.811 1.708 0.895 HBA1, HBA2, HYP_RA, ZBG
HYP9 113.484 119.450 94.408 1.770 0.887 HBA1, HBA2, RA, ZBG
HYP10 114.454 118.480 94.405 1.770 0.886 HBA1, HBA2, HYP_RA, HYP

Table 5  Inhibitory activities  (IC50) and activity scale of the modeling 
set molecules against HDAC8 utilizing the HYP1 model

a HDAC8 inhibitory activity scale: +  +  + , < 350  nM (highly 
active); +  + , > 350–2500  nM (moderately active); + , > 2500  nM 
(inactive)

Comp IC50 (nM) Act_Scalea Est_Scalea Fit value

1 580 ++ ++ 4.583
18 3390 + + 3.731
22 3780 + + 3.737
25 4070 + + 3.715
34 12,170 + + 3.512
44 120 +++ +++ 5.029
52 3130 + ++ 4.079
54 21 +++ +++ 6.179
59 760 ++ ++ 4.483
69 1310 ++ ++ 4.126
73 1930 ++ + 3.739
75 2590 + + 3.738
82 140 +++ +++ 5.006
84 490 ++ ++ 4.691
88 1480 ++ ++ 3.897
89 343 +++ ++ 4.786
102 47 +++ +++ 5.390
111 164 +++ +++ 4.828
112 175 +++ +++ 4.963
118 333 +++ +++ 5.007
124 2001 ++ ++ 4.082
126 4300 + + 3.548
128 659 ++ ++ 4.403
129 353 ++ ++ 4.575



Molecular Diversity 

of the HYP1 model is not coincidental but rather deliberate 
and statistically supported.

A cost difference (ΔCost) exceeding 60 implies a cor-
relation probability of over 90%. The correlation coeffi-
cient (rExternal) of the external set compounds demonstrates 
promising results, indicating the statistical significance and 
robustness of the best pharmacophore hypothesis, HYP1. 
Consequently, HYP1 is chosen as the final pharmacophore 
model for HDAC8 inhibitors. The identified pharmacoph-
oric features from this model are distinct compared to prior 
studies [23, 32, 87–96] (refer to Table S4 of the Supporting 
Info). Figure 5A illustrates the 3D spatial relationship and 
geometric parameters of the HYP1 model, along with inter-
feature distances. The presence of the ZBG is imperative 
for HDAC8 inhibitory activity, along with hydrogen bond 

acceptor features (HBA1, HBA2), and ring aromatic (RA) 
features. Compound 54, the most potent HDAC8 inhibitor 
 (IC50 = 21 nM), adeptly matches all pharmacophore proper-
ties (Fig. 5B), while compound 34, the least potent HDAC8 
inhibitor  (IC50 = 12,170 nM), fails to align with all features 
(Fig. 5C).

Molecular docking study

In order to find the significance of different pharmacophoric 
features in its interaction with the HDAC8 enzyme (PDB: 
1T64), a molecular docking study was conducted for the 
five potent HDAC8 inhibitors (54, 44, 84, 102, and 118). 
Figure 6 depicts the docking poses and ligand–enzyme inter-
actions of these HDAC8 inhibitors. Notably, five of the most 

Fig. 5  A Representation of the best pharmacophore (HYP1) model. 
Inter-feature distances are shown in angstroms. The green and orange 
contours represent hydrogen bond acceptor (HBA) and ring aro-
matic (RA) features, respectively. The nevi blue contours represent 
the zinc-binding group (ZBG) feature. B Mapping of the most active 

compound (54) onto the selected pharmacophore (HYP1) C Mapping 
of the least active compound (34) onto the selected pharmacophore 
(HYP1). The green and orange contours represent hydrogen bond 
acceptor (HBA) and ring aromatic (RA) features, respectively. The 
nevi blue contours represent zinc-binding group (ZBG) feature
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active compounds fit precisely into binding pocket when 
docked into the active site of HDAC8 using AutoDock Vina 
program [62]. The 2D interactions and docking score of all 
these compounds are depicted in Figs. S2–S4 and Table S6, 
respectively.

From the pharmacophoric mapping study, it has been 
noted that the zinc-binding group is essential for HDAC8 
inhibition. The molecular docking study also explains that 
all the potent HDAC8 inhibitors show metal  (Zn2+) coordi-
nation in the HDAC8 binding site. Both the amide oxygen 
as well as the hydroxyl oxygen of hydroxamate moiety are 
involved in metal coordination with  Zn2+ in compound 44, 
whereas in the case of compounds 54, 84, 102, and 118, only 
the amide oxygen is involved. Y306 is involved in various 
interactions in all the compounds, suggesting that Y306 is 
a prerequisite for binding with HDAC8 ligands. Y306 par-
ticipates in H-bonding interactions with the zinc-binding 
hydroxamate moiety, engaging the amide oxygen and the 
hydroxyl oxygen in compound 118. In compounds 44 and 
54, Y306 forms π–π interactions with F152. In compound 
82, Y306 is involved in alkyl interactions with the trimeth-
oxy group. Moreover, in compound 102, hydrogen bonding 
interactions of Y306 with the NH group of the pyrrolidine 
ring and π–π stacking with the tetrahydroisoquinoline ring 
were also seen. Another, important residue F152 showed 
a significant contribution to ligand-HDAC8 binding. F152 
forms π-interactions with the sulfur atom of the dithiolane 

ring and π–π-T shaped interactions with the phenyl ring in 
compound 54. As per the pharmacophore mapping study, 
the sulfur atom of dithiolane ring and the phenyl ring act 
as hydrogen bond acceptor (HBA1) and ring aromatic (RA) 
features, respectively, necessary for the HDAC8 inhibition. 
The importance of ring aromatic feature in the HDAC8 
inhibitor structure is also highlighted by the presence of π–π 
stacking interaction with the residue F152 and the indole 
ring of compound 82. Residue I34 also forms π–alkyl inter-
actions with the phenyl ring (ring aromatic feature) of com-
pound 54. In compound 44, H143 and K33, are involved in 
H-bonding interactions, R37 forms π–cation interactions, 
and P35 is involved in π–alkyl interactions. In compound 54, 
G304 forms H-bonding with OH of the hydroxamate group. 
In compound 82, Y100 forms π–alkyl interactions with 
pyrrolidine ring and L308, P35, and Y306 are involved in 
alkyl interactions with the trimethoxy group. In compound 
102, I34, K33 and F152 are involved in alkyl interactions, 
M274 forms π–sulfur interactions with the aromatic ring 
of the tetrahydroisoquinoline ring, and H143 is involved in 
H-bonding interactions. Residues I34, P35, and F152, along 
with residue Y306, participate in alkyl interactions with the 
trimethoxy group within compound 118. The least active 
compound (34) exhibited poor binding with the HDAC8 
enzyme and showed fewer interactions with some amino 
acid residues. Compound 34 displayed π–π stacking inter-
actions with Y100 and M274. H-bonding interactions with 

Fig. 6  Interactions of A compound 44, B compound 54, C compound 82, D compound 102, E compound 118, F co-crystallized ligand (CCL) 
with important binding residues in the pocket of HDAC8 (PDB: 1T64)
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Y100 and van der Waals interaction with H143 were also 
observed.

Molecular dynamics simulation

A molecular dynamics (MD) simulation study is an approach 
to assess the fluctuation, and atomic motion of individual 
atoms or groups, as well as changes in conformations of a 
molecule with receptor/protein for a specific time [97]. By 
foreseeing a specific pose in terms of the interactions of the 
ligand with the macromolecule, the MD simulation aims to 
verify the stability of the receptor–ligand complex.

In the current study, MD simulation (500 ns) was per-
formed for the most active HDAC8 inhibitor (54) and least 
active HDAC8 inhibitor (34). Compound 54 has all the phar-
macophoric features and it binds nicely in the active site of 
HDAC8. The least active compound (34) was also docked 
(Fig. S3) in the active site of HDAC8 and was inspected 
through MD simulation (500 ns) for comparison. After the 
MD simulation, we compared the RMSD, Rg, and RMSF 
values of the protein–ligand complexes stated above to 
HDAC8 apo form (control system). The average RMSD 

of the backbone atoms of HDAC8 apo form and HDAC8 
complexed with compounds 54 and 34 were 0.20 ± 0.02 nm, 
0.15 ± 0.01 nm and 0.17 ± 0.02 nm, respectively during 
500 ns. The lower RMSD of HDAC8 complexed with com-
pound 54 implies that this compound induces a more sig-
nificant conformational change or stabilization in the pro-
tein structure than to the apo form. Similarly, the RMSD of 
HDAC8 complexed with compound 34 indicates that this 
compound also induces a significant structural change or 
stabilization in the protein compared to the apo form, though 
perhaps not as pronounced as compound 54 (Fig. 7A).

To examine the compactness of HDAC8 in the presence 
and absence of the aforementioned ligands, the radius of 
gyration (Rg) is plotted in Fig. 7B. The average Rg values 
for the HDAC8 apo form and complexes with compounds 54 
and 34 were uniformly found to be 2.01 ± 0.01 nm, respec-
tively, demonstrating that the compactness of HDAC8 does 
not significantly change in the presence of compounds 54 
and 34 even after 500 ns period (Fig. 7B). Furthermore, 
the RMSF of individual HDAC8 residues is determined to 
examine the flexibility or rigidity of various locations within 
HDAC8 apo form and its complexes with compounds 54 

Fig. 7  Molecular dynamic simulation analysis: A RMSD of HDAC8 
apo form and with compounds 54 and 34, respectively, B Rg of the 
backbone atoms of HDAC8 without ligand and with the mentioned 

ligands, C RMSF of amino acid residues of the HDAC8 without 
ligand and with the mentioned ligands
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and 34 (Fig. 7C). The average RMSF of backbone atoms in 
HDAC8 apo form and in the presence of compounds 54 and 
34 were found to be 0.09 ± 0.07 nm, 0.08 ± 0.05 nm, and 
0.08 ± 0.05 nm, respectively. It is inferred that in the pres-
ence of the aforementioned inhibitors, the average residual 
fluctuation of HDAC8 has reduced with respect to the fluc-
tuation of the apo form.

During MD simulation, snapshots of all complexes were 
visualized at varied time intervals to investigate HDAC8-
inhibitor complex stability within the binding pocket. Inter-
estingly, compound 34 moves out from the catalytic pocket 
before 100 ns during the simulation period of 500 ns, but 
compound 54 (pIC50 = 7.678) remains in the binding site 
until 330 ns of the simulation (Fig. 8). To verify this obser-
vation, we have plotted individual distances between the 
oxygen atom of hydroxamate functionality of each ligand 
and zinc atom within the binding site as a function of time 
(Fig. 9). Additionally, to assess the impact of ligand size 
on HDAC8 inhibition, we conducted a 100 ns molecular 
dynamics (MD) simulation of a moderately active ligand 
with intermediate size (compound 37, pIC50 = 6.180) (see 
Fig. S5, Supplementary file). Compound 37 displays a 

similar pattern to compound 34 (pIC50 = 4.915), exiting the 
binding pocket before the 100 ns (Fig. S6, Supplementary 
file).

Fig. 8  Binding stability of A the most active compound (54) and B the least active compound (34) with HDAC8 enzyme up to 330 ns simulation

Fig. 9  Distance between the oxygen atom of each ligand and zinc 
atom during the 500 ns simulation
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Conclusions

This study sequentially employed validated QSAR and 
q-RASAR models by using the PLS-regression-based 
method, pharmacophore mapping, molecular docking, and 
molecular dynamics approaches to identify essential struc-
tural features for potential HDAC8 inhibitors. Statistically 
significant PLS regression-based QSAR model ( Q2

F1
:0.732, 

Q2
F2

:0.727,  MAEtest: 0.249) was developed using four latent 
variables. q-RASAR strategy was applied to increase the 
external predictivity of HDAC8 inhibition. The developed 
q-RASAR model has a high statistical significance and 
predictive ability ( Q2

F1
:0.778, Q2

F2
:0.775,  MAEtest: 0.221). 

The different descriptors in the final q-RASAR model were 
discussed to get meaningful insight into the mechanistic 
aspects of HDAC8 inhibition. Different pharmacophoric 
features have also been identified through pharmacophore 
mapping studies, and it revealed that HYP1 was the best 
pharmacophore model, with the highest correlation coef-
ficient (r = 0.969), and lowest rms of 0.944. The pharma-
cophore predictions showed that the ring aromatic (RA) 
feature near the hydrogen bond acceptor feature (HBA2) in 
HDAC8 inhibitor plays a crucial role in HDAC8 inhibition, 

while other features, such as the presence of ZBG, are also 
essential for HDAC8 inhibition. Based on the q-RASAR 
model and pharmacophore mapping studies, five HDAC8 
inhibitors (compounds 44, 54, 82, 102, and 118) were cho-
sen as potent inhibitors to assess the binding interactions 
by using molecular docking. A molecular docking study 
validated the results of pharmacophore mapping which 
demonstrated that the hydroxamate moiety (as ZBG) is 
involved in metal  (Zn2+) coordination in the HDAC8 bind-
ing site in all the five potent HDAC8 inhibitors. Moreover, 
the ring aromatic feature (RA) and hydrogen bond accep-
tor (HBA1) feature necessary for HDAC8 inhibition of the 
most active inhibitor (54) were highlighted by the phenyl 
ring and the sulfur atom of dithiolane ring, respectively, in 
the molecular docking study (Fig. 10). Lastly, the complex 
stability of the most (54) and the least active (34) inhibi-
tors were analyzed using MD simulation which indicated 
that inhibitor 54 exhibited more structural stability of the 
complex than inhibitor 34. The findings of this study could 
be useful for future HDAC8 inhibitor design, and the com-
putational strategy used can be broadly applied to different 
targeted drug designs.

Overall, this comprehensive exploration sheds light 
on the intricate molecular aspects influencing HDAC8 

Fig. 10  Structure of some of the active compounds (54, 82, and 102) along with the essential structural features obtained from different compu-
tational studies
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inhibition, offering a foundation for future research 
endeavors in the pursuit of novel and effective HDAC8 
inhibitors.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 024- 10903-y.
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