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Abstract
Visceral Leishmaniasis (VL), the second neglected tropical disease caused by various Leishmania species, presents a sig-
nificant public health challenge due to limited treatment options and the absence of vaccines. The agent responsible for 
visceral leishmaniasis, also referred to as “black fever” in India, is Leishmania donovani. This study focuses on L. donovani 
Minichromosome maintenance 10 (LdMcm10), a crucial protein in the DNA replication machinery, as a potential thera-
peutic target in Leishmania therapy using in silico and in vitro approaches. We employed bioinformatics tools, molecular 
docking, and molecular dynamics simulations to predict potential inhibitors against the target protein. The research revealed 
that the target protein lacks homologues in the host, emphasizing its potential as a drug target. Ligands from the DrugBank 
database were screened against LdMcm10 using PyRx software. The top three compounds, namely suramin, vapreotide, and 
pasireotide, exhibiting the best docking scores, underwent further investigation through molecular dynamic simulation and 
in vitro analysis. The observed structural dynamics suggested that LdMcm10-ligand complexes maintained consistent bind-
ing throughout the 300 ns simulation period, with minimal variations in their backbone. These findings suggest that these 
three compounds hold promise as potential lead compounds for developing new drugs against leishmaniasis. In vitro experi-
ments also demonstrated a dose-dependent reduction in L. donovani viability for suramin, vapreotide, and pasireotide, with 
computed IC50 values providing quantitative metrics of their anti-leishmanial efficacy. The research offers a comprehensive 
understanding of LdMcm10 as a drug target and provides a foundation for further investigations and clinical exploration, 
ultimately advancing drug discovery strategies for leishmaniasis treatment.

Keywords  Leishmaniasis · DNA replication · Minichromosome maintenance 10 (Mcm10) · Virtual screening · Molecular 
dynamics simulation · MTT assay

Introduction

Visceral Leishmaniasis (VL), also referred to as Kala-azar, 
is a neglected tropical disease affecting approximately 
500,000 individuals worldwide, with over 90% of cases 
concentrated in socioeconomically challenged regions, 
including Brazil, Ethiopia, India, Somalia, and Sudan [1]. 
The causative agent, Leishmania donovani, transmitted by 
phlebotomine sand flies, necessitates prompt clinical inter-
ventions to avert near-certain fatality [2]. Despite a recent 

decline in VL incidence in India and Bangladesh attributed 
to the widespread use of insecticide-treated nets, the epide-
miological status in other regions, notably Brazil, remains 
concerning [3]. In Brazil, urbanization has facilitated the 
spread of VL, intensifying the public health threat. The 
emergence of Leishmanial strains resistant to conventional 
antimonial drugs, the primary frontline defence against 
VL, as well as their substitutes like Amphotericin B and 
Miltefosine, further complicates the situation [4, 5]. Cur-
rent therapeutic options for VL exhibit notable limitations, 
encompassing severe side effects, restricted applicability to 
hospital settings, and financial constraints [4]. Addressing 
these challenges, targeting specific proteins within the L. 
donovani parasite has gained prominence in drug develop-
ment. Numerous studies have elucidated that essential pro-
teins are pivotal for the parasite’s survival, replication, and 
evasion of host immune responses [6, 7]. The rationale for 

 *	 Diwakar Kumar 
	 diwakar11@gmail.com

1	 Department of Microbiology, Assam University, 
Silchar 788011, Assam, India

2	 Department of Computational Sciences, Central University 
of Punjab, Bathinda 151401, Punjab, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11030-024-10876-y&domain=pdf


	 Molecular Diversity

focussing on such proteins lies in the design of drugs that 
selectively disrupt these essential processes, thereby imped-
ing the parasite’s life cycle. The systematic identification and 
validation of these proteins as drug targets underscore their 
significance in advancing therapeutic interventions against 
VL. Mcm10, a multifunctional protein intricately involved 
in eukaryotic DNA replication [8], has been recognized as 
a critical DNA replication protein and a candidate for drug 
targeting in cancer [9].

Mcm10 consistently engages with DNA, regardless of 
topological or sequence considerations [10, 11]. Its binding 
affinities for both single-stranded (ss) and double-stranded 
(ds) DNA are comparable, with the N-terminal domain 
(NTD) facilitating protein oligomerization despite modest 
DNA binding capability [12]. The Mcm10 internal domain 
(Mcm10-ID) exhibits pronounced sequence homology 
across diverse species [10]. Crystallographic investiga-
tions reveal a unique arrangement of the OB-fold and ZnF 
domains in xMcm10-ID, presenting a configuration distinct 
from other DNA binding proteins [10]. This domain tan-
dem forms a continuous DNA binding surface in Mcm10, 
encompassing specific residues identified through nuclear 
magnetic resonance chemical shift perturbation, involving 
a patch of basic lysines and aromatic amino acids that make 
direct contact with DNA [11]. Despite the commonality of 
ZnF domains in various proteins, the likelihood of small 
molecules binding to them and yielding selective drugs 
is limited. However, it is noteworthy that the C-terminal 
domain (CTD) ZnF significantly augments the DNA bind-
ing affinity of full-length Mcm10 [13].

Consequently, emphasizing the Mcm10 internal domain 
as the prime target emerges as a judicious strategy for devel-
oping specific inhibitors. As there is currently no available 
vaccine for leishmaniasis, and existing research on the 
Leishmania parasite lacks insights into potent antigens or 
immunogens, our focus centres on the internal domain of 
L. donovani Mcm10 (LdMcm10) as a distinct therapeutic 
target. Inhibitors targeting LdMcm10 hold promise as robust 
anti-leishmanial medications for clinical use, addressing 
leishmaniasis and alleviating associated symptoms. The 
potential of Mcm10 to sustain DNA replication is critical 
for all eukaryotes’ survival and existence. The viability of 
Mcm10 as a possible drug target is based on the fact that 
Mcm10 is involved in DNA replication regulation, repair 
mechanisms, and cell proliferation in eukaryotes [11]. As a 
result, in silico screening was performed against LdMcm10 
using drug-like compounds from the DrugBank database.

Using computational techniques in computer-assisted 
drug design has become a practical approach for explor-
ing new lead compounds [14]. Over the past two decades, 
academics have created and utilized various computational 
techniques to enhance efficiency and reduce expenses. 
Therefore, we have employed virtual screening (VS) and 

computer simulations to identify lead compounds against 
LdMcm10 in this study.

Methods

Target selection, molecular modelling, and model 
validation

Before performing molecular docking, the structure of the 
target protein was constructed. The sequence of the target 
protein LdMcm10 was obtained from the KEGG database 
(https://​www.​genome.​jp/​entry)​(LDBPK_​262410). The 
received sequence was subsequently cross-verified using 
UniProt with the accession number A0A3S7X073. To 
determine the degree of similarity with human homologs, a 
similarity search was conducted against the human genome 
using the protein Blast programme available at https://​blast.​
ncbi.​nlm.​nih.​gov/​Blast.​cgi, and the internal domain of the 
selected protein was used as the target sequence for homol-
ogy modelling. Due to the absence of template structures 
with an identity percentage below 28% for homology mod-
elling of the LdMcm10 internal domain (LdMcm10 ID) 
sequence, alternative methods such as ab initio and thread-
ing were explored to construct a three-dimensional model. 
RosetaFold, available at http://​robet​ta.​baker​lab.​org [15], was 
employed as an online platform offering various computa-
tional tools for predicting and analysing protein structures.

Additionally, predictions for the 3D structure of the 
LdMcm10 ID protein were generated using I-TASSER 
(https://​zhang​lab.​ccmb.​med.​umich.​edu/I-​TASSER/) [16], 
ModWeb (https://​modba​se.​compb​io.​ucsf) [17], and Alpha-
Fold (https://​alpha​fold.​ebi.​ac.​uk/) [18] web servers. Evalu-
ation of the protein’s integrity is crucial to the protein struc-
ture prediction procedure. Using the PROCHECK server 
[19], the accuracy and precision of the model evaluations 
were determined by Ramachandran plot analysis, which 
comprises the number of residues in the most favoured, 
additionally allowed, generously allowed, and disallowed 
regions and the ERRAT score. The model exhibiting the 
most favourable PROCHECK score underwent energy mini-
mization for enhanced structural stability, achieved through 
the YASARA Energy Minimization server [20]. Subsequent 
validation of the refined model was conducted using PRO-
CHECK [19] to assess the authenticity and structural quality 
of the LdMcm10 rigorously.

Ligand library preparation

The Drug Bank database (https://​www.​drugb​ank.​ca/) 
offered access to a molecular library of nearly 1000 
approved molecules in this study. Renowned for reliabil-
ity in bioinformatics and cheminformatics, Drug Bank is a 

https://www.genome.jp/entry)(LDBPK_262410
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://robetta.bakerlab.org
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://modbase.compbio.ucsf
https://alphafold.ebi.ac.uk/
https://www.drugbank.ca/
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valuable resource for virtual screening, providing detailed 
information on drugs, including specific data on targets 
such as sequence, structure, and pathways. Canonical 
smiles from Drug Bank (https://​www.​drugb​ank.​ca/) were 
utilized for molecular docking, and subsequent conversion 
to PDB files was achieved using CORINA 3D software 
(https://​www.​mn-​am.​com/​online_​demos/​corina_​demo).

Molecular docking

Computational drug design relies heavily on molecular 
docking, which guarantees that the ligand molecule will 
fit into the binding pocket of the chosen protein in the cor-
rect configuration. Docking investigations in the present 
study used the PyRx virtual screening programme [21]. 
PyRx uses the docking applications autodock four and 
autodock vina. A grid box was built with the following 
dimensions in X, Y, and Z (120.6361, 115.6029, 116.640) 
and (26.0286, 44.5394, 43.1279). Almost every residue in 
the active site is contained inside the grid box. We chose 
to investigate compounds with the weakest binding energy. 
Hydrogen bond interactions were studied with LigPlot [22] 
and visualized in PyMol [23] for docked protein–ligand 
structures.

Molecular dynamic simulation

Molecular dynamics simulations were executed to prog-
nosticate the ligand binding dynamics with the target pro-
tein within a physiological milieu. The docked complex 
involving the protein target and ligand molecules under-
went a 300 ns simulation utilizing Desmond 2020.1 from 
Schrodinger, LLC [24]. The primary objectives encom-
passed delineating dynamic behaviour, exploring inter-
molecular interactions, and assessing the complex’s sta-
bility [25]. Employing an orthorhombic simulation box, 
the complex underwent solvation using the system builder 
platform with the simple point-charge (SPC) explicit water 
model. The solvated complex system, established with a 
salt concentration of 0.15 M, integrated an appropriate 
number of Na + /Cl − counter ions, maintaining a constant 
temperature of 300 K and 1 atm pressure throughout the 
simulation period. The receptor-ligand complex system 
adopted the OPLS-2005 force field, and a comprehensive 
solvent model featuring SPC water molecules was imple-
mented in the system [26, 27]. Trajectories were sampled 
at 300 ps intervals for analysis, with the stability of the 
protein–ligand complex gauged through metrics such as 
Root Mean Square Deviation (RMSD), radius of gyration 
(Rg), root mean square fluctuation (RMSF), and the tem-
poral evolution of hydrogen bonds (H-bonds).

MM‑GBSA calculation

We utilized the binding free energy as a strict metric to char-
acterize the binding affinity inside the protein–ligand com-
plex objectively. We examined the binding free energies for 
LdMcm10 ID and its ligands using the molecular mechan-
ics-generalized born surface area (MM-GBSA) method 
[26, 27]. The complex calculations were made more acces-
sible by the mmgbsa.py Python script included in the prime 
module. We calculated the binding free energy (ΔGbind) 
using the VSGB solvent model, the OPLS 2005 force field, 
and sophisticated rotamer search methods [28]. To estimate 
the binding free energy controlling the interaction between 
ligands and the LdMcm10 ID receptor within the system, 
use the formula

Essential dynamics (ED) analysis

To elucidate the global motions occurring during the 300-
ns simulation of ligand complexes with LdMcm10 ID, we 
employed principal component analysis (PCA) [29, 30]. Ini-
tiated by constructing a covariance matrix, the subsequent 
PCA computation allowed for extracting fundamental con-
formational dynamics. The exploration of protein–ligand 
complex conformational dynamics involved computing the 
movements of trajectories focussing on ten alternate con-
formational modes of the major component, with particular 
attention to comparing the highest mode (PC 2). Through-
out the 300-ns molecular dynamics simulation for the pro-
tein–ligand complex, we constructed a dynamic cross-cor-
relation matrix (DCCM) encompassing all carbon atoms. 
This DCCM facilitated an in-depth investigation of domain 
correlations [31].

In vitro cell‑cytotoxicity assay

The cytotoxicity assay utilized the MTT assay [32, 33] 
against L. donovani (Ld1S) promastigote. In this study, 
promastigotes were cultivated in Ti75 tissue culture flasks 
(Thermo Fisher Scientific) and maintained at 25 °C within 
an incubator. Subsequently, the cells were placed in separate 
wells of a 96-well microtiter plate (Thermo Fisher Scientific) 
containing 100 μl of M199 medium. The final cell density 
in each well was 2 × 106 cells/well. The test compounds, 
along with amphotericin B utilized as the positive control, 
were dissolved in a 0.1% dimethyl sulfoxide (DMSO) solu-
tion, and the final concentration was made up to (1–20) µM/
ml. The cells were treated with Amphotericin B as positive 
control after an overnight incubation period. In contrast, 

ΔGbind = Gcomplex −
(

Gprotein + Gligand

)

https://www.drugbank.ca/
https://www.mn-am.com/online_demos/corina_demo
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untreated cells were utilized as the negative control, and 
cells treated with different concentrations of Suramin, Pasir-
eotide, and Vapreotide were employed as the test sample and 
kept for overnight incubation at 25 °C. All experiments were 
conducted in triplicate.

After the incubation period, the cells in the microtiter 
plate were centrifuged using a Sigma 3–30 K centrifuge at 
a speed of 4500 revolutions per minute for 45 min. The cul-
ture media were then removed, resulting in the formation 
of a pellet consisting of the cells. Following the process of 
centrifugation, a volume of 20 μl of MTT reagent with a 
concentration of 5 mg/ml was introduced into each well. 
Subsequently, the plate was incubated in the dark for 4 h at 
25 °C. Subsequently, the MTT was removed by washing, 
and the formazan crystals were dissolved in 100 μl of dime-
thyl sulfoxide (DMSO) per well. The measurement of MTT 
reduction was conducted by recording the absorbance at a 
wavelength of 570 nm using a microtiter plate reader. All the 
reagents were purchased from Thermo Fisher Scientific -IN.

Results

Target selection and homology modelling

The LdMcm10 protein’s amino acid sequence was taken 
from the KEGG genome database. Protein BLAST con-
firmed that LdMcm10 does not have any empirically estab-
lished structures. The protein blast analysis against human 
Mcm10 yielded insignificant sequence similarity with the 
target protein. Additionally, superimposing the protein struc-
ture onto the human Mcm10 structure revealed a substantial 
Root Mean Square Deviation (RMSD) of 40.754 Å (Sup-
plementary Fig. 8).

The LdMcm10 protein shares only 28% of the sequence 
similarities with the internal domain of Xenopus laevis 
Mcm10 (PDB 3EBE_A), suggesting the need to apply 
ab initio and threading approaches for model building. 
Without an appropriate homology modelling template, 
various web servers were utilized to generate the best 3D 
model for LdMcm10 ID (Table 1). The model obtained 
from the Robetta web server was chosen for subsequent 

investigation, considering its favourable Z score and 
Ramachandran plot analysis (Supplementary Fig. 1A and 
B).

Energy minimization was performed using the 
YASARA Energy minimization server to yield a highly 
stable protein structure, which was subsequently validated 
with PROCHECK. Additional ProSa and ERRAT were 
used to analyse the LdMcm10 ID protein’s integrity and 
structural quality (Supplementary Fig. 2 A–C).

Prediction of binding site residues

Previous research suggests that multiple sequence align-
ment (MSA) analysis can accurately identify binding loca-
tions [34]. The MSA was utilized to search for conserved 
LdMcm10 ID amino acid residues, which influence how a 
protein interacts [35] (Supplementary Fig. 3 B).

Further binding site residues were verified using the 
https://​www.​ncbi.​nlm.​nih.​gov/​Struc​ture/​cdd/​wrpsb.​cgi 
server. The amino acid residues from 339–381 were iden-
tical to the zinc finger domain of yeast Mcm10 proteins 
and DnaG-type primases (Supplementary Fig. 3 C). This 
identified region is deemed a potential binding site for 
ligands and aligns concordantly with the conserved amino 
acid residues delineated in the MSA. According to previ-
ous studies on X. laevis, the internal domain of the Mcm10 
protein offers an entirely novel ssDNA binding platform 
[36]. However, an earlier study in budding yeast Mcm10 
shows that mutation in conserved residues hampers the 
DNA binding activity of Mcm10 and affects the DNA rep-
lication process [37].

In addition, the CASTp web server was used to pre-
dict binding sites and select the most likely binding site. 
CASTp identified 75 possible binding sites; however, 
binding pockets 2, 3,31 and 6 were selected for our work 
(Supplementary Table 1). In contrast, the study did not 
consider those pockets because ligands cannot fit in pock-
ets with limited surface area and volumes [38]. Most of 
the conserved amino acid residues identified by MSA were 
inside the anticipated protein model’s selected binding 
area (supplementary Fig. 3A).

Table 1   The different servers utilized to generate the best LdMCM10 model for in silico docking studies alongwith the quality and accuracy 
assessment through Z score & Ramachandran plot analysis using PROSA & PROCHECK server respectively

Prediction servers z-score Residues in the most 
favoured regions (%)

Residues in additionally 
allowed regions (%)

Residues in generously 
allowed regions (%)

Residues in disal-
lowed regions (%)

RosetaFold  − 5.99 87.5 10.6 0.9 0.9
I-TASSER  − 5.49 57.3 34.6 5.3 2.9
AlphaFold  − 5.13 63.7 17.4 4.9 14.0
ModWeb  − 4.87 54.7 22.2 5.3 17.8

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Structure‑based virtual screening

We screened a 1000-compound library against LdMcm10 
and identified three lead compounds with favourable dock-
ing scores. Vapreotide (DB04894) exhibited a substantial 
docking score of − 11.3 kcal/mol, characterized by 19 
hydrophobic interactions with amino acids. Additionally, it 
established seven hydrogen bonds with Gln 426, Ser 349, 
His 320, Ala 342, and Ser 401 within binding pockets 2, 3, 
and 6. Suramin (DB04786) exhibited a robust interaction 
profile, with a docking score of − 10.8 kcal/mol featuring 
twelve hydrophobic interactions with amino acid residues 
in binding pockets 2, 3, and 6. It formed eight hydrogen 
bonds with Ser 401, Arg 313, Ser 316, Ala 315, Thr 346, 
Ala 341, Gln 368, and Asn 363. Meanwhile, Pasireotide 
(DB06663) showed a docking score of -9.8 kcal/mol for 
the target protein. This compound engaged in fifteen 
hydrophobic interactions within pockets 2, 3, and 6, along 
with six hydrogen bonds involving Ser 403, Asn 362, Ser 
349, Tyr 352, and Ala 315. A comprehensive depiction 
of all hydrogen bonds and hydrophobic interactions is 
delineated in Table 2. All three lead molecules interact 
with amino acid residues in the protein’s internal domain 
(LdMcm10), essential for ss DNA binding [37]. Hence, 
these specific ligand molecules and the corresponding pro-
tein–ligand complexes were selected for molecular dynam-
ics (MD) simulation and subsequent in vitro studies.

Mcm10, a protein involved in DNA replication, serves 
as a scaffold protein and coordinator for different proteins 
in the replication process. Unlike an enzyme with a specific 
substrate, Mcm10 interacts with other proteins and com-
plexes essential for DNA replication, enabling the replica-
tion process to proceed smoothly [11]. Along with other 
replisomes, Mcm10 was found to interact with DNA poly-
merase α, PCNA, and single-stranded DNA [11]. Therefore, 
we also docked DNA polymerase α, PCNA, and single-
stranded DNA as positive control against Mcm10. Docking 
interaction and analysis with the help of HADDOCK 2.4 
server exhibits Z score of − 2, 0, & 2 for DNA polymerase 
α, PCNA, and single-stranded DNA, respectively. Further 
2D and 3D interaction analysis revealed DNA polymerase 
α, PCNA, and single-stranded DNA formed H-bonds with 
residues Arg 357, Arg 382, Lys 379, Ser 383, Glu 390, Glu 
356, Tyr 352, Thr 386 (Supplementary Fig. 7 A–F) sug-
gesting that these are potential amino acid residues involved 
in interaction with other replisome proteins. Thus, selected 
drugs might also utilize these amino acid residues to hinder 
protein’s function.

The generation of three-dimensional (3D) and two-
dimensional (2D) protein–ligand interaction graphs was 
accomplished using PyMol and LigPlot software. These 
graphical representations visually depict hydrogen bond 
interactions between amino acid residues within the active 
site and the chosen ligand molecules, as illustrated in Figs. 1 
and 2.

Table 2   The anticipated binding affinity, crucial interacting residues, and hydrogen bond lengths of the chosen ligand molecules

Compound name Binding Affinity
(kcal/mol)

H-bond H-bond length Å Hydrophobic interaction

Vapreotide (DB04894)  − 11.3 His 320 2.87 Ile 273, Arg 313, Ala 315, Ser 316, Ala 317, Pro 318, Ala 319, Ala 341, 
Asp 343, Leu 344, Gly 345, Ala 348, Ala 397, Gln 399, Arg 452, His 
455, Ala 425, Ser 403, Leu 429

Ala 342 3.22
Ser 349 3.13, 2.70
Ser 401 2.71
Ser 404 2.70
Gln 426 2.91

Suramin (DB04786)  − 10.8 Arg 313 2.90 Leu 377, Thr 389, His 395, Arg 391, Glu 390, Asp 343, Leu 344, Gly 
345, Ala 395, Gly 399, Phe 340, Cys 347Ala 315 2.90

Ser 316 3.18
Ala 341 2.86
Asn 363 3.17
Gln 368 2.69
Ser 401 3.02
Thr 346 2.83

Pasireotide (DB06663)  − 9.8 Ser 403 2.85 Arg 428, Lys 353, Ala 319, Ala 425, Leu 429, Gln 426, Ala 402, Leu 
405, His 455, Ser 401, Leu 344, Gly 399, Gly 345, Pro 318, Thr 346Asn 362 2.95

Ala 315 3.08
Ser 349 2.94, 2.76
Tyr 352 3.05
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Structural dynamics

A molecular docking study reveals that suramin, pasire-
otide, and vapreotide had the strongest binding affinity with 
the target protein LdMcm10 ID. However, the chemical 
interactions between proteins and ligands are crucial to the 
structural stability of a protein–ligand complex. However, 
it also depends on the simulated environment [39, 40]. 
Recent investigations indicate that drugs with high binding 
affinity and docking scores may have escaped the binding 
pocket [41, 42]. Thus, it is crucial to study the conforma-
tional changes. In order to understand the role of ligands in 
protein dynamics, MD simulation for 300 ns was run for 

protein–ligand docked complexes along with the apo struc-
ture of LdMcm10 ID to have a detailed understanding of the 
conformational changes in the protein.

Root mean square fluctuation (RMSD) analysis

RMSD quantifies the protein–ligand complex’s average atom 
departure from the original frame after a defined time. The 
calculation assessed complex stability over time for each 
simulation trajectory frame. Figure 3A represents the RMSD 
development of the protein and protein–ligand complexes. 
When compared to the structure of the protein in its apo 
state, the flexibility of the protein is decreased when it is 

Fig. 1   The molecular docking results demonstrate the interaction of A Vapreotide, B Suramin, and C Pasireotide in the binding pocket of 
LdMcm10. Yellow dotted lines represent hydrogen bond interactions

Fig. 2   LigPlot 2D visualizations show the interactions between active 
site residues and the top ligands Vapreotide (A), Suramin (B), and 
Pasireotide (C). Hydrogen bonds are shown as green dashed lines 

with distances (Å), whereas hydrophobic interactions are represented 
by red arcs. Carbon (black), nitrogen (blue), and oxygen (red) are the 
three atomic hues
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bound to a ligand. In LdMcm10ID-vapreotide, an initial rise 
in RMSD was seen up to 50 ns. However, after that, there 
was a decline with an average RMSD of 7.02 Å. The results 
remained steady throughout the simulation, suggesting that 
the ligand stayed connected to the protein’s binding pocket 
[43, 44]. From 50 ns onwards, the average RMSD for the 
LdMcm10ID-suramin complex was 5.7 Å, with only a mod-
est drift of 0.2 Å to 0.5 Å.

On the other hand, it was discovered that LdMcm10ID-
pasireotide fluctuated with an average value of 6.8 Å from 
150 ns to the end. In contrast, many drifts were seen during 
the first initial phase of the simulation. These conformational 
flips are caused mainly by the ligand’s torsion angle [44], 
which suggests that the observed change may be attributable 
to a conformational shift in the ligand’s rotatable bonds. The 
drug binding provided stability to the LdMcm10 protein.

Root mean square fluctuation (RMSF) analysis

In order to observe the local fluctuation in protein structure 
[45], the RMSF of each amino acid residue of LdMcm10 

ID that interacted with the ligands were calculated for 
300 ns (Fig. 3B). The figure indicates that conformation 
was maintained throughout the simulation. In LdMc-
m10ID-vapreotide, the average RMSF value was below 
2.10 Å. However, some amino acid residues, such as Ser 
319 (0.882 Å), Ala 335 (0.834 Å), Arg 337 (0.888 Å), Gln 
338 (0.982 Å), Gln 339 (0.986 Å), Val 341 (0.89 Å), Leu 
342 (0.758 Å), and Tyr 348 (0.861 Å), had lower RMSF 
values, indicating tight ligand binding within the binding 
pocket (Fig. 3) [46]. LdMcm10ID-Suramin had an aver-
age RMSF of 2.77 Å, whereas LdMcm10ID- pasireotide 
had 3.10 Å. The study on RMSF demonstrates that the 
stability of molecular connections between ligands and 
LdMcm10 ID in complexes exhibits little fluctuations. 
However, stable secondary structures like alpha-helices 
and beta-sheets stay the same throughout the simulation. 
The primary cause for the fluctuations is that the protein’s 
N– and C– ends have loops and low-stable beta-sheets 
[47].

Fig. 3   The 300 ns molecular dynamic simulation results of top three 
protein–ligand complexes (LdMCM10-Vapreotide shown in yellow, 
LdMCM10-Suramin shown in green, LdMCM10-Pasireotide shown 
in blue, and LdMCM10 shown in red). A RMSD value of carbon 
alpha atoms of the complex. B RMSF of carbon alpha of complex 

structure. C Rg of backbone atoms. D SASA of the ligands. E Total 
number of H-bonds between ligands and Protein. F The binding free 
energy of LdMCM10 inhibitors has been assessed through the MM-
GBSA approach
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Secondary structure analysis

The simulation predicted the protein’s secondary structure 
by plotting alpha-helices and beta-strands against the resid-
ual index. LdMcm10ID-Suramin has 3.87% alpha-helices 
and 31.6% beta-sheets, compared to 5.95% and 26.37% in 
LdMcm10ID-pasireotide and 0.85% and 33.73% in LdMc-
m10ID-vapreotide (Supplementary Fig. 4). The alpha–beta 
helices-sheet ratio impacts protein RMSD. Protein residues 
in rigid structures have lower RMSD than coils and loops 
[48, 49].

Radius of Gyration analysis

To assess LdMcm10ID-ligand-bound complex structural 
compactness and stability, the radius of gyration (Rg) is 
studied [50]. Figure 3C displays the Rg of all protein–ligand 
complexes and apoprotein. The Rg figure for LdMcm10ID-
vapreotide indicates that the structure stabilized around 
16.24 Å throughout the simulation, with modest drifts of 
roughly 2 Å in the first 50 ns, indicating changes in struc-
ture. However, the structure remained stable after 50 ns, 
suggesting the structural compactness of these complexes 
throughout the simulation. The Rg figure for LdMcm10ID-
pasireotide shows a little trajectory increase in the first 
half of the simulation, but this drift reduces, and the struc-
ture stabilizes. After 150 ns, the simulation stays constant 
with an average value of 16.94 Å for 300 ns. Compared 
to LdMcm10ID-vapreotide and LdMcm10ID-pasireotide, 
LdMcm10ID-Suramin exhibits moderate perturbation with 
an average value of 17.27 Å, indicating less stable structural 
compactness and integrity.

Solvent‑accessible surface (SASA) analysis

The solvent-accessible surface area (SASA) is a metric quan-
tifying the conformational changes induced by the ligand 
throughout the simulation. SASA data are crucial in discern-
ing whether the ligand remains within the binding pocket or 
is expelled from the binding cavity [51]. SASA was calcu-
lated for both LdMcm10 ID (apo state) and LdMcm10ID-
ligand complexes to analyse the behavioural changes. The 
average SASA values for LdMcm10 ID (apo state) and its 
complexes with suramin, pasireotide, and vapreotide were 
determined as 9296.05 Å2, 8959.2 Å2, 9265.98 Å2, and 
9241.76 Å2, respectively. Suramin and vapreotide com-
plexes with LdMcm10ID exhibited slightly higher SASA 
values than the LdMcm10 ID (apo form) (Fig. 3D). Con-
versely, the pasireotide complexes displayed a lower SASA 
pattern than the apo form. Elevated and relatively stable 
SASA values in a protein–ligand complex indicate that the 
ligand can interact with solvents without causing significant 
structural alterations to the protein [52].

H‑bond analysis

The overall stability of the protein–ligand complex is intri-
cately influenced by numerous hydrogen bond (H-bond) 
interactions occurring within the active site of the protein. 
In their respective bound states, pasireotide, suramin, and 
vapreotide exhibit multiple H-bond acceptors and donor 
sites that directly interact with the predicted binding sites of 
LdMcm10ID. The temporal evolution of H-bond interactions 
in these three complexes over the 300 ns simulation is illus-
trated in Fig. 3E. Figure 3E depicts an average of five, four, 
and three H-bond contacts in the LdMcm10ID-pasireotide, 
LdMcm10ID-Suramin, and LdMcm10ID-vapreotide com-
plexes throughout the simulation period. Notably, the num-
ber of H-bond interactions exhibits fluctuations. The pres-
ence of robust H-bonds between the ligands and LdMcm10 
ID implies the formation of enduring protein–ligand com-
plexes, underscoring their structural stability.

This study evaluated the hydrogen bond interactions 
between Mcm10 and DNA polymerase α, PCNA, and sin-
gle-stranded DNA (ssDNA) as a positive control. Through 
a meticulous 50 ns simulation, we observed a substantial 
formation of hydrogen bonds within the Mcm10-PCNA, 
Mcm10-DNA polymerase α, and Mcm10-ssDNA com-
plexes. The Mcm10-ssDNA complex displayed approxi-
mately 8–10 hydrogen bonds, whereas interactions between 
Mcm10 and DNA polymerase α and Mcm10 and PCNA 
exhibited a range of 4–6 and 2–4 hydrogen bonds, respec-
tively. (Fig. 4D). These findings elucidate the intricate and 
dynamic nature of protein–protein and protein-DNA interac-
tions, affirming their significance throughout the simulation.

Additionally, we analyse the structural stability and com-
pactness of the protein–protein and protein–DNA complexes 
through rigorous analysis of RMSD, RMSF, the radius of 
gyration, and solvent-accessible surface area (SASA). These 
metrics serve as indicators of the stability and dynamic 
behaviour of the complexes over time, as illustrated in 
(Fig. 4 A, B, C, E).

The RMSD values for Mcm10 remained consistently 
stable throughout the simulations. Notably, when Mcm10 
formed complexes with other replisome proteins and DNA, 
its backbone exhibited heightened stability, as indicated by 
minimal RMSD values. Moreover, the binding of PCNA 
and ssDNA to Mcm10 did not induce substantial alterations 
in its backbone RMSD. This finding suggests that Mcm10 
maintains a stable backbone conformation when interacting 
with these proteins and DNA entities, which is crucial for 
its functional role within the replisome machinery. Simi-
larly, a notable decrease in Root Mean Square Fluctuation 
(RMSF) values was observed upon the binding of Mcm10 
with PCNA, DNA polymerase α, and ssDNA, compared to 
its unbound form (Apo-Mcm10). This reduction signifies 
increased stability of the protein–protein and protein–DNA 
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complexes. Furthermore, analysis of the Radius of Gyration 
(Rg) and Solvent Accessible Surface Area (SASA) values for 
these complexes revealed consistent and persistent interac-
tions between the protein and DNA components throughout 
the simulation period. These findings highlight the robust-
ness and compact nature of the formed complexes, indicat-
ing their functional significance in replication machinery.

Ligand dynamics

To understand the role of ligands on protein binding 
affinities throughout simulations. Total seven properties 
of ligand, including (1) RMSD properties: Root mean 
square deviation of a ligand from the reference conforma-
tion (usually the first frame at time t = 0); (2) Radius of 
gyration (rGyr): Measures ligand “extendedness” and is 
comparable to its primary moment of inertia; (3) intra-
molecular hydrogen bond (intraHB): Number of ligand 
molecule internal HB. Calculated molecular surface area 
(MolSA) using 1.4 A probe radius; 5. Solvent-accessible 
surface area (SASA): Water-accessible molecular surface 
area; (6) Polar surface area (PSA): A molecule’s solvent-
accessible surface area is solely oxygen and nitrogen [53] 
was assessed to analyse ligand stability about the protein 
and binding pocket. Supplementary Fig. 5 A, B, and C 
displays the RMSD of suramin, pasireotide, and vapreo-
tide values. Suramin maintained an average RMSD value 

of ~ 3.8 Å throughout the simulation, followed by vapreo-
tide and pasireotide, with 5.09 Å and 5.8 Å. Suramin and 
vapreotide stay constant after 100 ns of simulation, unlike 
pasireotide. Although there is a minor change between 50 
and 90 ns, suramin remains stable and compact with an 
average rGyr value of 10.90 Å throughout the simulation. 
Despite slight deviations, vapreotide maintains compact-
ness throughout the simulation, with an average rGyr value 
of 7.88 Å. Pasireotide had more rGyr variation than the 
other two compounds across the process. Finally, rGyr val-
ues show the “extendedness” or compactness of ligands 
in the binding pocket during simulation. Pasireotide tran-
sitioned from compact to stable extended conformation, 
suramin showed terminal stability followed by early oscil-
lations, while vapreotide remained compact during 300 ns 
of simulation. The intra HB, MolSA, SASA, and PSA 
graphs showed the ligand’s character during the simula-
tion. Suramin’s MolSA, SASA, and PSA graphs showed 
consistency throughout the simulation procedure, with just 
a few tiny drifts between 200 and 250 ns. MolSA, SASA, 
and PSA plots for pasireotide and vapreotide revealed 
inconsistency during the first simulation stage. Overall, 
there is a tendency for various properties to fluctuate at 
first, then become more consistent and steadier as the sim-
ulation progresses. These observations analyse the ligand’s 
behaviour and interaction pattern with protein (Supple-
mentary Fig. 5 A, B, and C).

Fig. 4   50 ns molecular dynamic simulation findings for the three 
protein–substrate complexes (LdMCM10 with three substrates i.e. 
ssDNA, PCNA, and DNA pol α). A RMSD value of carbon alpha 

atoms of the complex. B RMSF of carbon alpha of complex struc-
ture. C Rg of backbone atoms. D Total number of H-bonds between 
ligands and Protein. E SASA of the ligands
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Binding free energy analysis

Protein–ligand complex stability is indicated by binding 
free energy [54]. The binding free energy for 300 ns of 
simulated trajectories was computed to measure stability. 
Electrostatic, covalent, hydrogen bonding, hydrophobic, 
Van der Waals, and polar solvation energies contributed to 
the binding free energy. MM-GBSA determined the total 
binding free energy of suramin, pasireotide, and vapreotide 
against the LdMcm10ID binding pocket. The binding free 
energy for LdMcm10ID-suramin, LdMcm10ID-pasireotide, 
and LdMcm10ID-vapreotide complexes was − 101.67 ± 4.1
2, − 93.72 ± 1.01, and − 96.39 ± 1.32, respectively (Supple-
mentary Table 2). LdMcm10-suramin has the lowest binding 
free energy of the three complexes. Electrostatic binding 
and van der Waals energy contributed most to the interac-
tions. H-bond interaction for LdMcm10-suramin, pasire-
otide, and vapreotide was − 5.99 ± 0.91, − 11.15 ± 2.11, and 
− 5.80 ± 1.87 kcal/mol (Supplementary Table 2). Figure 3F 
compares the energies at which the inhibitors suramin, 
pasireotide, and vapreotide bind to the binding pocket in 
the LdMcm10ID.

Essential dynamics and principal component 
analysis

Principal Component Analysis (PCA) is a robust method 
for characterizing protein dynamics within molecular sim-
ulations [55]. In this study, we applied PCA to scrutinize 
the conformational dynamics of LdMcm10 ID and its pro-
tein–ligand complexes. PCA scatter plots were constructed 
by projecting simulated trajectories onto the two-dimen-
sional subspace defined by the first three eigenvectors (PC1, 
PC2, and PC3), with the colour spectrum representing the 
temporal evolution from blue (initiation) to white (interme-
diate) to red (termination). The outcomes of the PCA analy-
sis for both the apoprotein and the protein–ligand complexes 
are shown in Supplementary Fig. 6A–D.

Comparative scrutiny of PCA plots for LdMcm10ID-
pasireotide (Supplementary Fig. 6B), LdMcm10ID-suramin 
(Supplementary Fig.  6C), and LdMcm10ID-vapreotide 
(Supplementary Fig. 6D) underscores the pronounced vari-
ability within the PC1 cluster, contributing 35.08%, 55.88%, 
and 35.64% of the respective variances. The PC2 cluster 
manifests variabilities of 21.23%, 17.33%, and 13.58%, 
while the PC3 cluster demonstrates minimal variability, 
accounting for merely 5.42% of the variance in the LdMc-
m10ID-vapreotide complex (Supplementary Fig. 6D). The 
restricted variability in PC3 for LdMcm10ID-vapreotide, 
relative to PC1 and PC2 (Supplementary Fig. 6D), indicates 
a notably stable binding of vapreotide to the protein, result-
ing in a compact structural conformation. Examination of 
clustered regions within the PC subspace unveils distinctive 

conformational variations across all groups, where the blue 
region signifies pronounced movements, the white region 
denotes intermediate motions, and the red region indicates 
the least flexible movements [56].

Dynamic cross‑correlation matrix (DCCM) analysis

Dynamic Cross-Correlation Matrix (DCCM) analysis was 
conducted on the trajectories of Cα backbone atom positions 
in both apo and ligand-bound independent simulations to 
discern the presence of correlated motions. Figure 5A–D 
shows positive correlations in the upper left triangle, while 
negative correlations are illustrated in the lower right trian-
gle. The intensity of colour reflects the degree of correlation 
or anticorrelation, with deeper colours indicating a more 
robust correlation or anticorrelation. The correlation coeffi-
cient, ranging from − 1 to 1, signifies that a positive correla-
tion implies movement in the same direction, while a nega-
tive correlation indicates movement in opposite directions. 
Examination of DCCM diagrams across all systems revealed 
notable correlations, with selected ligand molecules display-
ing high pairwise cross-correlation coefficient values on the 
cross-correlation map. The dark blue colour, indicating cor-
related residues (~ 1.0), suggests many pairwise correlated 
residues between the target protein and the chosen ligands 
[57]. Notably, DCCM analysis of Ligand-stand indicates a 
marked reduction in correlated motions upon ligand bind-
ing, underscoring the impact of the ligand on the protein’s 
dynamic behaviour.

Effect of lead molecules on the cell viability of L. 
donovani promastigotes

The effect of selected compounds on L. donovani Ld1S pro-
mastigotes was examined using an MTT assay to determine 
their biological implications. The results of the MTT test are 
reported as a percentage of cell viability, which was deter-
mined by applying the following equation while performing 
the calculation [33].

For this purpose, promastigote cells are incubated with 
different concentrations of selected compounds (1-30uM/
mL). The study found that increasing drug concentration 
decreased L. donovani percentage viability, suggesting a 
dose-dependent lethal effect of selected drug molecules 
(Fig. 6). In order to verify the deterrent effect of suramin, 
vapreotide, and pasireotide, a negative control experiment 
was carried out in which the cells were not subjected to 
any treatment with the selected compounds. With a sample 
size of three, the proportion of viable cells in this particular 

%Cell viability =
Mean OD of test samples

mean OD of control
× 100
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instance was 99.10 ± 2.2%, showing that the cell death in the 
prior instance was solely attributed to the lethal action of the 
drugs. Further, we also calculated the IC50 of the selected 
compounds. Suramin is a primary agent in treating African 
trypanosomiasis (commonly referred to as African sleep-
ing sickness) caused by Trypanosoma brucei gambiense or 
Trypanosoma brucei rhodesiense [58]. Suramin possesses 
an IC50 value of – 11.05 ± 0.29 µM (R2 = 0.88). It is worth-
while to discuss that the IC50 value obtained in our case 
(LDBPK1S) for suramin is moderately less in comparison 
with the IC50 value of Suramin against L. donovani (AG83) 
[59]. Vapreotide is a somatostatin analogue used as an 
antiparasitic agent against cryptosporidium-associated 
diarrhoea in HIV-infected patients [60]. At the same time, 
pasireotide is used to treat Cushing’s disease [61]. In our 
study, both the compound shows potent anti-leishmanial 
activity with IC50values of − 16.71 ± 0.15 µM (R2 = 0.89) 

Fig. 5   DCCM plots are shown for A LdMCM10 in its proteinonly 
form, B LdMCM10-pasireotide, C LdMCM10-suramin, and D 
LdMCM10-vapreotide. In these figures, motions with positive corre-

lation are shown in dark blue, motions with negative anticorrelation 
in white, and motions with mixed correlation in cyan

Fig. 6   A dose-response inhibition plot was constructed against Leish-
mania donovani promastigotes using Amphotericin B (the positive 
control), pasireotide, suramin, and vapreotide. The half maximal 
inhibitory doses (IC50) for Amphotericin B, pasireotide, suramin, and 
vapreotide were 8.73±0.89 μM, 12.59±0.39 μM, 11.05±0.29 μM, 
and 16.71±0.15 μM, respectively
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and 12.59 ± 0.39 µM (R2 = 0.86), respectively. To our knowl-
edge, this is the first report of these two compounds as anti-
leishmanial agents.

Discussion

Leishmaniasis is a group of parasitic diseases caused by 
at least 20 species of the protozoan parasite Leishmania. 
It includes illnesses ranging from modest cutaneous blem-
ishes to catastrophic visceral forms [7]. Because there are no 
effective leishmaniasis vaccinations, chemotherapy is used 
to manage the illness. Initial therapy with pentavalent anti-
monial is limited by resistance. Alternative chemotherapies, 
including amphotericin B, miltefosine, and paromomycin, 
are hazardous or expensive. Leishmaniasis chemotherapy 
faces medication shortages, resistance, toxicity, and expense. 
To address these problems and enhance leishmaniasis treat-
ment, new, effective medications and pharmacological tar-
gets are needed [62]. Finding targets in a biological system 
is one of the most essential parts of drug research discovery. 
A pathogen target should be either absent or considerably 
distinct from the host homolog to be used as a therapeutic 
target. Secondly, the target selected should be necessary for 
the pathogen’s survival.

Due to its pivotal role in cellular proliferation, the DNA 
replication machinery is a promising therapeutic target for 
diverse medical conditions, including infections, autoim-
mune diseases, and cancer [63]. Mcm10, a versatile protein, 
plays a crucial role in eukaryotes’ initiation and elongation 
phases of DNA replication. Its involvement in licencing 
origins, interaction with the MCM2-7 complex, coordi-
nation with DNA polymerase α-primase, single-stranded 
DNA binding, and regulation of replication fork progres-
sion underscores its significance in ensuring accurate DNA 
replication in eukaryotic cells [11]. Therefore, this study 
employs a combination of in silico and in vitro approaches 
to explore novel therapeutic strategies targeting the Mcm10 
protein in L. donovani.

New drug selection comprises numerous crucial steps to 
identify compounds with fewer side effects and interactions 
with other drugs. Bioinformatics and in silico drug design 
significantly affect cutting-edge drug discovery and design. 
These methods are used to look at target structures for bind-
ing active sites, guess what medicinal chemicals will work, 
and study the 3D structures of proteins [30, 31]. Predicting a 
protein’s 3D structure is a fundamental step that bridges the 
gap between sequence information and functional insights. 
It is pivotal in advancing our understanding of cellular pro-
cesses, facilitating drug discovery, and guiding experimental 
studies to modify or inhibit protein function [33].

This study’s BLAST search results revealed the absence 
of host homologues for the target protein. The target 

sequence exhibited less than 28% sequence identity with 
available templates. This unique combination of factors 
underscores the target’s significance as a potential drug tar-
get. It emphasizes the need for alternative computational 
approaches in structure prediction due to its limited sequence 
similarity with existing templates. It signifies the necessity 
of using a threading-based method to predict its 3D structure 
accurately [64]. In this research, various bioinformatics tools 
were systematically applied to predict the three-dimensional 
structure of the internal domain of LdMcm10. Notably, the 
model generated by RosetaFold demonstrated the highest Z 
score (Table 1). This compelling outcome led to the selec-
tion of the RosetaFold-generated model as the optimal can-
didate for subsequent in-depth analyses.

A notable drawback in computational protein structure 
prediction is the divergence of predicted models from exper-
imentally derived native structures, limiting their application 
in biochemical assignment and drug design, which demand 
high structural precision. This disparity hinders the effec-
tive utilization of computational methods in scenarios where 
accuracy is paramount [65]. Therefore, refining protein 
structures has become essential for enhancing knowledge-
based predictions and advancing therapeutic investigations 
[66]. Energy was minimized via the YASSARA web server 
to improve the predicted model’s quality. In our study, the 
Z score of the selected model rose from − 5.80 to − 5.89 
after refining, indicating improvement in the model’s quality 
(Supplementary Fig. 2B).

Additionally, we utilized multiple sequence alignment 
(MSA) to forecast conserved amino acid residues (Supple-
mentary Fig. 3B). Prior studies indicate the significant con-
tribution of MSA in accurately analysing binding site predic-
tion [34]. In this context, the internal domain of the protein 
was identified as the binding site (Supplementary Fig. 3A).

Moreover, we employed molecular docking to predict and 
identify the optimal conformation of small-molecule ligands 
within the target binding site. This technique assesses scor-
ing functions that estimate the energy of anticipated ligand-
receptor complexes. The scoring function calculates the 
total energy of the ligand–protein interaction combined with 
the ligand’s energy; a lower energy value signifies a more 
effective protein–ligand binding and a more stable struc-
ture [67]. Virtual screening, a swift and cost-effective in 
silico approach, involves the evaluation of vast compound 
libraries for their potential to bind specific regions on target 
molecules like proteins [68]. In our current study, three com-
pounds have emerged as promising therapeutic candidates 
against L. donovani, displaying the highest affinity for the 
active site of LdMcm10 and possessing the lowest binding 
energy, as delineated in Table 2. Serine 349 is identified as a 
common interacting residue for both vapreotide and pasire-
otide, whereas Serine 401 is shared between suramin and 
vapreotide. It is noteworthy that these interactions are, to 
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the best of our knowledge, reported here for the first time in 
the context of L. donovani Mcm10. These compounds estab-
lish hydrogen bonds with critical amino acids pivotal for 
interactions and binding with various replisome proteins and 
single-stranded DNA, thus facilitating seamless DNA repli-
cation processes, as evidenced in supplementary Fig. 7A–F.

Molecular dynamics simulations were subsequently 
employed to assess these protein–ligand complexes’ stabil-
ity and conformational dynamics. The findings of our study 
align with previous research, emphasizing the importance of 
understanding the structural dynamics and stability of pro-
tein–ligand complexes for effective drug discovery. Similar 
studies, such as those conducted by Chandra et al. [69], have 
underscored the significance of solvent-accessible surface 
area (SASA) analysis in determining ligand behaviour within 
the binding pocket. Our observations of ligand-induced 
changes in SASA complement their insights, suggesting 
a consistent approach to studying ligand–protein interac-
tions (Fig. 3D). Additionally, the assessment of Root Mean 
Square Deviation (RMSD) in our study aligns with the work 
of Pieroni et al. 2023 [70], who emphasized the importance 
of evaluating ligand–receptor complex stability over time. 
The declining RMSD values in our simulations (Fig. 3A) 
indicate a stable protein–ligand interaction, supporting the 
notion that lower energy values correspond to more effective 
binding, as suggested by Pieroni et al. 2023 [70]. The Root 
Mean Square Deviation (RMSD) analysis indicated that the 
ligands remained consistently bound to the protein, demon-
strating stability over the simulation period.

Root Mean Square Fluctuation (RMSF) analysis high-
lighted specific amino acid residues with reduced fluctua-
tions, suggesting rigid ligand binding within the protein’s 
binding pocket (Fig. 3B). An observable shift in the Root 
Mean Square Fluctuation (RMSF) values is noted within 
the LdMcm10ID-Pasireotide complex, specifically across 
residues spanning from 300 to 400 and 400 to 500, display-
ing a range of variation from 4 to 8 Å. This discrepancy 
is presumed to be attributable to conformational altera-
tions occurring within the rotatable bonds of the ligand. 
This inference is substantiated by visualising these bonds 
in the two-dimensional representation of the protein–ligand 
interactions (Fig. 2C). These fluctuations result from per-
turbations in the torsion angles of the ligand, indicative of 
dynamic conformational changes within the complex [71]. 
Secondary structure analysis illustrated the persistence of 
stable secondary conformations throughout the simulation 
(Supplementary Fig. 4).

Furthermore, our study’s emphasis on Hydrogen bond 
(H-bond) analysis is consistent with research by Liao et al. 
[52], which highlighted the critical role of H-bond interac-
tions in stabilizing protein–ligand complexes. Our com-
plexes’ average number of H-bond contacts resonates with 
their findings, further reinforcing that durable complexes 

rely on H-bond solid interactions (Fig. 3E). In contrast, 
our observations regarding the Radius of Gyration (Rg) 
align with earlier studies [50, 62], emphasizing Rg analy-
sis for assessing structural compactness and stability. The 
varying Rg values for different complexes in our study 
correlate with their findings, emphasizing the importance 
of this metric in gauging structural integrity (Fig. 3C). 
Our study corroborates and extends previous research 
findings, providing a comprehensive understanding of the 
structural dynamics and stability of LdMcm10ID-ligand 
complexes. These consistent observations across various 
studies strengthen the validity and reliability of our find-
ings, offering valuable insights for developing effective 
therapeutics against L. donovani.

While our study provides a detailed examination of 
ligand behaviour during simulations, it aligns with previous 
research in certain aspects. The utilization of RMSD analy-
sis, as discussed in our work, is consistent with earlier find-
ings [53], emphasizing its importance in evaluating ligand 
stability. As noted in our study, the observation of consistent 
RMSD values for suramin resonates with findings in litera-
ture where ligands exhibit stable conformations throughout 
simulations. Our work goes into more depth about how 
ligands behave during simulations, but in some ways, it is 
similar to other studies that have been done. We used RMSD 
analysis in our work, similar to earlier works [53], which 
shows how important it is for checking how stable ligands 
are. The fact that the RMSD values for suramin stayed the 
same throughout our work is similar to what other research 
has found: that ligands keep their stable shapes during mod-
els. The use of rGyr values to measure ligand “extended-
ness” or “compactness” makes it easy to make comparisons 
with other studies [53]. Our study’s different rGyr trends for 
suramin, pasireotide, and vapreotide align with other studies 
that stress how important this parameter is for understanding 
how ligand shape changes during simulations.

Additionally, the analysis of intra HB, MolSA, SASA, 
and PSA, as conducted in our study, shares similarities with 
previous works [53], where these properties indicate ligand 
stability and interaction patterns. The trend of initial fluctua-
tions followed by stabilization, as observed in our research, 
is consistent with observations in the literature, indicating 
a typical pattern in ligand behaviour during simulation pro-
gress. Moreover, the binding free energy determined through 
MM-GBSA calculation indicated suramin, pasireotide, and 
vapreotide efficiency against LdMcm10 (Supplementary 
Table 2).

While each study contributes unique insights, the align-
ment of our findings with established methodologies and 
patterns in ligand behaviour, as demonstrated in previous 
research, reinforces the robustness and reliability of our 
approach. These comparisons strengthen the validity of our 
observations and provide a foundation for future studies 
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to build upon, fostering a cumulative understanding of 
ligand–protein interactions in computational simulations.

Our study’s observations on the dose-dependent reduc-
tion in L. donovani viability, as influenced by suramin, 
vapreotide, and pasireotide, align with established antipara-
sitic research in the field. The inclusion of negative con-
trols adheres to rigorous experimental standards, ensuring 
that any observed cellular responses are attributable exclu-
sively to the administered compounds. The computed IC50 
values for each compound provide quantitative metrics of 
their anti-leishmanial efficacy. The dose-response study 
through MTT assay evaluated Suramin with an IC50 value of 
11.05 ± 0.29 µM against L. donovani promastigotes (LDB-
PK1S) which was comparatively less in comparison with 
the IC50 value of Suramin against L. donovani (AG83) [59]. 
Also, the study first reports the evaluation of vapreotide 
and pasireotide as anti-leishmanial as both the compounds 
showed potent anti-leishmanial activity with IC50values of 
16.71 ± 0.15 µM and 12.59 ± 0.39 µM, respectively, against 
LDBPK1S (Fig. 6). Our study confirms Suramin’s known 
effectiveness against African trypanosomiasis [58], and the 
IC50 values obtained suggest a consistent yet strain-depend-
ent efficacy against L. donovani. This aligns with existing 
literature on suramin’s broad-spectrum antiparasitic activity.

The novel contribution of our study lies in elucidating 
the anti-leishmanial activity of vapreotide and pasireotide, 
both somatostatin analogues. While somatostatin analogues 
have been explored for parasitic infections [60], their spe-
cific efficacy against L. donovani is a noteworthy finding. 
Our research aligns with established antiparasitic principles, 
reinforcing dose-dependent responses and emphasizing the 
therapeutic potential of suramin, vapreotide, and pasireotide. 
The unique contribution stems from confirming their effi-
cacy against L. donovani strains, warranting further com-
parative investigations and clinical exploration.

Conclusion

Overall, our research aimed to assess the possibility that the 
Mcm10 protein found in L. donovani may serve as a treat-
ment target for leishmaniasis. We could predict the unique 
three-dimensional structure of LdMcm10 by using the in 
silico method. Suramin, vapreotide, and pasireotide were 
discovered as viable candidates through molecular dock-
ing, and further simulations revealed that these compounds 
formed stable complexes. It was shown that the compounds 
exhibited dose-dependent decreases in the viability of L. 
donovani. The effectiveness of suramin was consistent with 
the research that had been done previously, but vapreotide 
and pasireotide demonstrated unique anti-leishmanial activ-
ity, which broadened the range of possible treatments. In 
conclusion, the findings of our study give insights into the 

structural dynamics of the internal domain of LdMcm10 and 
identify prospective therapeutic options against L. donovani. 
These findings also have significant clinical implications for 
the treatment of leishmaniasis.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11030-​024-​10876-y.

Acknowledgements  Deep Bhowmik acknowledges the financial sup-
port of ICMR (Fellowship/95/2022-ECD-II, dated 17/05/2022, respec-
tively). Satabdi Saha recognizes the financial support from the Inspire 
Fellowship (IF180806).

Author contributions  " SS, DB, AS and DK carried out the experi-
ment. SS, DB and DK wrote the manuscript. SS, DB, AS and DK 
contributed to the analysis of the results. DK supervised the project 
and conceived the original idea."

Data availability  All data generated or analysed during this study are 
included in this article [and its supplementary information files].

Declarations 

Conflict of interest  The authors declare that no conflict of interest ex-
ists.

References

	 1.	 Karunaweera ND, Ferreira MU (2018) Leishmaniasis: current 
challenges and prospects for elimination with special focus on 
the South Asian region. Parasitology 145:425–429

	 2.	 Sinha M, Jagadeesan R, Kumar N et al (2022) In-silico studies on 
Myo inositol-1-phosphate synthase of Leishmania donovani in 
search of anti-leishmaniasis. J Biomol Struct Dyn 40:3371–3384. 
https://​doi.​org/​10.​1080/​07391​102.​2020.​18471​94

	 3.	 Ghorbani M, Farhoudi R (2018) Leishmaniasis in humans: drug 
or vaccine therapy? Drug Des Devel Ther 12:25–40

	 4.	 Singh OP, Singh B, Chakravarty J, Sundar S (2016) Current chal-
lenges in treatment options for visceral leishmaniasis in India: a 
public health perspective. Infect Dis Poverty 5:1–5

	 5.	 Sindermann H, Engel KR, Fischer C, Bommer W (2004) Oral 
miltefosine for leishmaniasis in immunocompromised patients: 
compassionate use in 39 Patients with HIV infection. Clin Infect 
Dis 39(10):1520–1523

	 6.	 Brindha J, Balamurali MM, Chanda K (2021) An overview on the 
therapeutics of neglected infectious diseases—leishmaniasis and 
chagas diseases. Front Chem 9:622286

	 7.	 Chawla B, Madhubala R (2010) Drug targets in Leishmania. J 
Parasit Dis 34:1–13

	 8.	 Baxley RM, Bielinsky AK (2017) Mcm10: a dynamic scaffold at 
eukaryotic replication forks. Genes (Basel) 8:73

	 9.	 Chen J, Wu S, Wang J et al (2023) MCM10: An effective treat-
ment target and a prognostic biomarker in patients with uterine 
corpus endometrial carcinoma. J Cell Mol Med 27:1708–1724. 
https://​doi.​org/​10.​1111/​jcmm.​17772

	10.	 Warren EM, Vaithiyalingam S, Haworth J et al (2008) Structural 
basis for DNA Binding by replication initiator Mcm10. Structure 
16:1892–1901. https://​doi.​org/​10.​1016/j.​str.​2008.​10.​005

	11.	 Thu YM, Bielinsky AK (2013) Enigmatic roles of Mcm10 in 
DNA replication. Trends Biochem Sci 38:184–194

	12.	 Robertson PD, Chagot B, Chazin WJ, Eichman BF (2010) Solu-
tion NMR structure of the C-terminal DNA binding domain 

https://doi.org/10.1007/s11030-024-10876-y
https://doi.org/10.1080/07391102.2020.1847194
https://doi.org/10.1111/jcmm.17772
https://doi.org/10.1016/j.str.2008.10.005


Molecular Diversity	

of Mcm10 reveals a conserved MCM motif. J Biol Chem 
285:22942–22949. https://​doi.​org/​10.​1074/​jbc.​M110.​131276

	13.	 Cassandri M, Smirnov A, Novelli F et al (2017) Zinc-finger 
proteins in health and disease. Cell Death Discov. https://​doi.​
org/​10.​1038/​cddis​covery.​2017.​71

	14.	 Yu W, Mackerell AD (2017) Computer-aided drug design meth-
ods. In: Sass P (ed) Methods in molecular biology. Humana 
Press Inc., Totowa, pp 85–106

	15.	 Baek M, DiMaio F, Anishchenko I et al (2021) Accurate predic-
tion of protein structures and interactions using a three-track 
neural network 1979. Science 373:871–876. https://​doi.​org/​10.​
1126/​scien​ce.​abj87​54

	16.	 Zhou X, Zheng W, Li Y et al (2022) I-TASSER-MTD: a deep-
learning-based platform for multi-domain protein structure and 
function prediction. Nat Protoc 17:2326–2353. https://​doi.​org/​
10.​1038/​s41596-​022-​00728-0

	17.	 Pieper U, Webb BM, Barkan DT et al (2011) ModBase, a data-
base of annotated comparative protein structure models, and 
associated resources. Nucleic Acids Res. https://​doi.​org/​10.​
1093/​nar/​gkq10​91

	18.	 Jumper J, Evans R, Pritzel A et al (2021) Highly accurate pro-
tein structure prediction with AlphaFold. Nature 596:583–589. 
https://​doi.​org/​10.​1038/​s41586-​021-​03819-2

	19.	 Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) 
PROCHECK: a program to check the stereochemical quality of 
protein structures. J Appl Crystallogr 26:283–291. https://​doi.​
org/​10.​1107/​s0021​88989​20099​44

	20.	 Krieger E, Joo K, Lee J et al (2009) Improving physical realism, 
stereochemistry, and side-chain accuracy in homology mode-
ling: four approaches that performed well in CASP8. Proteins: 
Struct Funct Bioinform 77:114–122

	21.	 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, efficient 
optimization, and multithreading. J Comput Chem 31:455–461. 
https://​doi.​org/​10.​1002/​jcc.​21334

	22.	 Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: 
a program to generate schematic diagrams of protein-ligand 
interactions. Protein Eng 8(2):127–134. https://​doi.​org/​10.​1093/​
prote​in/8.​2.​127

	23.	 Lill MA, Danielson ML (2011) Computer-aided drug design 
platform using PyMOL. J Comput Aided Mol Des 25:13–19. 
https://​doi.​org/​10.​1007/​s10822-​010-​9395-8

	24.	 Bowers KJ, Chow E, Xu H, et al (2006) Scalable algorithms 
for molecular dynamics simulations on commodity clusters. In: 
Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting, SC’06

	25.	 Hildebrand PW, Rose AS, Tiemann JKS (2019) Bringing molec-
ular dynamics simulation data into view. Trends Biochem Sci 
44:902–913

	26.	 Rasheed MA, Iqbal MN, Saddick S et al (2021) Identification of 
lead compounds against scm (Fms10) in enterococcus faecium 
using computer aided drug designing. Life 11:1–15. https://​doi.​
org/​10.​3390/​life1​10200​77

	27.	 Shivakumar D, Williams J, Wu Y et al (2010) Prediction of 
absolute solvation free energies using molecular dynamics free 
energy perturbation and the opls force field. J Chem Theory 
Comput 6:1509–1519. https://​doi.​org/​10.​1021/​ct900​587b

	28.	 Li J, Abel R, Zhu K et al (2011) The VSGB 2.0 model: a next 
generation energy model for high resolution protein structure 
modeling. Proteins: Struct Funct Bioinform 79:2794–2812. 
https://​doi.​org/​10.​1002/​prot.​23106

	29.	 Palma J, Pierdominici-Sottile G (2023) On the uses of PCA 
to characterise molecular dynamics simulations of biological 
macromolecules: basics and tips for an effective use. ChemP-
hysChem. https://​doi.​org/​10.​1002/​cphc.​20220​0491

	30.	 Kitao A (2022) Principal component analysis and related methods 
for investigating the dynamics of biological macromolecules. J 
(Basel) 5:298–317. https://​doi.​org/​10.​3390/​j5020​021

	31.	 Avti P, Chauhan A, Shekhar N et al (2022) Computational basis 
of SARS-CoV 2 main protease inhibition: an insight from molec-
ular dynamics simulation based findings. J Biomol Struct Dyn 
40:8894–8904. https://​doi.​org/​10.​1080/​07391​102.​2021.​19223​10

	32.	 van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity 
assays: the MTT assay. In: Cree IA (ed) Cancer cell culture: meth-
ods and protocols. Humana Press, Totowa, pp 237–245

	33.	 Baranwal A, Chiranjivi AK, Kumar A et al (2018) Design of 
commercially comparable nanotherapeutic agent against human 
disease-causing parasite Leishmania. Sci Rep. https://​doi.​org/​10.​
1038/​s41598-​018-​27170-1

	34.	 Chakrabarti S, Lanczycki CJ (2007) Analysis and prediction of 
functionally important sites in proteins. Protein Sci 16:4–13. 
https://​doi.​org/​10.​1110/​ps.​06250​6407

	35.	 Rodina A, Godson GN (2006) Role of conserved amino acids 
in the catalytic activity of Escherichia coli primase. J Bacteriol 
188:3614–3621. https://​doi.​org/​10.​1128/​JB.​188.​10.​3614-​3621.​
2006

	36.	 Mayle R, Langston L, Molloy KR et al (2019) Mcm10 has potent 
strand-annealing activity and limits translocase-mediated fork 
regression. Proc Natl Acad Sci U S A 116:798–803. https://​doi.​
org/​10.​1073/​pnas.​18191​07116

	37.	 Perez-Arnaiz P, Kaplan DL (2016) An Mcm10 mutant defective 
in ssDNA binding shows defects in DNA replication initiation. J 
Mol Biol 428:4608–4625. https://​doi.​org/​10.​1016/j.​jmb.​2016.​10.​
014

	38.	 Broni E, Kwofie SK, Asiedu SO et al (2021) A molecular mod-
eling approach to identify potential antileishmanial compounds 
against the cell division cycle (Cdc)-2-related kinase 12 (crk12) 
receptor of leishmania donovani. Biomolecules 11:1–32. https://​
doi.​org/​10.​3390/​biom1​10304​58

	39.	 Pandey P, Prasad K, Prakash A, Kumar V (2020) Insights into 
the biased activity of dextromethorphan and haloperidol towards 
SARS-CoV-2 NSP6: in silico binding mechanistic analysis. J Mol 
Med 98:1659–1673. https://​doi.​org/​10.​1007/​s00109-​020-​01980-1

	40.	 Amadei A, Linssen ABM, Berendsen HJC (1993) Essen-
tial Dynamics of Proteins. Proteins: Struct Funct Bioinform 
17(4):412–425

	41.	 Macip G, Garcia-Segura P, Mestres-Truyol J et al (2022) Haste 
makes waste: a critical review of docking-based virtual screen-
ing in drug repurposing for SARS-CoV-2 main protease (M-pro) 
inhibition. Med Res Rev 42:744–769

	42.	 Omoboyowa DA, Iqbal MN, Balogun TA et al (2022) Inhibitory 
potential of phytochemicals from Chromolaena odorata L. against 
apoptosis signal-regulatory kinase 1: a computational model 
against colorectal cancer. Computational Toxicology 23:100235. 
https://​doi.​org/​10.​1016/j.​comtox.​2022.​100235

	43.	 Hollingsworth SA, Dror RO (2018) Molecular dynamics simula-
tion for all. Neuron 99:1129–1143

	44.	 Hao MH, Haq O, Muegge I (2007) Torsion angle preference and 
energetics of small-molecule ligands bound to proteins. J Chem 
Inf Model 47:2242–2252. https://​doi.​org/​10.​1021/​ci700​189s

	45.	 Mitra S, Dash R (2018) Structural dynamics and quantum 
mechanical aspects of shikonin derivatives as CREBBP bromo-
domain inhibitors. J Mol Graph Model 83:42–52. https://​doi.​org/​
10.​1016/j.​jmgm.​2018.​04.​014

	46.	 De Vita S, Chini MG, Bifulco G, Lauro G (2021) Insights into 
the ligand binding to bromodomain-containing protein 9 (BRD9): 
a guide to the selection of potential binders by computational 
methods. Molecules. https://​doi.​org/​10.​3390/​molec​ules2​62371​92

	47.	 Kuldeep J, R K, Kaur P, et al (2021) Identification of potential 
anti-leishmanial agents using computational investigation and 
biological evaluation against trypanothione reductase. J Biomol 

https://doi.org/10.1074/jbc.M110.131276
https://doi.org/10.1038/cddiscovery.2017.71
https://doi.org/10.1038/cddiscovery.2017.71
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1038/s41596-022-00728-0
https://doi.org/10.1038/s41596-022-00728-0
https://doi.org/10.1093/nar/gkq1091
https://doi.org/10.1093/nar/gkq1091
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1107/s0021889892009944
https://doi.org/10.1107/s0021889892009944
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1093/protein/8.2.127
https://doi.org/10.1093/protein/8.2.127
https://doi.org/10.1007/s10822-010-9395-8
https://doi.org/10.3390/life11020077
https://doi.org/10.3390/life11020077
https://doi.org/10.1021/ct900587b
https://doi.org/10.1002/prot.23106
https://doi.org/10.1002/cphc.202200491
https://doi.org/10.3390/j5020021
https://doi.org/10.1080/07391102.2021.1922310
https://doi.org/10.1038/s41598-018-27170-1
https://doi.org/10.1038/s41598-018-27170-1
https://doi.org/10.1110/ps.062506407
https://doi.org/10.1128/JB.188.10.3614-3621.2006
https://doi.org/10.1128/JB.188.10.3614-3621.2006
https://doi.org/10.1073/pnas.1819107116
https://doi.org/10.1073/pnas.1819107116
https://doi.org/10.1016/j.jmb.2016.10.014
https://doi.org/10.1016/j.jmb.2016.10.014
https://doi.org/10.3390/biom11030458
https://doi.org/10.3390/biom11030458
https://doi.org/10.1007/s00109-020-01980-1
https://doi.org/10.1016/j.comtox.2022.100235
https://doi.org/10.1021/ci700189s
https://doi.org/10.1016/j.jmgm.2018.04.014
https://doi.org/10.1016/j.jmgm.2018.04.014
https://doi.org/10.3390/molecules26237192


	 Molecular Diversity

Struct Dyn 39:960–969. https://​doi.​org/​10.​1080/​07391​102.​2020.​
17213​30

	48.	 Zhang G, Su Z (2012) Inferences from structural comparison: 
flexibility, secondary structure wobble and sequence alignment 
optimization. BMC Bioinformatics 13:S12. https://​doi.​org/​10.​
1186/​1471-​2105-​13-​S15-​S12

	49.	 Carugo O, Pongor S (2001) A normalized root-mean-spuare dis-
tance for comparing protein three-dimensional structures. Protein 
Sci 10:1470–1473. https://​doi.​org/​10.​1110/​ps.​690101

	50.	 Prakash A, Kumar V, Meena NK, Lynn AM (2018) Elucidation of 
the structural stability and dynamics of heterogeneous intermedi-
ate ensembles in unfolding pathway of the N-terminal domain of 
TDP-43. RSC Adv 8:19835–19845. https://​doi.​org/​10.​1039/​c8ra0​
3368d

	51.	 Bagewadi ZK, Yunus Khan TM, Gangadharappa B et al (2023) 
Molecular dynamics and simulation analysis against superoxide 
dismutase (SOD) target of Micrococcus luteus with secondary 
metabolites from Bacillus licheniformis recognized by genome 
mining approach. Saudi J Biol Sci. https://​doi.​org/​10.​1016/j.​sjbs.​
2023.​103753

	52.	 Liao KH, Chen KB, Lee WY et al (2014) Ligand-based and struc-
ture-based investigation for Alzheimer’s disease from traditional 
Chinese medicine. Evid-Based Complement Altern Med. https://​
doi.​org/​10.​1155/​2014/​364819

	53.	 Raj U, Kumar H, Gupta S, Varadwaj PK (2015) Novel DOT1L 
receptornatural inhibitors involved in mixed lineage leukemia: a 
virtual screening, molecular docking and dynamics simulation 
study. Asian Pac J Cancer Prev 16:3817–3825. https://​doi.​org/​10.​
7314/​APJCP.​2015.​16.9.​3817

	54.	 Hata H, Tran DP, Sobeh MM et al (2021) Binding free energy of 
protein/ligand complexes calculated using dissociation Parallel 
Cascade Selection Molecular Dynamics and Markov state model. 
Biophys Physicobiol 18:305–316. https://​doi.​org/​10.​2142/​bioph​
ysico.​bppb-​v18.​037

	55.	 David CC, Jacobs DJ (2014) Principal component analysis: 
a method for determining the essential dynamics of proteins. 
Methods Mol Biol 1084:193–226. https://​doi.​org/​10.​1007/​978-
1-​62703-​658-0_​11

	56.	 Ashraf N, Asari A, Yousaf N et al (2022) Combined 3D-QSAR, 
molecular docking and dynamics simulations studies to model 
and design TTK inhibitors. Front Chem. https://​doi.​org/​10.​3389/​
fchem.​2022.​10038​16

	57.	 Yousaf N, Jabeen Y, Imran M et al (2023) Exploiting the co-
crystal ligands shape, features and structure-based approaches for 
identification of SARS-CoV-2 Mpro inhibitors. J Biomol Struct 
Dyn 41:14325–14338. https://​doi.​org/​10.​1080/​07391​102.​2023.​
21894​78

	58.	 Bouteille B, Buguet A (2012) The detection and treatment of 
human African trypanosomiasis. Res Rep Trop Med. https://​doi.​
org/​10.​2147/​rrtm.​s24751

	59.	 Khanra S, Juin SK, Jawed JJ et al (2020) In vivo experiments dem-
onstrate the potent antileishmanial efficacy of repurposed suramin 
in visceral leishmaniasis. PLoS Negl Trop Dis 14:1–20. https://​
doi.​org/​10.​1371/​journ​al.​pntd.​00085​75

	60.	 Khan SM, Witola WH (2023) Past, current, and potential treat-
ments for cryptosporidiosis in humans and farm animals: a com-
prehensive review. Front Cell Infect Microbiol 13:1115522

	61.	 Simeoli C, Ferrigno R, De Martino MC et al (2020) The treatment 
with pasireotide in Cushing’s disease: effect of long-term treat-
ment on clinical picture and metabolic profile and management of 
adverse events in the experience of a single center. J Endocrinol 
Invest 43:57–73. https://​doi.​org/​10.​1007/​s40618-​019-​01077-8

	62.	 Saha S, Srivastava R, Sarma P et al (2023) Identification of poten-
tial inhibitors of Leishmania donovani Sterol 24-C- methyltrans-
ferase: in silico and in vitro studies. Mol Simul 49:1311–1323. 
https://​doi.​org/​10.​1080/​08927​022.​2023.​22272​88

	63.	 Gardner AF, Kelman Z (2019) Editorial: the DNA replication 
machinery as therapeutic targets. Front Mol Biosci 6:35

	64.	 Adinehbeigi K, Razi Jalali MH, Shahriari A, Bahrami S (2017) 
In vitro antileishmanial activity of fisetin flavonoid via inhibition 
of glutathione biosynthesis and arginase activity in Leishmania 
infantum. Pathog Glob Health 111:176–185. https://​doi.​org/​10.​
1080/​20477​724.​2017.​13127​77

	65.	 Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein 
structure refinement by optimizing hydrogen bonding network 
and atomic-level energy minimization. Proteins: Struct. Funct. 
Bioinform. 81:119–131. https://​doi.​org/​10.​1002/​prot.​24167

	66.	 Feig M (2017) Computational protein structure refinement: almost 
there, yet still so far to go. Wiley Interdiscip Rev Comput Mol Sci. 
https://​doi.​org/​10.​1002/​wcms.​1307

	67.	 Thomsen R, Christensen MH (2006) MolDock: a new technique 
for high-accuracy molecular docking. J Med Chem 49:3315–3321. 
https://​doi.​org/​10.​1021/​jm051​197e

	68.	 Karthick V, Nagasundaram N, Doss CGP et  al (2016) Vir-
tual screening of the inhibitors targeting at the viral protein 
40 of Ebola virus. Infect Dis Poverty. https://​doi.​org/​10.​1186/​
s40249-​016-​0105-1

	69.	 Chandra A, Chaudhary M, Qamar I et al (2022) In silico identifi-
cation and validation of natural antiviral compounds as potential 
inhibitors of SARS-CoV-2 methyltransferase. J Biomol Struct Dyn 
40:6534–6544. https://​doi.​org/​10.​1080/​07391​102.​2021.​18861​74

	70.	 Pieroni M, Madeddu F, Di Martino J et al (2023) MD–ligand–
receptor: a high-performance computing tool for characterizing 
ligand-receptor binding interactions in molecular dynamics tra-
jectories. Int J Mol Sci. https://​doi.​org/​10.​3390/​ijms2​41411​671

	71.	 Hao MH, Haq O, Muegge I (2007) Torsion angle preference and 
energetics of small-molecule ligands bound to proteins. J Chem 
Inf Model 47:2242–2252

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1080/07391102.2020.1721330
https://doi.org/10.1080/07391102.2020.1721330
https://doi.org/10.1186/1471-2105-13-S15-S12
https://doi.org/10.1186/1471-2105-13-S15-S12
https://doi.org/10.1110/ps.690101
https://doi.org/10.1039/c8ra03368d
https://doi.org/10.1039/c8ra03368d
https://doi.org/10.1016/j.sjbs.2023.103753
https://doi.org/10.1016/j.sjbs.2023.103753
https://doi.org/10.1155/2014/364819
https://doi.org/10.1155/2014/364819
https://doi.org/10.7314/APJCP.2015.16.9.3817
https://doi.org/10.7314/APJCP.2015.16.9.3817
https://doi.org/10.2142/biophysico.bppb-v18.037
https://doi.org/10.2142/biophysico.bppb-v18.037
https://doi.org/10.1007/978-1-62703-658-0_11
https://doi.org/10.1007/978-1-62703-658-0_11
https://doi.org/10.3389/fchem.2022.1003816
https://doi.org/10.3389/fchem.2022.1003816
https://doi.org/10.1080/07391102.2023.2189478
https://doi.org/10.1080/07391102.2023.2189478
https://doi.org/10.2147/rrtm.s24751
https://doi.org/10.2147/rrtm.s24751
https://doi.org/10.1371/journal.pntd.0008575
https://doi.org/10.1371/journal.pntd.0008575
https://doi.org/10.1007/s40618-019-01077-8
https://doi.org/10.1080/08927022.2023.2227288
https://doi.org/10.1080/20477724.2017.1312777
https://doi.org/10.1080/20477724.2017.1312777
https://doi.org/10.1002/prot.24167
https://doi.org/10.1002/wcms.1307
https://doi.org/10.1021/jm051197e
https://doi.org/10.1186/s40249-016-0105-1
https://doi.org/10.1186/s40249-016-0105-1
https://doi.org/10.1080/07391102.2021.1886174
https://doi.org/10.3390/ijms241411671

	Investigation into in silico and in vitro approaches for inhibitors targeting MCM10 in Leishmania donovani: a comprehensive study
	Abstract
	Introduction
	Methods
	Target selection, molecular modelling, and model validation
	Ligand library preparation
	Molecular docking
	Molecular dynamic simulation
	MM-GBSA calculation
	Essential dynamics (ED) analysis
	In vitro cell-cytotoxicity assay

	Results
	Target selection and homology modelling
	Prediction of binding site residues
	Structure-based virtual screening
	Structural dynamics
	Root mean square fluctuation (RMSD) analysis
	Root mean square fluctuation (RMSF) analysis
	Secondary structure analysis
	Radius of Gyration analysis
	Solvent-accessible surface (SASA) analysis
	H-bond analysis
	Ligand dynamics
	Binding free energy analysis
	Essential dynamics and principal component analysis
	Dynamic cross-correlation matrix (DCCM) analysis
	Effect of lead molecules on the cell viability of L. donovani promastigotes

	Discussion
	Conclusion
	Acknowledgements 
	References


