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Abstract
Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the 
enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic 
amyloid β (Aβ), a characteristic hallmark of Alzheimer’s disease (AD). Therefore, inhibition of the enzyme is a crucial 
therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the 
current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and 
used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering 
PAINS moieties, and structural similarities based on Tanimoto’s coefficient. The molecular docking study was performed 
to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their 
predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally 
subjected to molecular dynamics simulation studies to determine the stability of the protein–ligand complex during the 
run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel 
anti-Alzheimer agent.
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Graphical abstract
The methodology utilized for the identification of novel cathepsin B inhibitors through combined structure and ligand-based 
drug design approach:
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Introduction

Alzheimer’s disease (AD), described by Dr. Alois Alzhei-
mer in a 51-year-old woman, is an age-related progres-
sive neurodegenerative disorder and is the leading cause 
of dementia in elderly. It is often characterized by the 
extracellular deposition of amyloid-β (Aβ) plaques and 
intracellular accumulation of toxic neurofibrillary tangles 
(NFTs) of hyperphosphorylated tau protein [1, 2]. Several 
hypotheses have been put up to explain the development 
and progression of AD, including cholinergic deficiency, 
Aβ toxicity, tau protein hyperphosphorylation, synaptic 
dysfunction, glutamatergic excitotoxicity, vitamin B5 defi-
ciency, oxidative stress, and neuroinflammation etc. [3]. 
About 0.1% of the cases of AD have roots with genetics 
through presence of either the APOE 4 allele, TREM2, 
or the mutation in any of the three genes encoding Pre-
senilin 1 and 2, or the amyloid precursor protein (APP) 
[4]. Currently, only few drugs have been approved by the 
FDA for managing AD including acetylcholinesterase 
inhibitors (Donepezil, Rivastigmine, and Galantamine), 
NMDAR antagonist (Memantine), and recently approved 

monoclonal antibodies (Aducanumab and Lecanemab) 
[5]. However, only the symptomatic alleviation is offered 
by the drugs. Therefore, there is a dire need to develop 
disease-modifying therapies, which necessitates discovery 
and identification of new druggable AD targets and cor-
responding drugs [6].

Cathepsins are proteases essential for normal physi-
ological functions. These are classified into several sub-
types including A, B, C, D, E, F, G, H, K, L, O, S, V, 
W, and Z (Table S1) [7, 8]. Among all the cathepsins, 
cathepsin B has a considerable role in cognitive impair-
ment associated with AD [9]. It is abundantly expressed 
in the CNS regions of AD patients and is produced from 
the rough endoplasmic reticulum (RER) as an inactive 
preprocathepsin B enzyme containing 339 amino acids. 
Cleavage of 17 amino acids off the N-terminal forms 
procathepsin B that is further transformed into the active 
cathepsin B form by the successive proteolytic action of 
different enzymes in the Golgi bodies (Figure S1) [10]. 
Studies suggests that cathepsin B enzyme has crucial role 
in producing the highly toxic pGlu-Aβ oligomers and sub-
sequent neuroinflammation through activation of IL-1β, 
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IL-18, NF-kB, NLRP3 inflammasome, caspase-dependent 
cleavage of antiapoptotic protein (Bcl-2), or the microglial 
release (Figure S2) [11–13]. Therefore, its inhibition is a 
considerable therapeutic approach for treating AD.

Cathepsin B inhibitors of both natural and synthetic 
origin are reported in the literature (Figure S3). One 
of the earliest identified inhibitors, i.e., E-64 (L-trans-
epoxysuccinylleucylamido(4-guanidino)butane), was 
obtained from Aspergillus japonicus [10]. A series of stere-
oisomeric analogues of E-64 were designed and synthesized 
by Schaschke et al. and (2S, 3S) conformation was identified 
to be remarkably favored against cathepsin B [14]. Dipep-
tidyl nitriles (Greenspan et al.), peptidyl aryl vinyl sulfones 
(Mendieta et al.), peptidyl epoxides (Albeck et al.), fluoro-
methyl ketones (Rasnick et al.), and epoxysuccinates are the 
different classes of synthetic inhibitors identified from previ-
ous studies on the enzyme [15–20]. Sosic et al. synthesized 
novel derivatives of nitroxoline against cathepsin B enzyme 
by replacing positions 5, 7, and 8 of parent nuclei with dif-
ferent groups in order to evaluate their effect on endopepti-
dase and exopeptidase activity [21]. Most of the reported 
cathepsin B inhibitors bind irreversibly at the molecular 
level. The potent cathepsin B inhibitor, with activity in the 
nanomolar range, is also an epoxysuccinyl peptide CA-074 
(N-(L-3-trans propylcarbamoyloxirane-2-carbonyl)-L-
isoleucyl-L-proline). Studies have reported that it is highly 
selective to cathepsin B for binding over other cathepsins, 
including L, H, and S from the same family [22].

There have not been many reports of cathepsin B inhibi-
tors [23]. But it is crucial to find novel, potential, and diverse 
leads that are safe, suited for chemical optimization, and 
can be developed into therapeutic medicines to combat AD. 
Computational tools provide a significant direction in the 
early-stage drug design in lesser time and cost-effective 
manner. Homology modeling, virtual screening, pharma-
cophore mapping, molecular docking, molecular dynamics 
simulations, and QSAR modeling are the most common 
techniques employed in computer-aided drug design. Among 
these, virtual screening is pivotal in computational drug dis-
covery [24]. Virtual screening uses 3D visuals that facili-
tate more straightforward modification and comprehensive 
insight. Millions of druggable ligands from diverse chemi-
cal spaces (ZINC, ChEMBL, Enamine, PubChem database, 
etc.) can be screened altogether against the pharmacological 
target to find potential leads either through structure-based 
or ligand-based approach. Typically, virtual ligand search is 
optimized to screen molecules based on known ligands with 
particular physicochemical or drug-like characteristics that 
comply with Veber’s or Lipinski’s rule of molecular proper-
ties that control the oral bioavailability of drug molecules. 
More than 70 marketed drugs have been discovered using 
computational technique, marking its marvelous role beyond 
contemporary drug discovery [25].

In the present study, we have employed combined 
structure and ligand-based drug design strategies, includ-
ing pharmacophore-based virtual screening, molecular 
docking, and dynamics simulations studies for the identi-
fication of novel ligands against cathepsin B enzyme that 
can act as possible lead(s) for the management of AD. 
The pharmacophoric features were mapped to screen the 
ZINC-15 database, and the obtained hits were subjected to 
different filters. The molecular docking was performed to 
determine the potential hits having good binding affinity 
to the target protein. Finally, molecular dynamics simula-
tion studies were carried out to determine the stability of 
the protein–ligand complex of best hits having admittable 
ADME properties.

Fig. 1  Schematic illustration of the in silico workflow for the identifi-
cation of novel cathepsin B inhibitors
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Materials and methods

All the computational studies described in the study 
(Fig. 1) were performed using DELL Inspiron 3505 system 
supported with Windows 11 home single language, version 
22H2, 8.00 GB RAM, 64-bit operating system, and inbuilt 
AMD Ryzen 3 dual-core 3250U processor.

Pharmacophore feature mapping and model 
generation

A pharmacophore model is an assembly of steric and elec-
tronic attributes required to enable the best supramolecular 
interactions with a particular biological target to modulate 
its biological response [26]. The co-crystallized ligand, 
CA-074 (propylamino-3-hydroxy-butan-1,4-dionyl)-
isoleucyl-proline) in complex with cathepsin B protein 
(PDB ID: 1QDQ) was selected for pharmacophore mod-
eling (Fig. 2). The protein file was downloaded in PDB 
file format from the protein data bank (https:// www. rcsb. 
org/). The essential features of the ligand required for 
binding and inhibiting the target protein were identified 

using BIOVIA discovery studio visualizer software and 
available literature [27]. These were further mapped to 
construct eleven diversified pharmacophore models using 
the Pharmit search engine (https:// pharm it. csb. pitt. edu/) 
(Table 1) [28]. The spatial coordinates of different fea-
tures (hydrogen donor, hydrogen acceptor, and hydropho-
bic group) were used to construct the models summarized 
in Table S3.

Pharmacophore validation

The validation of pharmacophore models is essential to 
examine their potential to discriminate between sets of 
actives and decoys to accomplish the virtual screening 
objective. Here, the two most crucial validation parameters, 
viz. enrichment factor (E.F.) value, and Goodness of Hits 
(G.H.) score, were used for this purpose. The enrichment 
factor represents the actives present in a particular portion 
of the model-ordered database compared to a random sam-
ple [29]. A higher E.F. value for a model indicates its better 
ability to distinguish actives from inactives in a dataset. G.H. 
score helps to evaluate model selectivity and its effectiveness 
for database similarity search [30]. Its value ranges from 0 
to 1, where one indicates the ideal model.

A dataset of 510 molecules comprising ten actives and 
500 decoys for cathepsin B protein was used to validate 
the pharmacophore models using the Pharmit web server. 
Active compounds analogous of CA-074 against cathepsin 
B protein were retrieved from available literature, and cor-
responding decoys were generated for benchmarking using 
the “DUD-E decoys” web server (https:// dude. docki ng. org/) 
[31]. The E.F. value and G.H. score for each pharmacophore 
model were calculated using Eqs. (1) and (2).

where D corresponds to the total number of molecules in 
the dataset, Ht denotes the total number of hits obtained, Ha 
indicates the total number of active hits, and A represents 
the total actives in the database. The pharmacophore models 
with higher E.F. values and G.H. scores were further chosen 
for virtual screening.

Pharmacophore‑based virtual screening

ZINC-15 database was utilized for performing virtual 
screening against five validated pharmacophore models 
using the Pharmit search engine. The obtained hits against 
each model were further reduced using two subsequent 

(1)E.F. =
Ha × D

Ht × A

(2)G.H. =

(
Ha(3A + Ht)

4HtA

)(
1 −

Ht − Ha

D − A

)

Fig. 2  Structure of the co-crystallized ligand (CA-074)

Table 1  Pharmacophoric features selected for the construction of 
eleven different models (where HA, HD, and Hy represents hydrogen 
acceptor, hydrogen donor, and hydrophobic groups, respectively)

S. no. Pharmacophore 
model

Types of features No. of 
features

1 1 3HA, 1Hy 4
2 2 1HD, 3HA, 1Hy 5
3 3 1HD, 3HA, 1Hy 5
4 4 2HD, 2HA, 1Hy 5
5 5 1HD, 3HA, 1Hy 5
6 6 1HD, 2HA, 1Hy 4
7 7 1HD, 3HA, 1Hy 5
8 8 1HD, 3HA, 1Hy 5
9 9 1HD, 2HA, 2Hy 5

10 10 1HD, 2HA, 2Hy 5
11 11 1HD, 2HA, 1Hy 4

https://www.rcsb.org/
https://www.rcsb.org/
https://pharmit.csb.pitt.edu/
https://dude.docking.org/
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primary and secondary filters. Primary filtering was per-
formed by limiting the maximum number of hits per con-
formation and molecule to one during the virtual screening 
process. A cut-off value of 2.0 mRMSD (root mean square 
deviation) was set as the secondary filter within the param-
eters section of the Pharmit web server to obtain only the 
hits that had mRMSD value in this range.

Duplicates removal

The duplicate ligands obtained during virtual screening 
were eliminated using the “descriptor calculation” feature 
of Open Babel GUI 2.4.1 software. InChI key (International 
Chemical Identifier) descriptor was generated for every hit 
molecule based on the SMILES string pattern (simplified 
molecular input line entry system) and further screened to 
remove duplicates [32, 33].

Pan‑assay interference compounds (PAINS) 
and Brenk filter

Compounds possessing certain functional groups or sub-
structures, including alkylidene, fused tetrahydroquino-
line, rhodanine, phenolic Mannich base, catechol, quinone, 
enone, isothiazolone, and epoxide, fall under the category 
of PAINS moieties [34]. These often give false positive 
results in a biochemical assay owing to the interfering non-
specific interaction with the target protein through different 
mechanisms. These are similar to the structural alerts of the 
BRENK filter [35]. Therefore, it is required to remove these 
from the high throughput screening results of the database. 
An integrated workflow based on the KNIME analytics plat-
form (version 4.7.0) was prepared to screen out the PAINS 
and BRENK moieties (Fig. 3) [36]. The “SDF reader” node 
was used to draw in the compound’s library, which was fur-
ther processed through the “RDKit molecule catalog filter” 
node to remove the interfering moieties containing PAINS 

and BRENK structural alerts. Finally, the “SDF writer” node 
exported the resulting screened molecules in SDF format.

Drug‑likeliness filter

Lipinski’s rule of five is the most often used criterion for 
assessing the druggable potential of the obtained hits. The 
molecules that obey the rule with nil violations (molecu-
lar weight, clogP, number of hydrogen bond acceptors, and 
donors) are considered orally bioavailable [37]. To this 
attempt, a KNIME workflow (Fig. 3) employing different 
nodes such as SDF reader, Lipinski’s rule of five, row fil-
ter, duplicate row filter, and SDF writer, was designed to 
screen the molecules based on the drug-likeness criterion 
mentioned in Table S2 with zero violations. An additional 
“molecular properties filter” node was utilized to filter the 
resulting molecules based on their topological polar surface 
area (TPSA). The adjacent “row filter” node screened out 
the molecules with a cut-off TPSA value of 70 Å2, essential 
for molecules to cross the blood–brain barrier (BBB) [38].

Molecular structural diversity filter

The “RDKit diversity picker” node of KNIME analytics 
platform 4.7.0 was utilized to retain only the molecules that 
had high structural diversity. It uses the MaxMin algorithm 
to filter out the molecules in different rows based on the 
Tanimoto distance between the fingerprints generated from 
the respective molecules [39].

Protein and ligand preparation

Protein preparation and loop filling for missing residues

The X-ray crystal structure of cathepsin B protein in 
complex with CA-074 was downloaded in PDB format 
from the protein data bank using PDB ID: 1QDQ. This 
PDB was chosen because of its resolution of 2.18  Å, 
R-value of 0.152, and the co-crystallized ligand, CA-074 

Fig. 3  KNIME workflow for hits reduction using PAINS, Brenk, drug-likeliness (molecular properties), and molecular structure diversity filters
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 (IC50 = 44 nM), that has been highly explored for neuro-
degenerative diseases as reported in the literature (Fig. 4) 
[10, 22, 40, 41].

The protein structure was visualized using Discovery 
Studio. The water molecules, the co-crystallized ligand, 
and unnecessary ligand groups were removed from the pro-
tein structure. Finally, the molecule was carefully examined 
for missing amino acid residues using UCSF chimera (ver-
sion 1.17.1) (https:// www. cgl. ucsf. edu/ chime ra/ downl oad. 
html) [42]. Two amino acids, viz. glycine and arginine, at 
positions 48 and 49, were missing from the protein chain 
(Fig. 5). The amino acids were added at respective posi-
tions using the MODELLER module available in Chimera 
software [43]. After loop filling, the generated model was 
saved in PDB format and used for further studies.

Protein energy minimization

Energy minimization is essential to reduce atomic clashes 
in the structure of a molecule arising out of unfavorable 
torsion angles and bad contacts. Two distinct algorithms, 
viz., steepest descent and conjugate gradient, are widely 
used for this purpose. However, the conjugate gradient 
algorithm is preferred over the steepest descent in identify-
ing local minima [44]. UCSF chimera (version 1.17.1) was 
used to perform energy minimization of the cathepsin B 
protein. Hydrogen atoms were added to the structure, and 
Gasteiger charges were applied, followed by a combination 
of 5000 steps of steepest descent and conjugate gradient 
integrator. The final energy-minimized structure obtained 
was saved in PDB format for docking purposes.

Fig. 4  3D structure of cathepsin 
B enzyme (PDB ID: 1QDQ)

Fig. 5  Missing residues in cath-
epsin B enzyme for loop filling

https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
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Ligands preparation and energy minimization

The hits obtained after pharmacophore-based virtual 
screening and subsequent filters were first drawn using 
ChemDraw 22.0.0 and then converted into the three-
dimensional structure with the help of Chem3D software. 
Further, energy minimization for each ligand was per-
formed by utilizing the MMFF94 force field. The result-
ing molecules were extracted in a folder and were saved in 
PDBQT format for further high throughput structure-based 
virtual screening.

Structure‑based high throughput virtual screening 
and molecular docking studies

Grid generation and validation

For grid generation, amino acids (GLN23, TRP30, GLY73, 
GLY74, PRO76, HIS110, HIS111, ALA173, GLY198, 
HIS199, and TRP221) involved in the interaction with the 
co-crystallized ligand were identified by visualizing the pro-
tein–ligand complex in Discovery studio (Figure S5). Fur-
ther, these amino acid residues were used to map the active 
site coordinates of cathepsin B. Grid box of size 74 × 48 × 48 
and dimensions X: 9.391, Y: 19.262, and Z: − 7.337 was 
selected with a grid spacing of 0.375. To validate the docking 
protocol, we docked our co-crystallized ligand into the active 
site of cathepsin B protein using a grid box of the dimensions 
and size. Redocking was performed to calculate the RMSD 
value [45]. An RMSD value was found as of 2.652 Å, which 
is near to the acceptable limit (≤ 2 Å). Another method, 
which involves docking of actives and inactives (decoys) 
to the protein’s active site, was employed to validate the 
docking protocol [46]. Ten actives with corresponding 500 
decoys (generated using the DUD-E decoys web server) were 
docked, and an ROC plot (receiver operating characteristic 
curve) was constructed using the StAR web server (http:// 
melol ab. org/ star/ home. php). The area under the curve (AUC) 
was 0.76, between the acceptable limit of 0.6 and 1.0 (Figure 
S6). Based on this value, it was assumed that the established 
grid parameters and the docking protocol would yield repro-
ducible and reliable findings [45].

Docking

The ligands were docked to the binding site of the cathepsin 
B protein while following the validated docking protocol. 
Lamarckian algorithm was used to run the docking program, 

and the binding score in kcal/mol was calculated using the 
following Eq. (3):

Initially, the structure-based high throughput virtual 
screening was performed by docking the ligands using a 
fast-docking algorithm in open-access PyRx software. The 
ligands with binding energy less than − 6.5 kcal/mol (dock-
ing score of co-crystallized ligand, CA-074) were screened 
for the next docking phase.

AutoDock 4.2 was utilized to perform the subsequent 
two docking experiments, standard precision and extra pre-
cision. The parameters employed for docking the ligands in 
both stages are summarized in Table S4. The ligands with 
binding energy greater than − 7.0 kcal/mol were excluded 
after the standard precision docking stage, and the rest of 
the ligands were taken up for the next regressive phase, 
i.e., extra-precision docking. It was reported that double 
H-bonding with HIS110 and HIS111 of the protein is 
essential to inhibit the enzyme [27]. Therefore, the ligands 
that complied with the requirement were selected for fur-
ther ADME studies.

In silico ADME parameters prediction

SwissADME, an open web server was used to calcu-
late ADME properties for the selected ligands by giving 
SMILES code as the input (http:// www. swiss adme. ch/) 
[35]. Parameters such as gastrointestinal (GI) absorption, 
BBB permeability, p-glycoprotein substrate binding, and 
cytochrome P enzyme inhibition potential specific to ligand 
were considered for screening out best hits.

In silico toxicity prediction

Toxicity risk assessment for any drug candidate is a major 
concern to ensure its safety to the general population. Sev-
eral FDA-approved drugs have been recalled from the market 
due to their toxicity symptoms. We performed the toxicity 
risk assessment for the selected hits, including human ether-
a-go-go (hERG) inhibition, carcinogenicity, mutagenicity, 
and genotoxicity, using ADMETlab 2.0 web server (https:// 
admet mesh. scbdd. com/) [47]. The hits that were found to be 
non-carcinogenic, non-mutagenic, and non-genotoxic were 
selected for further study.
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http://melolab.org/star/home.php
http://melolab.org/star/home.php
http://www.swissadme.ch/
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https://admetmesh.scbdd.com/
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Molecular dynamics (MD) simulations 
studies

Molecular dynamics (MD) simulations studies helps in ana-
lyzing the binding pattern and stability of ligand conforma-
tions within the binding pocket of the target protein molecule 
(receptor, enzyme, or lipidic membrane) in the simulated 
dynamic biological environment. The deep binding pock-
ets, usually hidden and inaccessible to ligands for complex 
formation, can be quickly acclimatized through simulation 
studies. These studies are essential to determine the thermo-
dynamic behavior and stability of the protein–ligand com-
plex in the aqueous environment containing ions and elec-
trolytes at physiological temperature (37 °C) and pressure 
[48]. Moreover, MD simulations helps to find out the actual 
movement of atoms and molecules over a given period of 
time [49].

The top hits retrieved after regress in silico toxicity stud-
ies were subjected to MD simulations studies for 100 ns 
timescale, performed using Desmond module of Schrod-
inger Maestro suite 2021. Protein–ligand complexes were 
processed using Desmond’s protein preparation wizard 
window, followed by generating an orthorhombic box sur-
rounded with TIP3P (transferable intermolecular poten-
tial with three points) water molecules to solvate the pro-
tein–ligand complexes. Further, 0.15 M NaCl was added to 
neutralize the excess charge present in the complex. The 
pressure and temperature throughout the MD run were set 
to 1.013 bar and 310 K, respectively, to mimic the typical 
physiological environment while maintaining a constant 
number of atoms. The energy of the system was minimized 
for 2000 iterations on a convergence threshold of 1 kcal/
mol/Å using OPLS3 (optimized potentials for liquid simu-
lations) force field and subjected to MD simulations long 
run for 100 ns [48]. Finally, the MD trajectory obtained 
was evaluated using Desmond’s simulations interactions 
diagram window. The obtained RMSD, RMSF, and radius 
of gyration along with the solvent-accessible surface area 
for each protein–ligand complex were analyzed.

RMSD analysis

The root mean square deviation (RMSD) value determines 
and compares the structural conformational changes in the 
protein backbone from its initial to final pose. The deviations 
generated during the simulation process can be utilized to 
evaluate the protein’s stability concerning its conformation. 
Lesser deviation in the RMSD corresponds to better protein 
stability [49]. The RMSD value for the C-alpha backbone 
and ligand was calculated for 100 ns simulations run using 
Eq. (4) to determine the stability of the system correspond-
ing to each generated frame (x).

where N is the total number of atoms in the atom selection, 
tref is the reference time for the first frame (reference frame) 
taken at time t = 0, tx denotes the recording time for any 
frame x, and r’ indicates the position of the selected atoms 
after superimposing frame x on the reference frame.

RMSF analysis

The root mean square fluctuation (RMSF) is utilized to 
assess the stiffness, flexibility, and regional variations in 
the protein chain, which gives the binding pattern of the 
ligand to the target [50]. The RMSF value for the cathepsin 
B enzyme following binding with the selected ligands were 
obtained from the trajectories recorded throughout the MD 
simulations run. This parameter is calculated using the fol-
lowing Eq. (5):

where T indicates trajectory time,  tref denotes the refer-
ence time,  ri represents the  ith residue position, and  riʹ is 
the atomic position of the  ith residue obtained after over-
laying on the reference. The angle brackets in the equation 
denote the average taken for the square distance calculated 
for atoms of protein’s residue. RMSF plot was constructed 
for each complex to illustrate the residues that underwent 
significant modifications during the MD simulations run. 
The peaks in a typical RMSF plot represent the most oscil-
lating residues [51]. Proteins with a more significant number 
of flexible domains have higher RMSF values [52].

Radius of gyration (rGyr) analysis

Another critical parameter for assessing the size, structural 
compactness, and protein flexibility under the physiologi-
cal environment is the radius of gyration [53]. It compares 
protein structure with the experimentally monitored hydro-
dynamic radius as a function of time. The radius of gyra-
tion was calculated to quantify structural changes in each 
complex utilizing the data generated from the trajectories 
obtained after the MD simulations run. The following for-
mula is used to calculate the value of rGyr (Eq. 6) [54].
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√ 1

N

N∑

i=1

(
r�
i

(
tx
)
− ri

(
tref

))2

(5)RMSFi =

√√√
√ 1

T

T∑

t=1

⟨(
r�
i
(t) − ri

(
tref

))2⟩

(6)rGyr =

√√√
√ 1

N

N∑

i=1

||ri − rcenter
||
2



Molecular Diversity 

where ri and rcenter display atom coordinates and center of 
mass, respectively. N denotes the number of atoms in the 
protein. During the simulation, a protein structure with lower 
rGyr values is said to be more stiff [52].

Solvent accessible surface area (SASA) analysis

The SASA for any biomolecule, expressed in Å2, is the sur-
face area the solvent molecules can access through Van der 

Table 2  E.F. value, G.H. score, and % yield of actives for validation of pharmacophore models

S.No. Pharmacophore model Enrichment factor
(E.F. value)

Goodness of hits score (G.H.)

1. 1 0.9 0.0528
2. 2 21.6 0.1471
3. 3 16.8 0.1735
4. 4 16.8 0.2975
5. 5 6.3 0.1163
6. 6 2.8 0.1212
7. 7 0.0 0.0000
8. 8 1.4 0.0448
9. 9 7.2 0.1223
10. 10 8.4 0.1481
11. 11 2.8 0.1212

The highlighted rows correspond to the five pharmacophore models that have been selected out of a total of eleven models for virtual screening 
and utilized for further studies

Fig. 6  Pharmacophore models selected for virtual screening (where green, orange, and white spheres represent hydrophobic, hydrogen acceptor, 
and hydrogen donor groups, respectively)
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Waals contact. It is determined by imagining the molecule 
surface as a collection of dots and tracing the accessible 
surface area with a probe, typically a sphere. The quantita-
tive analysis of the protein SASA is essential to illustrate 
complexes’ folding and unfolding patterns [55]. Protein 
molecules with lower SASA values are comparatively more 
rigid and compact. We calculated the SASA value for each 
of our protein–ligand complexes subjected to MD simula-
tions using a spherical probe having Van der Waals radii 
of 1.4 Å.

Results and discussion

Pharmacophore model validation and virtual 
screening

Pharmacophoric validation was performed by calculating 
Enrichment factor and Goodness of hits score (Table 2) for 
each model in order to measure their capability to distin-
guish between active and decoy datasets. The dataset com-
prising 510 molecules, including both actives and inactives 
(decoys), was screened through individual models. The 
pharmacophore models 2, 3, 4, 9, and 10 (Fig. 6) rendered 

good results and were selected for virtual screening of ZINC 
library.

The different features of pharmacophore models were 
treated as inclusive spheres and used in mapping the ligands 
from the ZINC library against the co-crystallized ligand, 
CA-074. The hits so obtained were further refined using pri-
mary and secondary filters. The results of the virtual screen-
ing are summarized in Table 3. In total, 16,355 hits were 
obtained against queried features within mRMSD value of 
2.0 Å.

Duplicates removal

The hits obtained through pharmacophore-based virtual 
screening were filtered for the presence of duplicates. InChI 
key descriptor was calculated using SMILES string as the 
input for each ligand. The screening rendered 15,105 mole-
cules out of 16,355 total hits by eliminating 1250 duplicates.

Molecular properties filtering using KNIME 
workflow

The retrieved hits were analyzed based on their molecular 
properties such as PAINS, BRENK, drug-likeliness (Lipin-
ski’s rule of five) and structural features using the KNIME 
workflow (Fig. 3). The “RDKit molecule catalog filter” 
node available in the KNIME analytics platform was used 
to screen out the hits containing PAINS and BRENK alerts. 
This node compares and matches the ligands against the 
SMARTS (SMILES arbitrary target specification) pattern 
generated using identified PAINS fragments or moieties. 
The ligands that match the SMARTS pattern are flagged 
as PAINS or BRENK molecules and are excluded from the 
dataset. A total of 10,686 hits were retrieved after PAINS 
and BRENK filtering.

Further, the screening of hits based on the drug-likeness 
criterion was carried out by determining the values of their 
molecular weight, clogP, number of hydrogen bond donors, 
number of hydrogen acceptors, number of heavy atoms, and 

Table 3  Hits obtained after pharmacophore-based virtual screening 
of the ZINC-15 database

S. no Pharmacophore 
model

Total no. of 
hits (without 
filter)

Total no. of hits (with 
filter)

Primary filter Secondary 
filter

1 2 58,468 36,916 2158
2 3 23,177 16,522 1309
3 4 60,419 36,409 5464
4 9 225,712 142,172 4171
5 10 120,259 88,450 3253
Total number of hits 488,035 320,469 16,355

Table 4  Molecular properties of selected hits following drug-likeliness criterion

S.No ZINC database ID 
of the ligand

MW Heavy atoms TPSA iLOGP Lipinski 
#violations

PAINS 
#alerts

Brenk #alerts Leadlikeness 
#violations

Synthetic 
Accessibility

1 ZINC19663116 419.52 31 67.6 4.08 0 0 0 2 3.71
2 ZINC123282431 390.56 28 55.76 3.84 0 0 0 2 5.5
3 ZINC1390969 343.38 26 67.01 2.90 0 0 0 1 2.55
4 ZINC13565072 442.51 33 69.56 3.79 0 0 0 3 3.08
5 ZINC72392119 391.46 29 65.38 3.81 0 0 0 2 3.11
6 ZINC827855702 359.42 27 64.22 2.93 0 0 0 1 3.25
7 ZINC95386847 378.42 28 69.56 2.76 0 0 0 1 3.37
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topological polar surface area (TPSA) using same KNIME 
workflow in continuous manner. The hits with zero viola-
tions to the Lipinski rule of five and a TPSA value below 
70 Å2 (CNS active) were selected. Out of 10,686 hits, only 
8821 molecules aligned with the Lipinski rule of five. Fur-
ther, only 946 hits with TPSA < 70 Å2 were retrieved out of 
8821 molecules. The obtained hits can be regarded as CNS 
active. The drug-likeness results for the top hits are sum-
marized in Table 4.

Finally, the ligands so obtained were subjected to the 
“RDKit diversity picker” node in the same KNIME work-
flow. It classified the molecules based on the Tanimoto coef-
ficient calculated by aligning the molecules against their cor-
responding fingerprints row-wise. 250 out of 946 hits were 
retained and taken for the next stage, i.e., molecular docking.

Structure‑based high throughput virtual screening 
and molecular docking studies

High throughput structure-based virtual screening was car-
ried out on 250 hits by docking them against the cathepsin 
B protein using a fast-docking program in PyRx software. 
78 hits with binding energy less than − 6.5 kcal/mol were 
selected from HTVS results. Further, AutoDock 4.2 soft-
ware, a more regressive and robust docking software, was 
used to perform two-step molecular docking for the retained 
hits. The first docking step yielded 30 hits with a binding 
score of less than − 7.0 kcal/mol. The amino acid interac-
tions and the binding score for the obtained hits (step 1) 
are summarized in Table S5. During the second docking 
step, the ligands that showed double hydrogen bonding with 
amino acids HIS110 and HIS111 of the occluding loop were 
selected apart from other essential interactions. Out of 30 
hits available at step 1, only seven hits showed the requisite 
type of interactions with the target protein as illustrated in 
Table 5.

There are two principal lobes (S1ʹ and S2ʹ) that constitute 
the active site of the enzyme with their two further subdivi-
sion sites (P1, P2, P1ʹ, and P2ʹ) as described in Figure S4. 
S1ʹ lobe is constituted by amino acids VAL176, LEU181, 
MET196, HIS199, and TRP221 while S2ʹ lobe is constituted 
by amino acids GLN23, GLY24, HIS110, HIS111, GLY121, 
and TRP221. Double hydrogen bonding with amino acids 
HIS110 and HIS111 is essential for inhibiting the enzyme 
at S2ʹ lobe. Additionally, there is one hydrophobic pocket 
formed by backbone chain amino acids (PRO76, ALA173, 
and ALA200) for stabilizing the binding of interacting 
ligand. The selected ligands displayed favorable amino acids 
interactions similar to the reference compound, CA-074, for 
inhibiting the target enzyme as illustrated through their 2D 
and 3D interactions diagram (Figs. 7 and 8).

The ligand ZINC19663116 displayed conventional 
hydrogen bonding interactions with HIS110, CYS26, 

THR120, GLY121, and HIS111 (important amino acids 
for hydrogen bonding with S2ʹ subsite and occluding loop 
of the enzyme responsible for its inhibition), π-alkyl inter-
actions with PRO118, HIS199 and TRP221 (hydrophobic 
core), and formed carbon-hydrogen bond with CYS119 
and GLU122. ZINC123282431 produced conventional 
hydrogen bonding interactions with amino acids HIS110, 
HIS111, and GLY198 (essential for inhibition at S2ʹ lobe), 
and π-alkyl interactions with HIS199 at S1ʹ lobe. Apart from 
this, it also formed additional amino acids interactions with 
CYS29, PRO118, and CYS119. ZINC1390969 showed con-
ventional hydrogen bonding interactions with amino acid 
residues HIS110 and HIS111 (essential for inhibiting the 
enzyme at S2ʹ lobe), van der Waals interaction with GLY27, 
π-alkyl interactions with CYS29 and CYS119, amide-π 
stacked interaction with CYS26, and π-cationic interactions 
with GLU122. Altogether, these interactions were favora-
ble for inhibiting the enzyme. ZINC13565072 exhibited 
essential double H-bonding interactions with HIS110 and 
HIS111 (S2ʹ lobe), π-cationic interactions with GLU122, 
π-π stacked interactions with HIS199, π-alkyl interactions 
with VAL176, and even formed a carbon-hydrogen bond 
with CYS119. ZINC72392119 produced hydrogen bonding 
interactions with HIS110 and HIS111, π-π stacked interac-
tions with HIS199, and π-alkyl interactions with VAL176 
and CYS119. ZINC827855702 also displayed hydrogen 
bonding interactions with HIS110 and HIS111, additional 
π-π stacked interaction with HIS199 (S2ʹ lobe), π-sulfur 
interactions with CYS29, carbon-hydrogen bonding with 
THR120, and π-alkyl interactions with PRO118, CYS119, 
TRP221, VAL176, LEU181, and MET196. ZINC95386847 
showed hydrogen bonding interactions with GLN23 (constit-
uent of oxyanion hole of the cathepsin B enzyme), CYS29, 
HIS110, and HIS111 (S2ʹ lobe), van der Waals interaction 
with GLY197, carbon-hydrogen bonding with GLY197, π-π 
stacked interactions with MET196 and TRP221 (S1ʹ lobe), 
π-sulfur interaction with CYS119, and π-alkyl interactions 
with LEU181 and VAL176. Altogether, all the selected 
ligands displayed double hydrogen bonding with amino 
acids HIS110 and HIS111 of S2ʹ lobe (essential for inhibit-
ing the enzyme) along with the other essential amino acids 
and had high binding energy compared to the reference 
molecule.

In silico ADME parameters prediction

The top hits retained after molecular docking were ana-
lyzed for their ADME properties using the SwissADME 
web server. For a drug to act on CNS, it must cross the 
BBB. All our compounds were found to cross BBB and had 
high gastrointestinal absorption, as illustrated by the results 
described in Table 6. Further, the hits were assessed for 
their affinity towards P-glycoprotein and cytochrome P450 
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enzymes. The P-glycoprotein is an essential ATP-binding 
cassette (ABC) transporter that restricts the entry or binding 
of foreign toxins or drugs to the cells via efflux mechanisms. 
Therefore, the drugs having an affinity towards the P-glyco-
protein are extruded out, which in turn hampers their phar-
macodynamic effect. From our dataset of seven compounds, 

only four compounds (highlighted in Table 6) were found to 
be non-substrate to P-glycoprotein.

Further, BOILED-egg analysis (Brain or intestinal 
estimated permeation) was performed for our selected 
ligands using the SwissADME web server. The BOILED-
egg method uses a predictive algorithm to compute 

Table 5  Results showing binding energy, amino-acids interactions, and estimated inhibition constant  (Ki) for the screened hits after precision 
docking

S.No.
ZINC database ID 

of the ligand
Chemical structure

Binding energy, kcalmol-1

Cathepsin B (PDB ID : 1QDQ)

Ligand interaction with 

different amino acids

Estimated

Ki (µM)

1. ZINC19663116 -9.58

CYS26, HIS110, HIS111, 

THR120, GLY121 (H-bond), 

PRO118, HIS199, TRP221 (π-

alkyl interaction), CYS119, 

GLU122 (carbon-hydrogen 

bond)

6.28

2. ZINC123282431 -9.31

HIS110, HIS111, GLY198 (H-

bond), CYS29, PRO118, 

CYS119, HIS199 (π-alkyl

interaction)

0.19325

3. ZINC1390969 -9.17

CYS26 (amide-π stacked 

interaction), GLY27 (van der 

Waals interaction), CYS29, 

CYS119 (π-alkyl interaction), 

HIS110, HIS111 (H-bond), 

GLU122 (π-cationic interaction)

2.55

4. ZINC13565072 -8.46

GLY27, HIS110, HIS111 (H-

bond), CYS119 (carbon-

hydrogen bond), GLU122 (π-

cationic interaction), VAL176 

(π-alkyl interaction), HIS199 (π-

π stacked interaction)

2.31

5. ZINC72392119 -7.87

HIS110, HIS111 (H-bond), 

CYS119, VAL176 (π-alkyl

interaction), HIS199 (π-π

stacked interaction)

22.76

6. ZINC827855702 -7.44

CYS29 (π-sulfur interaction), 

HIS110, HIS111 (H-bond), 

THR120 (carbon-hydrogen 

bond), HIS199 (π-π stacked 

interaction), CYS119, PRO118, 

VAL176, LEU181, MET196, 

TRP221 (π-alkyl interaction)

7.23

7. ZINC95386847 -7.43

GLN23, CYS29, HIS110, 

HIS111 (H-bond), CYS119 (π-

sulfur interaction), VAL176, 

LEU181 (π-alkyl interaction), 

GLY197 (van der Waals 

interaction), GLY198, MET196, 

TRP221 (π-π stacked 

interaction)

22.22
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Fig. 7  2D and 3D amino-acids interaction diagrams for ligands ZINC19663116 (a and b), ZINC123282431 (c and d), ZINC1390969 (e and f), 
and ZINC13565072 (g and h)
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gastrointestinal absorption and BBB permeability of small 
molecules based on their lipophilicity and polarity. The 
results are represented through a graphical diagram shaped 
like a boiled egg, wherein the molecules are represented 
through small dots or points. The molecules falling in the 
white, elliptical region of the diagram have a high tendency 

to permeate the gastrointestinal tract passively. The egg yolk 
(yellow region) in the diagram represents the biochemical 
space for the molecules having a high probability of cross-
ing the BBB. The molecules that are neither BBB permeant 
nor passively absorbed through the GI tract are placed in 
the grey region of the diagram. All compounds fell in the 

Fig. 8  2D and 3D amino-acids interaction diagrams for ligands ZINC72392119 (a and b), ZINC827855702 (c and d), and ZINC95386847 (e 
and f)
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Table 6  ADME prediction results for the selected hits

S.No. ZINC database 

ID of the ligand

GI 

absorption

BBB

permeant

Pgp 

substrate

CYP1A2 

inhibitor

CYP2C19 

inhibitor

CYP2C9 

inhibitor

CYP2D6 

inhibitor

CYP3A4 

inhibitor

1. ZINC19663116 High Yes Yes No Yes Yes Yes Yes

2. ZINC123282431 High Yes No No No No No No

3. ZINC1390969 High Yes No Yes Yes Yes Yes Yes

4. ZINC13565072 High Yes Yes Yes Yes Yes Yes Yes

5. ZINC72392119 High Yes Yes Yes Yes Yes Yes Yes

6. ZINC827855702 High Yes No No Yes Yes Yes Yes

7. ZINC95386847 High Yes No No Yes Yes Yes Yes

Fig. 9  BOILED-egg diagram for the selected hits

Table 7  Toxicity risk assessment data of the selected hits

S.No. ZINC database ID 

of the ligand

hERG Ames ROA SkinSen Genotoxic_ Carcinogenicity_

Mutagenicity

Toxicophores

1. ZINC123282431 0.458 0.330 0.881 0.868 0 0

2. ZINC1390969 0.547 0.919 0.541 0.794 1 1

3. ZINC827855702 0.114 0.164 0.017 0.152 0 2

4. ZINC95386847 0.436 0.452 0.018 0.500 0 1

Result interpretation

Empirical decision Excellent Medium Poor

Optimum range of values 0.0 – 0.3 0.3 – 0.7 0.7 – 1.0

The highlighted rows represent the selected hits or ligands for molecular dynamics (MD) simulation studies based on toxicity risk assessment 
data
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Fig. 10  MD simulations data of the ligand ZINC123282431 with 
protein cathepsin B enzyme for 100  ns: a RMSD plot of protein–
ligand complex, b Protein (cα) RMSF plot, c Ligand RMSF plot, d 
2D diagram of amino acids interactions with the ligand, e Bar dia-

gram of protein–ligand contacts, where green, grey, and blue colors 
represent H-bonding, hydrophobic interactions, and water bridges, 
respectively, f radius of gyration (rGyr) in Å, and g solvent accessible 
surface area (SASA) in Å2
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Fig. 11  MD simulations data of the ligand ZINC827855702 with 
protein cathepsin B enzyme for 100  ns: a RMSD plot of protein–
ligand complex, b Protein (cα) RMSF plot, c Ligand RMSF plot, d 
2D diagram of amino acids interactions with the ligand, e Bar dia-

gram of protein–ligand contacts, where green, grey, and blue colors 
represent H-bonding, hydrophobic interactions, and water bridges, 
respectively, f radius of gyration (rGyr) in Å, and g solvent accessible 
surface area (SASA) in Å2
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egg-yolk region, illustrating their capability to cross BBB. 
Three compounds were found substrate to P-glycoprotein 
marked blue in the diagram (Fig. 9). The compounds (2, 
3, 6, and 7) symbolized in red (PGP-ve) were selected for 
further studies.

Toxicity risk assessment analysis

The toxicity risk assessment for the selected compounds was 
performed using the ADMETlab 2.0 web server. The AMES 
test for mutagenicity, hERG inhibition, acute oral toxicity, 
carcinogenicity, and genotoxicity were included. The ligands 
ZINC123282431, ZINC827855702, and ZINC95386847 
showed zero carcinogenic, mutagenic, and genotoxic 
potential, as indicated through in silico data summarized in 
Table 7. Moreover, the ligands depicted acceptable value for 
acute oral toxicity.

Molecular dynamics (MD) simulations studies

The molecular dynamics simulations studies for the ligands 
ZINC123282431, ZINC827855702, and ZINC95386847 
with cathepsin B protein were carried out to investigate 
their conformational stability over a time scale of 100 ns. 
The trajectories generated from MD simulations were used 
to calculate the values of RMSD, RMSF, radius of gyra-
tion, and solvent-accessible surface area (SASA) for each 
protein–ligand complex. Moreover, the binding behavior, 
protein–ligand contacts, and type of amino acid interac-
tions involved between ligand and protein were examined 
throughout the simulations run.

MD analysis of ZINC123282431 with cathepsin‑B protein

The analysis of trajectories obtained from the MD simula-
tions studies of the ZINC123282431 with cathepsin B pro-
tein depicted slight fluctuations in protein backbone (Cα) 
for the initial 20 ns time interval, which later became stable 
throughout the simulation run of 100 ns. The average RMSD 
value of the protein backbone chain for the whole run was 
1.83 Å with a maximum deviation of 2.23 Å at 90 ns, which 
lies between the acceptable limit of 1–3 Å for small and 
globular proteins. Ligand was relatively stable during the run 
with an average RMSD value of 1.84 Å. The RMSF plot of 
the protein revealed more fluctuations at residues between 

the 48 and 52 positions, away from the positions of amino 
acids (HIS110 and HIS111) involved in hydrogen bonding 
with the ligand. Therefore, the protein complex was stable 
during the MD simulations run. On examining the interac-
tions diagram, it was found that the ligand formed hydrogen 
bonding with amino acids HIS110, HIS111, GLY198, and 
TRP221 throughout the run. Hydrophobic contacts with 
amino acids CYS29, PRO118, and TRP221 were also estab-
lished between the ligand and protein. The average values 
for the radius of gyration and solvent-accessible surface area 
for the protein–ligand complex during the run were also 
calculated using the data obtained from MD trajectories 
and found to be 4.31 Å and 178.76 Å2, respectively. Fig-
ure 10 summarizes the MD simulation results for the ligand 
ZINC123282431 with the protein complex.

MD analysis of ZINC827855702 with cathepsin‑B protein

The MD simulation data for the ligand ZINC827855702 
revealed significant fluctuations in the protein backbone 
(Cα) during the run. The RMSD indicated an unstable tra-
jectory of the Cα chain for the initial 10 ns, followed by 
steadiness for the next 35 ns. The protein backbone chain 
became stable throughout the run with an acceptable RMSD 
value of 2.04 Å. The ligand showed a maximum RMSD 
of 5.08 Å and the average RMSD value of 3.31 Å during 
the simulations. The RMSF plot depicted the stability of 
the protein–ligand complex as there were minuscule fluc-
tuations at 100 to 115 positions in the protein chain. The 
radius of gyration for the protein complex was found to be 
4.43 Å. The SASA was quantified as 172.35 Å2 utilizing the 
MD simulations data of the complex. The ligand formed 
hydrogen bonding with GLY24, HIS110, HIS111, CYS119, 
GLY121, GLU122, GLY197, and TRP221, while hydropho-
bic contacts were established with amino acids MET196, 
HIS199, and TRP221 of the protein chain during the entire 
simulation run of 100 ns timescale. Figure 11 summarizes 
the MD simulation data for the ligand ZINC827855702 with 
the protein complex.

MD analysis of ZINC95386847 with cathepsin‑B protein

The trajectory of the ligand ZINC95386847 with the pro-
tein showed high fluctuations for the initial 20 ns, which 
later became steady throughout the run. The average RMSD 
value for the protein backbone was calculated as 1.90 Å, 
which was under acceptable limits. The ligand in the protein 
complex showed a high RMSD value of 4.88 Å. Moreo-
ver, fluctuations in the protein chain at positions between 
100 and 120 were seen through the RMSF plot. It signi-
fies the instability of the protein–ligand complex during the 
simulations run. The values for the radius of gyration and 

Fig. 12  MD simulations data of the ligand ZINC95386847 with pro-
tein cathepsin B enzyme for 100 ns: a RMSD plot of protein–ligand 
complex, b Protein (cα) RMSF plot, c Ligand RMSF plot, d 2D dia-
gram of amino acids interactions with the ligand, e Bar diagram of 
protein–ligand contacts, where green, grey, and blue colors represent 
H-bonding, hydrophobic interactions, and water bridges, respectively, 
f radius of gyration (rGyr) of the ligand in Å, and g solvent accessible 
surface area (SASA) of ligand in Å2

◂
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SASA for the protein complex were calculated to be 4.01 Å 
and 145.43 Å2, respectively. Analysis of the interaction 
diagram depicted that the ligand formed frequent hydro-
gen bonding with amino acids GLN23, CYS29, HIS110, 
THR120, and TRP221 and intense hydrophobic interac-
tions with amino acids CYS29, VAL176, PHE180, LEU181, 
MET196, HIS199, TRP221, and TRP225 of the protein. Fig-
ure 12 summarizes the MD simulation results for the ligand 
ZINC95386847 with the protein complex.

Conclusion

Cathepsin B has an extensive role in developing and pro-
gressing multifactorial Alzheimer’s disease through its 
involvement in Aβ generation and neuroinflammation. 
Developing novel cathepsin B inhibitors against AD is an 
excellent therapeutic option. Computational tools serve as an 
aid to speed up the modern drug discovery process in a cost-
effective manner for identifying new moieties, which can 
be used as a starting lead for discovering novel therapeutic 
drugs. This study employed combined structure and ligand-
based drug design strategies to identify novel cathepsin B 
inhibitors. Based on the co-crystallized ligand in complex 
with PDB file, five pharmacophore models were constructed 
and validated for screening the ZINC-15 database. The 
resulting hits were checked for duplicates, PAINS moieties, 
and structural similarities. Molecular docking study was car-
ried out for screening hits showing considerably good bind-
ing affinity. The top seven hits obtained were further filtered 
based on criteria involving BBB permeability, high gastro-
intestinal absorption, p-glycoprotein substrate, and toxic-
ity considerations. Finally, the best hits, ZINC827855702, 
ZINC123282431, and ZINC95386847, were subjected to 
molecular dynamics simulation studies to assess the pro-
tein–ligand complex stability under a dynamic simulated 
biological environment. ZINC123282431 was obtained as 
the final virtual lead, displaying acceptable RMSD values, 
compelling protein–ligand complex stability throughout the 
simulation run, and satisfying all the parameters undertaken 
for the study. The ligand depicted an overall binding energy 
score of − 9.31 kcal/mol and comparable essential amino 
acids interactions (CYS29, HIS110, HIS111, PRO118, 
CYS119, GLY198, HIS199) required to inhibit the cathep-
sin B enzyme. Moreover, based on the evaluation of top hits, 
the study predicted imidazopyridine, pyrazole, chromane, 
quinoline, and phenanthrene moieties, which can be used as 
starting scaffold for building novel cathepsin B inhibitors for 
the treatment of Alzheimer’s disease.
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