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Abstract
Parkinson’s disease (PD) is the most common movement disorder worldwide. PD is primarily associated with the muta-
tion, overexpression, and phosphorylation of α-synuclein. At the molecular level, the upstream protein c-Abl, a tyrosine 
kinase, has been shown to regulate α-synuclein activation and expression patterns. This study aimed to identify potential 
c-Abl inhibitors through in silico approaches. Molecular docking was performed using PyRx software, followed by Prime 
MM-GBSA studies. BBB permeability and toxicity were predicted using CBligand and ProTox-II, respectively. ADME was 
assessed using QikProp. Molecular dynamics were carried out using Desmond (Academic version). DFT calculations were 
performed using the Gaussian 16 suite program. The binding scores of the top hits, norimatinib, DB07326, and entinostat 
were − 11.8 kcal/mol, − 11.8 kcal/mol, and − 10.8 kcal/mol, respectively. These hits displayed drug-likeness with accept-
able ADME properties, except for the standard, nilotinib, which violated Lipinski’s rule of five. Similarly, the molecular 
dynamics showed that the top hits remained stable during the 100 ns simulation. DFT results indicate DB04739 as a potent 
reactive hit. While based on toxicity prediction, entinostat may be a potential candidate for preclinical and clinical testing 
in PD. Further studies are warranted to confirm the activity and efficacy of these ligands for PD.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease after Alzheimer’s disease (AD). 
PD is the most common movement disorder and was first 
described by James Parkinson in his essay “The shaking 
palsy” [1, 2]. PD is mainly affecting the older population 
(2–3%) that is ≥ 65 years of age   [1]. However, PD is also 
affecting the young population that is < 40 years of age [1]. 
Among the older populations, men are majorly affected 
when compared to women [3]. In contrast, few studies have 
shown that women are at a higher risk of developing PD 
when compared to men. These studies have shown that estro-
gen deficiency declines with age in women and predisposes 
women to PD development [3–5]. In line with these findings, 
recent clinical study points to the beneficial effects of estro-
gen in postmenopausal women [6]. People suffering from 
PD are associated with primary symptoms such as bradyki-
nesia, hypokinesia, rigidity, and tremor. These symptoms 
appear after dopaminergic neuron loss of more than 80% 
[7, 8]. Secondary symptoms include defective posture (shuf-
fling) and gait, mask-like face, and sialorrhoea, often with 
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dementia and autonomic impairment [9]. Although several 
risk factors and hypotheses have been proposed to be associ-
ated with the development of PD, the etiology of PD remains 
largely unknown [10]. Importantly, neuro-histopathological 
examination has shown the selective degeneration of mes-
encephalic dopaminergic neurons in the substantia nigra 
pars compacta (SNPC) and nigrostriatal tract (striatum) 
[7]. This includes widespread intracellular accumulation 
of α-synuclein [1, 11]. In addition, excitotoxicity, mito-
chondrial dysfunction, oxidative stress, inflammation, and 
apoptosis were also reported in PD [9]. Excitotoxicity is a 
concept of neuronal cell death that results from the toxic 
actions of excitatory amino acids such as glutamate and 
aspartate [12, 13].

The accumulation of α-synuclein in PD is often consider 
central to the pathophysiology of PD [1, 11]. α-synuclein 
was first identified as the major contributor of PD in 1997 
[10]. The loss of dopamine (DA) in PD is correlated to the 
loss in the normal function of α-synuclein and the mutation 
of several other genes such as leucine rich repeat kinase 2 
(LRRK2), PTEN-Induced Kinase 1 (PINK1), Parkinson’s 
at-risk Kinase (PARK), etc. [1, 7]. α-synuclein contribute to 
PD development, in part, by interfering with various process 
involves in dopamine signaling. α-synuclein inhibits tyrosine 
hydroxylase and l-aromatic amino acid decarboxylase, the 
key enzymes that are crucial for dopamine synthesis [14]. 
α-synuclein mediates the trafficking of dopamine transporter 
to the pre-synaptic membrane causing rapid uptake of dopa-
mine from the synapse [14, 15]. α-synuclein also increases 
the dopamine oxidation by inhibiting the sequestration 
of dopamine inside the vesicle monoamine transporter 2 
(VMAT2). α-synuclein dose this either by regulating the 
expression of VMAT2 or physical interaction with VMAT2 
[14, 15]. α-synuclein mediates these mechanisms due to the 
loss of function, mutations, multiplications, and phosphoryl-
ation [7, 16, 17]. Mutations that have been so far reported to 
occurred in α-synuclein gene, SNCA are A18T, A29S, A30P, 
E46K, H50Q, G51D, A53T, A53E, and A53V [10, 17–19]. 
The mutations and multiplications (abnormal expression of 
α-synuclein) of SNCA contributes to rare forms of familial 
PD [20], whereas post-translational modifications such as 
nitrosylation, oxidation, and phosphorylation contribute to 
sporadic and familial forms of PD [21, 22]. Among the vari-
ous post-translational modification events, phosphorylation 
of α-synuclein is the major contributor of PD [21, 22]. Spe-
cific mutations in other genes, for example, PARK2 (K211N, 
R275W, G430W, C431S) contribute to α-synuclein aggrega-
tion and mitochondrial dysfunction leading to dopaminergic 
degeneration [23–25].

Cellular Abelson murine leukemia viral oncogene 
homolog 1 (c-Abl) belongs to a family of non-receptor 
protein tyrosine kinases. c-Abl is localized at differ-
ent subcellular sites, including the nucleus, cytoplasm, 

mitochondria, the endoplasmic reticulum, and the cell 
cortex. In these cellular compartments, c-Abl interacts 
with a large variety of cellular proteins. These includes 
signaling adaptors, kinases, phosphatases, cell-cycle reg-
ulators, transcription factors, and cytoskeletal proteins. 
c-Abl plays an essential role in cellular processes such as 
regulation of cell growth and survival, oxidative stress, 
DNA-damage responses, actin dynamics, and cell migra-
tion [26]. Furthermore, c-Abl is implicated in a number 
of human diseases such as leukemia [26], PD [27–29], 
and Alzheimer's disease (AD) [30]. In these diseases, 
c-Abl is correlated to its aberrant activation and abnormal 
expression. In PD, c-Abl is activated by stressors, toxins, 
including misfolded α-synuclein [20, 22, 31, 32]. In PD 
patients and animal models, c-Abl seems to interfere with 
the normal functioning of α-synuclein, parkin, mitogen-
activated protein kinase (p38α), NACHT, LRR, and PYD 
domains-containing protein [nucleotide-binding domain, 
leucine-rich-containing family, pyrin domain-containing-3 
(NLRP3)]. Mechanistically, c-Abl induces neuronal death 
through the activation of α-synuclein, mitogen-activated 
protein kinase (p38α), and NLRP3, and inhibition of par-
kin [27, 32, 33]. c-Abl-induced α-synuclein activation 
(phosphorylation) interferes with dopamine signaling 
[14, 27, 32, 33]. c-Abl-induced mitogen-activated pro-
tein kinase (p38α) and NLRP3 activation overwhelmed 
the inflammatory signaling leading to neuronal death [27, 
32, 33]. Lastly, c-Abl-induced parkin inhibition aggrevate 
the generation of reactive oxygen species that interfere 
with the plasma membrane integrity [27, 32, 33]. In line 
with these observations, the inhibition of c-Abl in animal 
models and PD patients have shown promising results [27, 
34–36].

Despite the above observations, some studies are have 
shown that c-Abl inhibitor, Nilotinib is not adequate to 
ameliorate the neuronal loss [37] which could be related to 
its inadequate CNS permeability [27]. On the other hand, 
Vodobatinib, a c-Abl inhibitor having better CNS penetrant, 
is current under phase 2 assessment (NCT03655236) for PD 
[27]. In light of the above observations, the aim of this study 
is to identify a potential c-Abl inhibitors with a potent CNS 
permeability by in silico techniques. The in silico techniques 
offer a cost-effective, rapid, and low risk in the process of 
drug discovery and development. Over the years, several 
studies have identified potent kinase inhibitors for neuro-
degenerative diseases using computational tools [38–40]. 
The objective of this study includes (i) the collection of a 
set of compounds that includes US-FDA approved, inves-
tigational, and experimental drugs; (ii) molecular docking 
studies and free energy calculation; (iii) absorption, distribu-
tion, metabolism, excretion, toxicity (ADMET), and CNS 
permeability prediction; (iv) molecular dynamics; and (v) 
density functional theory (DFT).
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Materials and methods

Ligand collection and preparation

Ligands were collected from DrugBank database (https:// go. 
drugb ank. com/). Ligands were further divided into batches 
for high throughput virtual screening.

Protein preparation

The protein–protein data bank (PDB) (PDB ID: 3CS9) was 
downloaded from research collaboratory for structural bio-
informatics (https:// www. rcsb. org/). The protein was pre-
pared using discovery studio visualizer (v16.1.0.15350) 
where unwanted chains, co-crystals, and water molecules 
were removed.

Ligand–receptor docking

Molecular docking for the binding affinity and ligand–pro-
tein interactions were carried out using PyRx (Ver.0.9.0). 
The PyRx is a tool that provides the graphic user interface 
for other molecular docking tools including Autodock vina. 
AutoDock Vina is a standalone software that requires com-
mand line for carrying molecular docking. The use of PyRx 
increases the usability and accessibility of Autodock Vina 
to a wider range of researchers (not accustomed to com-
mand line) working in the fields of molecular biology and 
drug development. Autodock vina is an advancement to 
Autodock 4.2 in terms of speed and ligand pose prediction 
[41]. In addition to providing thorough details regarding the 
binding poses of ligands at the protein’s binding site, Auto-
dock Vina uses a scoring algorithm to determine the bind-
ing energy. The prepared protein was loaded into PyRx and 
then converted into PDBQT. Similarly, the prepared ligands 
were energy minimized using open babel and converted into 
PDBQT file. A PDBQT file, also known as a Protein Data 
Bank, in Quartenary Format is an extension of PDB for-
mat which is employed to represent the three-dimensional 
structures of proteins and ligands. The PDBQT format pro-
vides additional information that is essential for conduct-
ing docking and virtual screening studies. The additional 
information provided by PDBQT includes polar hydrogen 
atoms, atom types, partial charges, and the flexible por-
tions of ligand and protein [42]. Ligand–receptor docking 
studies were carried out against c-Abl-bound nilotinib as 
inhibitor. Nilotinib forms hydrogen bonds (H-bonds) with 
Glutamic Acid 286 (GLU286), Threonine 315 (Thr315), 
Methionine 318 (Met318), and Aspartic Acid 381 (Asp381). 
Overall, the amino acids around nilotinib including the 
non-H-bond were used to generate a grid box for the 

ligand–receptor docking. This was achieved by visualizing 
the 2D ligand–receptor interaction using discovery studio 
visualizer (v16.1.0.15350). By selecting the surrounding 
amino acids, a 3D grid was generated with center x = 28.497, 
y = 3.015, z = 52.220 and dimensions x = 25.824, y = 22.457, 
z = 22.583.

BBB prediction

The blood–brain barrier (BBB) prediction was carried out 
using CBligand (https:// www. cblig and. org/ CCGS/) data-
base. CBligand is a free online database that is commonly 
used to predict the BBB permeability of small molecules. 
The database uses various computational algorithms such 
as TargetHunter, HTDocking, and BBB predictor for target 
identification and polypharmacology analysis. The data-
base was constructed using various AD chemo-genomics 
data records. This includes AD-related genes (928), pro-
teins (320), 194 US-FDA approved or under clinical trial 
drugs. Additionally, a total of 405,188 chemicals which were 
retrieved from 1,023,137 records having reported for bioac-
tivities were included [43].

MM‑GBSA

Molecular mechanics-generalized born-surface area MM-
GBSA was carried out using the prime feature in Schrod-
inger 2021-3. MM-GBSA is a method used to calculate the 
contributions of enthalpy and entropy-related components 
toward the binding of the ligand–protein complex. The 
docked poses were minimized using the local optimization 
feature in Prime. Prime MM-GBSA was used to calculate 
the ligand–receptor complexes with all receptor residues 
being held frozen [44, 45].

The binding free energy ΔG bind is estimated as: 
ΔGbind = ΔE

MM
+ ΔG

solv
+ ΔG

SA.

ΔEMM = difference in energy between the complex struc-
ture and the sum of the energies of the ligand and unliganded 
protein using the OPLS4 force field.

ΔGsolv = difference in the GBSA solvation energy of the 
complex and the sum of the solvation energies for the ligand 
and unliganded protein.

ΔGSA = difference in the surface area energy for the com-
plex and the sum of the surface area energies for the ligand 
and unliganded protein.

ADME and toxicity prediction

The physically and pharmacokinetically significant descrip-
tors, absorption, distribution, metabolism, and excretion 
(ADME) for the top hits were predicted by QikProp mod-
ule of Schrodinger suite. The toxicity of the drug mole-
cules—DB04868, DB04739, DB11841, and DB07326 were 

https://go.drugbank.com/
https://go.drugbank.com/
https://www.rcsb.org/
https://www.cbligand.org/CCGS/
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predicted by using the ProTox-II webtool (https:// tox- new. 
chari te. de/ protox_ II/). PROTOX-II is a web server tool that 
employs a curated dataset, calculating descriptors and iden-
tifying alerts for precise toxicity prediction. Additionally, 
ProTox-II tool that specifically determines the type of tox-
icities. The toxicities defined by proTox-II are divided into 
acute toxicity, organ toxicity, toxicological endpoints, toxi-
cological pathways, and toxicity targets. ProTox-II utilizes 
different algorithms such as random forest, support vector 
machine, and Bernoulli–Naive Bayes algorithm to predict 
these toxicities [46].

Molecular dynamics

The molecular dynamics (MD) simulation for the docked 
protein–ligand complex was carried out using Desmond 
(Academic version). Briefly, the protein–ligand system was 
solvated in a water model (TIP4P) inside an orthorhombic 
water box of 10 Å. The system was neutralized by add-
ing 0.15 M of sodium chloride to mimic the physiological 
condition. The system is minimized by applying optimized 
potentials for liquid simulations 4 (OPLS4) force field. The 
system is relaxed before running the simulation by a six-
step protocol that is built in with the Desmond module. 
The system was run in a constant temperature and pressure 
environment (NPT). The default temperature (300 K) and 
1.01325 Pa (atmospheric pressure) were also applied for the 
simulation. The simulation was carried out for 100 ns for 
each of the system. The period of simulation was decided 
based on the convergence of the system in the simulated 
environment [42, 47, 48].

Density functional theory (DFT) studies

The 3D electronic states of molecules and atoms in the con-
text of frontier molecular orbitals density fields [highest 
occupied molecular orbital (EHOMO) and lowest unoccupied 
molecular orbital (ELUMO)] were determined using Gaussian 
16 suite program [49]. EHOMO and ELUMO help explain the 
molecular properties and biological activity of the molecules 
[50]. EHOMO and ELUMO are the main orbitals that take part 
in chemical stability and also details about the donor–accep-
tor interactions. The electron donation capability was rep-
resented by EHOMO while the ELUMO represents the ability 
to accept electron. The Eigen values of EHOMO and ELUMO, 
and their energy gap reflect the chemical reactivity, level of 
conductivity, and kinetic stability of the molecule. Smaller 
energy gap (ΔEHOMO–LUMO) value indicates that easier 
electron transfer occurs from EHOMO to ELUMO with a high 
chemical reactivity and low kinetic stability. The higher rela-
tive energy gaps indicate kinetically unstable nature of the 
molecule [49, 51].

Result

Molecular docking

The amino acids of c-Abl around nilotinib are used to gen-
erate a grid for molecular docking, Fig. 1. From molecu-
lar docking studies, the binding affinity (Kcal/mol) of the 
ligands toward the receptor is tabulated in Table 1. The top 
21 ligands were chosen based on the binding affinity (Kcal/
mol) and BBB permeability prediction as predicted by 
PyRx and CBligand server, respectively. The top ligand, 
DB04868, represents the co-crystal ligand, nilotinib with 
the binding affinity of 14.2 kcal/mol.

Further, to narrow down the best hits for MD simula-
tion, we set three criteria. First criteria, the ligand should 
form the same hydrogen bonding to c-Abl when compared 
to nilotinib. Second criteria, the ligand should have BBB 
permeability as determined by Cbligand. Third criteria, the 
ligand should have a better or comparable binding affinity 
to c-Abl when compared to nilotinib. The ligand–receptor 
2D interactions are mentioned in Table 1. This was done to 
analyzed the binding of ligands with critical amino acids 
of c-Abl. Insight visualization into the ligand–receptor 2D 
interactions shows that three ligands bearing DrudBank ID 
DB04739, DB07326, and DB11841 form identical H-bond 
with key amino acids that interact with co-crystal ligand, 
nilotinib (Fig. 2). The 3D interactions have been given 
in the supplementary (Fig. S1). Interestingly, DB17141 
(Vodobatinib), a potent c-Abl inhibitor that is currently 
under clinical trial [19] forms only three H-bonds with 
c-Abl (Figure not shown). DB04739, DB07326, and 
DB11841 are also predicted to penetrate the BBB. Lastly, 
the binding score of DB04739, DB07326, and DB11841 
are − 11.8 kcal/mol, − 11.8 kcal/mol, and − 10.8 kcal/mol, 
respectively. When compared to nilotinib (− 14.2 kcal/
mol), these molecules have low affinity to c-Abl. Based on 
these combined analyses of binding poses, predicted BBB 
permeability, and binding score (Kcal/mol) DB04868, 
DB04739, DB07326, and DB11841 were selected for 
molecular dynamics simulation (Table 1).

MM‑GBSA analysis

The MM-GBSA was carried out for post-docking energy 
minimization to predict the free energy of binding (ΔG 
bind) for the set of ligands in complex with the recep-
tor. From MM/GBSA results, the ΔG bind values were 
observed in the range of − 103.81 kcal/mol (DB04868) 
to − 70.12 kcal/mol (DB11841). The ΔCoul values were 
observed in the range of − 38.68 kcal/mol (DB04868) to 
− 12.01 kcal/mol (DB11841). The ΔH-bond values were 

https://tox-new.charite.de/protox_II/
https://tox-new.charite.de/protox_II/
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observed in the range of − 1.63 kcal/mol (DB04868) to 
− 3.62  kcal/mol (DB11841). The ΔLipo values were 
observed in the range of − 24.82 kcal/mol (DB07326) to 
− 33.16 kcal/mol (DB11841). Lastly, the ΔvdW values 
were observed in the range of − 67.85 kcal/mol (DB04868) 
to − 49.69 kcal/mol (DB11841), Table 2.

ADME and toxicity analysis

The ADME results of the top hits, DB04739, DB07326, and 
DB11841 including nilotinib (DB04868) obtained from Qik-
Prop are represented in Table 3. Lipinski’s rule of five was 
applied to assess the drug-likeness of the top hits. The rule 
states that molecules with molecular weight < 500 g/mol, 
 QPlogPo/w < 5, HBD ≤ 5, and HBA ≤ 10 are considered to 

be drug-like molecules. According to Lipinski’s rule, all 
the three hit molecules showed drug-likeness, except for 
the control drug DB04868 which have two violations in 
molecular weight and  QPlogPo/w criteria. Following the 
acceptable range criteria provided by QikProp module, 
DB04868 and DB07326 show good gut–blood barrier per-
meability with QPPCaco value > 500. All the molecules are 
good blood–brain barrier permeable within the acceptable 
QPlogBB range of − 3.0 to 1.2 and display no central nerv-
ous system activity. DB04739 and DB11841 were predicted 
to be aqueous permeable within an acceptable QPlogS 
range of − 6.5 to 0.5. The total solvent accessible surface 
area (SASA) of the all the hits is in an acceptable range of 
300–1000. All the hit molecules display high human oral 
absorption above 75%. The toxicity results are presented in 

Fig. 1  Amino acids around 
nilotinib interact and form the 
binding pocket of c-Abl. The 2D 
interaction was visualized using 
discovery studio visualizer 
(v16.1.0.15350)
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Table 4. Various toxicity parameters were assessed such as 
hepatoxicity, carcinogenicity, immunotoxicity, mutagenicity, 
and cytotoxicity. The ProTox-II webtool uses algorithm of 
rat in vivo toxicity parameter training sets and provides prob-
ability score of a toxicity target with a remark of either ‘inac-
tive’ or ‘active.’ Among the top hit molecules, DB11841 
out-performs in all the toxicity prediction as ‘inactive’ with 
probability score more than 50%. The  LD50 of DB04868, 
DB04739, DB1184, and DB07326 are 800 mg/kg, 100 mg/
kg, 22 mg/kg, and 500 mg/kg. Based on  LD50, DB11841 is 
highly toxic when compared to DB04868, DB04739, and 
DB07326. This indicates that caution has to be taken while 
selecting the dose for DB11841 at preclinical and clinical 
levels.

Molecular dynamics

The sequence length of c-Abl is composed of 1130 amino 
acids (Uniprot Id: P00519). The amino acid sequence length 
of c-Abl (PDB ID: 3CS9) is from residues Asp233-Ser500. 
The secondary structure of c-Abl (3CS9) is composed 
of 27 random coils marked in gray, 18 turns in green, 17 
alpha-helices in red, and 10 beta-sheets in blue (Fig. S2). 
The stability of the ligand–receptor complex was investi-
gated by MD simulation using Desmond (Academic ver-
sion). The MD simulation was carried out for 100 ns. The 

100 ns simulation time was decided based on the stability of 
the apoprotein. Prior to simulation of protein–ligand com-
plexes, a 100 ns simulation was fixed for the apoprotein. The 
100 ns results show that the system is stable as indicated by 
RMSD and RMSF of the apoprotein (Fig. S3). For 3CS9-
DB04886 complex (Fig. 3A), the RMSD of the protein is 
stable during the course of 100 ns simulation with minimal 
deviation from 70 to 80 ns. While the RMSD of DB04868 is 
stable from 0 to 60 ns but shows major deviation from 80 to 
100 ns. Despite this major deviation of DB04868, the RMSD 
of DB04868 at the end of simulation, 1.3 Å, is lower than 
that of the RMSD of protein, 2.2 Å. For 3CS9-DB04739 
complex (Fig. 3B), the RMSD of protein shows deviation 
from 0 to 20 ns. Thereafter, the RMSD of protein is stable 
till the end of 100 ns simulation, while the RMSD of ligand 
shows major deviation from 0 ns to 40 and, thereafter, shows 
no major deviation till the end of simulation. However, the 
RMSD of ligand is larger, 3.5 Å, than that of protein 2.8 Å. 
This indicates that the ligand might have deviated from the 
ligand-binding site of the protein. For 3CS9-DB11841 com-
plex (Fig. 3C), the RMSD of protein is similar to that of 
3CS9-DB04868 complex and show no major deviation dur-
ing the course of 100 ns simulation. While the ligand shows 
major deviation from 25 to 40 ns and, thereafter, stable till 
the end of simulation with the RMSD converging at 1.5 Å. 
Lastly, for 3CS9-DB07326 complex (Fig. 3D), the RMSD of 

Table 1  Docking score of 
ligands

Sr. no DrugBank ID Common 
name/
PubChem ID

Binding 
score (Kcal/
mol)

BBB perme-
ability predic-
tion

H-bond

1. DB04868 Nilotinib − 14.2 Yes Glu286, Thr315, Met318, Asp381
2. DB06925 15,991,573 − 13.4 Yes Glu286, Met318, Asp381
3. DB17141 Vodobatinib − 12.8 Yes Glu286, Met318, Asp381
4. DB00619 Imatinib − 12.4 Yes Thr315, Met318, Asp381
5. DB04739 Norimatinib − 11.8 Yes Glu286, Thr315, Met318, Asp381
6. DB07326 23,658,582 − 11.8 Yes Glu286, Thr315, Met318, Asp381
7. DB08091 5,326,868 − 11.8 Yes Glu286, Met318, Met381
8. DB16035 24,756,034 − 11.8 Yes Glu286, Met318, Asp381
9. DB08242 23,400,214 − 11.7 Yes Glu286, Thr315, Asp381
10. DB07537 24,812,718 − 11 Yes Glu286, Met318, Asp381,
11. DB07831 10,477,723 − 10.9 Yes Glu286, Glu316, Met318
12. DB12270 Losmapimod − 10.7 Yes Glu286, Met381
13. DB11841 Entinostat − 10.6 Yes Glu286, Thr315, Met318, Asp381
14. DB11903 10,253,143 − 10.6 Yes Asp381
15. DB06518 11,406,590 − 10.5 Yes Glu286, Asp381
16. DB11450 Pimobendan − 10.4 Yes Glu286, Glu316, Asp381
17. DB07362 15,602,701 − 10.1 Yes Glu286, Met318, Asp381
18. DB07360 24,880,024 − 10.1 Yes Glu286, Met318, Asp381
19. DB06134 24,995,524 − 9.5 Yes Glu286, Met318, Asp381
20. DB12779 Higenamine − 9.3 Yes Glu286, Met318
21. DB02647 449,088 − 8.9 Yes Thr315, Glu316, Met318
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protein is similar to that of 3CS9-DB04868 complex (2.1 Å). 
For ligand, the RMSD deviated abruptly at around 37 ns 
and, thereafter, is stable till the end of the simulation with 
the RMSD of 0.8 Å.

RMSF determines the fluctuation (movement) of each 
amino acids during the simulation. The higher the fluctua-
tion, the lower the stability of ligand–protein contact and 
vice versa. Figure 4 shows the fluctuations of amino acids, 

Fig. 2  The 2D diagrammatical 
representation of ligand–recep-
tor interaction. A DB04868-
3CS9 2D interactions. B 
DB04739-3CS9 2D interac-
tions. C DB11841-3CS9 2D 
interactions. D DB07326-3CS9 
2D interactions. All the ligands 
including the co-crystal ligand 
form H-bond with Glu286, 
Thr315, Met318, and Asp381. 
All interactions were visualized 
in LigPlot+ v.2.2

Table 2  MM-GBSA results of top hits

Sr. no Compound name/ID ΔG bind (Kcal/mol) ΔCoul (Kcal/mol) ΔH-bond 
(Kcal/mol)

ΔLipo (Kcal/mol) ΔvdW (Kcal/mol)

1. DB04868 − 103.81 − 38.68 − 1.63 − 32.71 − 67.85
2. DB04739 − 80.39 − 16.14 − 2.91 − 35.70 − 64.54
3. DB11841 − 70.12 − 12.01 − 3.62 − 33.16 − 49.69
4. DB07326 − 72.15 − 13.16 − 2.10 − 24.82 − 60.43
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Glu286, Thr315, Met318, and Asp381 that form H-bonds 
with all DB04868, DB04739, DB11841, and DB07326 
falls within 1.2 Å. For 3CS9-DB04868 complex, the RMSF 
of amino acids, Glu286, Thr315, Met318, and Asp381 of 
protein that forms H-bonds with DB04868 falls within 1 Å. 
For 3CS9-DB04739, 3CS9-DB11841, and 3CS9-DB07326 
complexes, the RMSF of amino acids Thr315, Met318, and 
Asp381 is within 1 Å, while Glu286, when compared to 
Thr315, Met318, and Asp381, shows a small fluctuation 
with RMSF of 1.2 Å. The fluctuation with Glu286 is higher 
when compared to Thr315, Met318, and Asp381 because 
the H-bond formed with Glu286 is weakly retain during the 
100 ns simulation. Additionally, a critical observation was 
observed with different regions (R1, R2, R3) of the protein 
when the top hits bind to it. The regions R1, R2, and R3 
were significantly stabilized by the binding of DB11841 
when compared to the reference molecule (DB04868), 
while, the other two hits, DB04739 and DB07326, signifi-
cantly stabilized only R3 when compared to the reference 
molecule (DB04868). The regions R1, R2, and R3 are com-
posed of random coils and turns of secondary structure. 
These regions were designated as loops 1, 2, and 3 (Fig. 

S2). R1 is composed of seven amino acid residues of which 
five, i.e., Leu273, Lys274, Thr277, Met278, and Glu279 
represent coils, and two amino acid residues i.e., Glu275 
and Asp276 represent turns. Similarly, R2 is composed of 
seven amino acid residues of which one i.e., Leu387 repre-
sents turn, and six, i.e., Met388, Thr389, Gly390, Asp391, 
Thr392, Tyr393 represent coils. R3 is composed of 12 
amino acid residues. Of these four amino acid residues, i.e., 
Lys454, Asp455, Glu462, Gly463 represent turns, and eight 
amino acid residues, i.e., Tyr456, Arg457, Met458, Glu459, 
Arg460, Pro461, Ala464, Cys465 represent coils. Secondary 
structure elements like alpha-helices and beta-sheets are usu-
ally more rigid and fluctuate the least when compared to the 
unstructured parts of the protein, i.e., loop regions, N- and 
C-terminal of the proteins.

The ligand interaction fractions of ligands with amino 
acids of c-Abl during a span of 100 ns are depicted in 
Fig. 5. As shown in Fig. 5, hydrophobic and H-bond are 
the dominant interactions. DB04868 retains more than 70% 
of H-bond interaction with Glu286, Thr315, Met318, and 
Asp381 during the 100 ns simulation. DB04739 retains 
more than 70% of H-bond interaction with Thr315, Met318, 

Table 3  ADME prediction of top hits

a Molecular weight (< 130.0–725.0 g/mol)
b Hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution (0.0–6.0)
c Hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution
d Gut–blood barrier permeability prediction for non-active transport molecules (< 25 poor, > 500 great)
e Brain/blood partition coefficient prediction for orally delivered drugs (–3.0 to 1.2)
f Blood–brain barrier prediction for non-active transport (< 25 poor, > 500 great)
g Predicted central nervous system activity [− 2 (inactive) to + 2 (active)]
h Aqueous solubility prediction (− 6.5 to 0.5)
i Octanol/water partition coefficient prediction (− 2.0 to 6.5)
j Total solvent accessible surface area (SASA) (300–1000)
k Predicted human oral absorption on 0–100% scale (> 80% high and < 20% poor)

Compound name Mol.Wta HBDb HBAc QPPCacod QPlogBBe QPPMDCKf CNSg QPlogSh QPlogPo/w
i SASAj % Human oral 

 absorptionk

DB04868 529.523 2 8 777.648 − 0.622 1663.567 − 1 − 6.969 5.14 769.116 82.864
DB04739 479.583 2 10.5 66.53 − 0.188 32.354 1 − 3.728 3.067 822.448 77.533
DB11841 376.414 3.5 7.5 208.337 − 1.765 90.785 − 2 − 5.057 2.749 702.722 84.543
DB07326 433.776 2 7.5 548.509 − 0.656 2457.567 0 − 6.064 3.568 680.267 96.865

Table 4  Toxicity prediction report of DB04868, DB04739, DB11841, and DB07326

DrugBank ID Toxicity target and their probability score LD50 (mg/kg)

Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

DB04868 Active (0.82) Active (0.53) Active (0.98) Inactive (0.59) Inactive (0.72) 800 54.26
DB04739 Active (0.55) Inactive (0.65) Active (0.77) Inactive (0.76) Inactive (0.65) 100 54.26
DB11841 Inactive (0.72) Inactive (0.53) Inactive (0.97) Inactive (0.67) Inactive (0.84) 22 68.07
DB07326 Active (0.72) Active (0.54) Inactive (0.77) Active (0.51) Inactive (0.81) 500 54.26
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and Asp381 but displays less than 10% of H-bond interac-
tion with GLU286 during the 100 ns simulation. DB11841 
retains more than 40% of H-bond interaction with GLU286, 
Thr315, and Met318 but displays less than 40% of H-bond 
interaction with Asp381 during the 100  ns simulation. 
Lastly, DB07326 retains more than 60% of H-bond interac-
tion with Met318 and Asp381 but displays less than 20% of 
H-bond interaction Glu286 and Thr315. The ligand–protein 
2D interactions following the 100 ns are depicted in Fig. 5. 
Overall, Fig. 6 shows that the critical amino acids of protein 
that majorly formed H-bond with nitrogen and amino groups 
of the ligands. In some cases, the H-bond is mediated by 
water molecules.

DFT analysis

The visualization of the optimized top hits DB04739, 
DB07326, and DB11841 including nilotinib (DB04868) 
was obtained using Chemcraft package (v1.8), and the result 
is presented in Fig. 7. The DFT calculations of the top hit 
molecules were optimized at B3LYP/6-31 G (d, p) basis 
set in the gas phase. The (ΔEHOMO–LUMO) of the top hits is 
arranged in ascending order: DB04739 (3.8 eV) < DB07326 

(4.11  eV) < DB04868 (4.13  eV) < DB11841 (4.42  eV) 
(Fig. 8). Among the top hits, DB04739 showed that least 
energy gap of 3.8 eV implies the high chemical reactivity.

Discussion

PD is the most common movement disorder [2]. PD is 
majorly linked with the depletion of dopamine form substan-
tia nigra leading to disruption of substantia nigra-striatum 
pathway [1]. Pathologically, α-synuclein has been found in 
numerous brain specimens obtained from preclinical and 
clinical studies [16, 52]. α-synuclein contributes to PD by 
activation of non-neuronal cells [53], blocking the synaptic 
transport of dopamine [16], and increases the oxidation of 
dopamine [16]. Therefore, current studies have focused on 
targeting α-synuclein [54]. Similarly, studies of molecules 
that target upstream regulators of α-synuclein are being 
investigated.

c-Abl is a tyrosine kinase that is majorly expressed in 
cancer cells [26, 55]. Similarly, c-Abl expression has been 
shown to elevated in PD. Increased c-Abl expression acti-
vates α-synuclein and also increases the expression of 

Fig. 3  The RMSD graph for the 100 ns simulation trajectory of ligand–receptor complex. A DB04868-3CS9 RMSD. B DB04739-3CS9 RMSD. 
C DB11841-3CS9 RMSD. D DB07326-3CS9 RMSD
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Fig. 4  The RMSF graph for the 100 ns simulation trajectory of ligand–receptor complex. A DB04868-3CS9 RMSD. B DB04739-3CS9 RMSD. 
C DB11841-3CS9 RMSD. D DB07326-3CS9 RMSD. aGlu286, bThr315, cMet318, dAsp381

Fig. 5  The  ligand interaction fractions graph of ligands with amino 
acids of 3CS9 for the 100 ns simulation trajectory. A DB04868-3CS9 
ligand interaction fraction. B DB04739-3CS9 ligand interaction frac-

tion. C DB11841-3CS9 ligand interaction fraction. D DB07326-3CS9 
ligand interaction fraction
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α-synuclein, thereby contributing to PD development [31, 
33]. In line with the above observations, several studies 
have shown to decreased the activation and expression of 
α-synuclein upon inhibition of c-Abl [31, 33]. Currently, 
nilotinib [29, 36] and vodobatinib [27] are being investigated 
for PD.

In this study, three molecules, DB04739 (norimatinib), 
DB07326, and DB11841 (entinostat) were identified as 
potential c-Abl inhibitors through molecular docking and 
molecular dynamics studies. The overall results of these 
molecules were compared with nilotinib that is complex-
ing with protein (PBD ID 3CS9). Based on molecular 
docking studies and BBB permeability prediction, 21 

hits were short-listed analysis. Molecular docking studies 
show that nilotinib is having a better binding affinity of 
− 14.2 kcal/mol. This was followed by DB06925, vodo-
batinib, imatinib with binding affinity of − 13.4 kcal/mol, 
12.8 kcal/mol, and 12.4 kcal/mol, respectively. While the 
binding affinity of norimatinib, DB07326, and entinostat 
were − 11.8 kcal/mol, − 11.8 kcal/mol, and − 10.8 kcal/
mol, respectively. Insights into the 2D interactions of ori-
matinib, DB07326, and entinostat indicate that molecules 
form H-bond with the same residues (Glu286, Thr315, 
Met318, Asp381) that interacts with nilotinib [56]. MM-
GBSA studies indicate that ΔG bind, ΔCoul, ΔH-bond, 
ΔLipo, and ΔvdW are positively contributing to the 

Fig. 6  The 2D interaction diagram of ligand–receptor complex for the 100  ns simulation trajectory. A DB04868-3CS9 2D interactions. B 
DB04739-3CS9 2D interactions. C DB11841-3CS9 2D interactions. D DB07326-3CS9 2D interactions
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ligand–receptor binding. ADME prediction by QikProp 
module, Schrodinger revealed that all the hit molecules 
follow Lipinski’s rule of five and is estimated to have good 
human oral bioavailability above 75% when compared to 
the standard, DB04848. All the molecules display good 
blood–brain permeability within an acceptable QPlogBB 
range of − 3.0 to 1.2. The ADME parameters of the hits 
such as aqueous solubility prediction and total solvent 
accessible surface area display acceptable range. DFT 
calculation indicates that DB04739 is having the lowest 

energy gap when compared to other hits. This indicates 
that DB04739 is likely to be reactive when compared 
to other hits. However, toxicity prediction revealed that 
DB04868, DB04739, and DB07326 exhibit toxicity signs 
such as hepatoxicity, carcinogenicity, mutagenicity, immu-
notoxicity, and cytotoxicity. In contrast, DB11841 shows 
no signs of toxicity, suggesting its potential as a drug can-
didate for both preclinical and clinical assessments in PD. 
However, it is crucial to note that  LD50 prediction urges 
careful dosage selection for this compound.

Fig. 7  Visualization of opti-
mized geometrical structure of 
DB04868, DB04739, DB11841, 
and DB07326

Fig. 8  EHOMO and ELUMO mapping of DB04868, DB04739, DB11841, and DB07326. Blue color indicates positive potential. Red color—nega-
tive potential
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Based on the 2D interactions, BBB prediction and bind-
ing affinity DB04739, DB07326, and DB11841 were further 
selected for molecular dynamics studies. Molecular dynam-
ics studies show that norimatinib, DB07326, and entinostat 
are all stable during the course of 100 ns simulation. RMSD 
of the protein and the ligands fall within the acceptable range 
(< 2.5 Å). Similarly, the RMSF of protein, particular in the 
positions which coincides with the key amino acids (Glu286, 
Thr315, Met318, Asp381) that forms H-bond is minimal 
(< 1.5 Å). A low RMSF value in the binding site of amino 
acids, especially those that participated in H-bond forma-
tion, indicates that these residues make strong interactions 
with the small molecule with minimal deviation from its ini-
tial location at an atomistic level in the simulation trajectory. 
This results in optimal binding between the small molecule 
and the protein. The ligand interaction fractions of the three 
ligands, norimatinib, DB07326, and entinostat, are compa-
rable to that of nilotinib except the contact of norimatinib 
with Glu286 which is too weak (< 10%).

DB04868 (nilotinib) is a multi-kinase inhibitor that is 
preferentially targeting Abl. Nilotinib has been reported to 
inhibit misfolded proteins including α-synuclein in several 
neurodegenerative models. Nilotinib is clinical approved 
drug for the treatment of chronic myeloid leukemia [29]. 
DB04739 (norimatinib) is an active metabolite of imatinib 
that is being investigated as potential anticancer agent. Both 
imatinib and norimatinib have shown to inhibit Abl and 
thereby prevent cancer growth [57, 58]. However, unlike 
imatinib, norimatinib has been shown to have a weak anti-
cancer activity [58]. DB07326 is an experimental molecule. 
It is a potent and selective c-Kit inhibitor that was discovered 
as a possible agent for the treatment of inflammatory and 
autoimmune diseases [59]. DB11841 (entinostat) belongs to 
a class of molecule that inhibits histone deacetylase. It is cur-
rently under clinical trials (NCT02115282, NCT05053971, 
NCT03250273) and is being investigated as a possible agent 
for the treatment of several cancer.

Conclusion

In summary, three molecules namely DB04739 (nori-
matinib), DB07326, and DB11841 (entinostat) were identi-
fied as potential inhibitor of c-Abl protein. These molecules 
interact with key amino acids of c-Abl that are shown to 
interact with Nilotinib. Based on molecular docking, 
DB04739, DB07326, and DB11841 were further selected 
for MD simulation. Among these three molecules, DB04739 
and DB11841 interact the least with Glu286 (< 10%). Other 
than Glu286, Thr315, Met316, and Asp381, DB04739, 
DB07326, and DB11841 are able to form additional H-bond 
to other amino acids that are mediated by water. These 

observations highlight the additional benefits of DB04739, 
DB07326, and DB11841 over nilotinib and could be poten-
tial agents for targeting c-Abl in PD. Furthermore, based 
on DFT studies, DB04739 is likely to exhibit reactivity in 
comparison to other hits. In addition, toxicity prediction 
indicates that DB11841 shows no signs of toxicity, making 
it a potential candidate for preclinical and clinical testing in 
PD. In conclusion, our current study is limited to in silico 
findings. Further in vitro and in vivo studies on PD models 
focusing on toxicities, efficacy, and safety of the reported 
molecules are warranted. In addition, the neuroprotective 
or disease-modifying studies emphasizing on the ability of 
the reported molecules to inhibit c-Abl for the prevention of 
PD is required to confirm the findings highlighted herewith.
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