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Abstract
To discover novel and effective potential agricultural antifungal agents, various kinds of imidazo[1,2-a]quinoxaline deriva-
tives were designed, and synthesized from available and inexpensive reagents. Their antifungal activities were first evaluated 
against ten typical phytopathogenic fungi. The in vitro antifungal activity showed that some compounds exhibited more 
obvious broad-spectrum fungicidal activity than the two commercially-available fungicides chlorothalonil and hymexazol. 
Valsa mali and Botrytis cinerea strains exhibited the highest susceptibility with  EC50 values of 1.4–27.0 μg/mL to more than 
ten compounds. Compounds 5c and 5f showed the most promising inhibitory effects against Valsa mali  (EC50 = 5.6 μg/mL) 
and Fusarium solani  (EC50 = 5.1 μg/mL), respectively. Preliminary studies on the mechanism of action indicated that the 
imidazo[1,2-a]quinoxaline skeleton likely exerted its antifungal effects by disrupting hyphal differentiation, spore germina-
tion, and germ tube growth. Moreover, the cell experiment results indicated that these target compounds possessed good 
safety to BV2 cells. Overall, compounds 5c and 5f can be considered candidate compounds against specific fungi for further 
detailed research. This study can provide a theoretical basis for the application of imidazo[1,2-a]quinoxaline scaffolds as 
novel fungicides in agriculture.
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Introduction

Plant diseases caused by phytopathogenic fungi are the 
primary factor causing global agricultural losses, which 
can seriously affect the normal growth, transportation, 
and storage of grains, vegetables, and fruits [1]. Tak-
ing the filamentous fungi Botrytis cinerea and Fusarium 
graminearum as examples, Botrytis cinerea is the major 
fungal species that triggers gray mold, which can infect 
over 200 plant species and cause considerable yield loss 
during agricultural production [2]. Fusarium graminearum 
is commonly found on wheat, barley, and corn, infected 
kernels appear shrunken and have white-to-pink colored 
mold, which leads to a reduction in grain yield and nutri-
tional value by producing various mycotoxins [3]. Cur-
rently, the application of chemical fungicides has given a 
satisfactory effect on the prevention and control of these 
devastating diseases. Nevertheless, the long-term overuse 
and misuse of a single chemical fungicide are responsible 
for the disadvantages of resistance, residue, and resurgence 
(“3R” problems) [4]. Therefore, it is urgent to search for 
small molecules with high efficiency and low toxicity to 
expand the selection range of fungicides.

Nitrogen-containing heterocyclic compounds are cur-
rently considered a promising framework for the develop-
ment of new pesticides [5, 6], especially compounds con-
taining quinoxaline rings that exhibit various biological 

properties including antitumor, antimalarial, antiviral, 
antibacterial, and anti-inflammatory [7, 8]. Meanwhile, 
imidazoquinoxaline has attracted much attention owing 
to its striking antitumor [9–12], antiepileptic (LU 73068) 
[13], and antiallergic (Dazoquinast) activity [14], while 
there are rare reports on the utilization of the imidazoqui-
noxaline backbone as a pesticide. Therefore, to explore 
the application value of the imidazolequinoxaline skeleton 
in the prevention and control of plant diseases, this paper 
adopts homologous derivative and molecular hybridiza-
tion strategy to design and synthesize various kinds of 
imidazo[1,2-a]quinoxaline derivatives via available and 
inexpensive reagents, and their antifungal properties 
against ten phytopathogenic fungi of agricultural rele-
vance were evaluated firstly (Fig. 1). Finally, the antifun-
gal mechanism of the compounds with excellent inhibi-
tory activity was preliminarily explored by observing the 
mycelial morphology changes and spore germination via 
electron microscopy.

Results and discussion

Chemistry

Initially, the construction method of the imidazo[1,2-a]qui-
noxaline skeleton is shown in Scheme 1. 2,3-dichloroqui-
noxaline (1a) was reacted with 2,2-dimethoxyethanamine, 

Fig. 1  The design strategy of target compounds in this work
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prop-2-yn-1-amine or ammonium hydroxide in different 
solvents to obtain the respective 2-amino-3-chloroquinox-
aline (2c) and its derivatives (2a and 2b), followed by treat-
ment of compounds 2a and 2b with strong acids (HBr and 
 H2SO4) to afford cyclization products 3a and 3b, which 
were converted to key intermediate compounds 4a, b via 
chlorination with  POCl3 [15]. Meanwhile, compound 4d can 
be obtained directly by condensation of compound 2c with 
ethyl 3-bromo-2-oxopropanoate, but the resulting yield was 
relatively low (15.2%) [14]; the preparation procedure of 
compound 4c includes reduction, cyclization, hydrolysis, 
decarboxylation and chlorination five synthetic steps [16]. 
Chlorinated (4e) and brominated (4f) derivatives were syn-
thesized by reacting intermediate 4a with N-chlorosuccin-
imide (NCS) and N-bromosuccinimide (NBS), respectively 
[17].

To investigate the effect of substituents on the antifungal 
activity, the B ring of imidazo[1,2-a]quinoxalines (4a–c) was 
modified by the introduction of the corresponding amine, 
ether, sulfonamide, and hydrazine functionalities as depicted 
in Schemes 2, 3. Compounds 5a–c and 6a–c (by-products) 

were obtained by ammonolysis of intermediate 4a–c with 
 NH3–CH3OH at 100 °C, and methylamino (5d–f), dimethyl-
amino (5g–i), and tryptamino (5j–l) substituted compounds 
were also formed under similar conditions (100/80 °C, tube 
sealing). Compounds 5m–o were prepared by replacing 
the chlorine atom of compounds 4a–c with morpholine. In 
addition, etherification of compounds 4a–c with various 
alcohols or phenols under basic conditions afforded ether 
derivatives 6d–i. Finally, as depicted in Scheme 3, direct 
coupling of compounds 4a, b with various sulfonamides in 
Pd(OAc)2/xantphos/Cs2CO3/1,4-dioxane system at 100 °C 
gave compounds 7a–d. Compound 4a was hydrolyzed with 
85% hydrazine hydrate and subsequently acylated with acyl 
chloride to afford 8a, b. Spectroscopic data (HRMS, 1H 
NMR, and 13C NMR) of the target compounds were con-
sistent with their structures.

Antifungal activity

Ten phytopathogenic fungi, including Fusarium solani (FS), 
Fusarium oxysporum (FO), Botryosphaeria dothidea (BD), 

Scheme 1  Synthetic route for 
the preparation of compounds 
4a–f 
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Fusarium graminearum (FG), Sclerotinia sclerotiorum 
(SS), Valsa mali (VM), Alternaria alternata (AA), Pyricu-
laria oryzae (PO), Alternaria brassicae (AB), and Botrytis 
cinerea (BC), that frequently occur in the Chinese agroeco-
system were selected as the test strains. The in vitro anti-
fungal activities of the target compounds were investigated 
through the classical mycelium linear growth rate method 
[18]. Hymexazol (Hym) and chlorothalonil (Chl), two com-
mercial fungicides served as positive controls.

The results of the preliminary antifungal activity of all the 
target compounds are summarized in Table 1. The obtained 
data revealed that the synthesized compounds displayed 
good to excellent antifungal activity at 50 μg/mL. Among 
them, eight compounds (including compounds 4b, 4c, 4e, 

5c, 5f, 6e, 6 h, and 7d) showed satisfactory antifungal effects 
against F. solani with inhibition rates of > 80%, which was 
superior to the positive controls hymexazol (63.9%) and 
chlorothalonil (76.6%); eleven compounds exhibited bet-
ter antifungal activity (> 50%) against F. oxysporum than 
hymexazol (46.2%), especially compounds 4e (73.9%), 5c 
(84.1%), and 7d (72.1%), which gave higher activity than 
chlorothalonil (69.2%). Toward B. dothidea, compounds 4e 
(81.9%), 5a (98.4%), 6 g (91.9%), and 7d (89.6%) exerted 
more promising antifungal effects than the two commercial 
fungicides. For F. graminearum, seven compounds (4b, 
4c, 4e, 5c, 5f, 5i, and 7c) displayed slightly higher antifun-
gal activity (75.8–86.7%) than chlorothalonil (70.7%) and 
hymexazol (63.8%). Regretfully, only five compounds 4e, 

Scheme 2  Synthetic route for 
the preparation of target com-
pounds 5a–o and 6a–i 

Scheme 3  Synthetic route for the preparation of compounds 7a–d and 8a–b 
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5c, 5i, 7c, and 7d possessed comparable antifungal activities 
(67.9–74.5%) to hymexazol (65.6%) against A. alternata, 
and no noticeable inhibitory efficacies were observed for all 
compounds toward S. sclerotiorum, P. oryzae, and A. bras-
sicae in comparison with the positive control hymexazol. 
However, it is worth mentioning that eighteen compounds 
demonstrated satisfactory inhibitory effects (> 60%) against 
V. mali, and thirteen compounds revealed better antifungal 

activity (> 80%) against B. cinerea than hymexazol (72.7%), 
especially the inhibition rates of compounds 4a, 4e, 5i, 6a, 
6c, 6d, and 6f reached over 90%, which could almost com-
pletely suppress the growth of mycelium. Furthermore, the 
preliminary structure–activity relationship of these com-
pounds is summarized in Fig. 2.

Inspired by the preliminary antifungal activity results, 
the median effective concentration  (EC50) values of some 

Table 1  Fungicidal activity of the target compounds against ten phytopathogenic fungi (50 μg/mL)

Bold: the inhibition rate was over 50%; Italic: the inhibition rate was over positive control

Compd. Inhibition rate ± SD (%)

FS FO BD FG SS VM AA PO AB BC

4a 31.7 ± 1.1 27.5 ± 1.2 57.7 ± 0.9 44.7 ± 1.1 61.0 ± 2.0 54.5 ± 0.6 28.1 ± 0.8 9.3 ± 1.1 30.5 ± 2.1 98.5 ± 0.7
4b 86.4 ± 1.3 58.3 ± 1.3 66.2 ± 0.8 86.7 ± 0.6 62.5 ± 1.0 89.5 ± 0.6 61.2 ± 1.0 48.7 ± 2.1 68.5 ± 1.5 80.5 ± 0.6
4c 87.1 ± 1.3 55.8 ± 1.3 29.0 ± 0.8 78.9 ± 0.6 40.7 ± 1.3 89.5 ± 0.6 60.1 ± 1.5 46.2 ± 1.2 57.1 ± 0.9 66.7 ± 0.6
4d – 13.9 ± 2.3 40.3 ± 1.3 22.7 ± 1.1 36.3 ± 1.1 26.3 ± 1.1 28.6 ± 1.0 30.8 ± 1.2 42.6 ± 0.9 33.3 ± 2.5
4e 88.9 ± 1.0 73.9 ± 2.0 81.9 ± 1.0 83.3 ± 0.1 67.4 ± 1.5 87.3 ± 0.7 68.0 ± 0.1 71.8 ± 1.2 69.4 ± 1.0 90.2 ± 0.7
4f 31.1 ± 1.0 21.7 ± 1.0 – 27.5 ± 1.8 – 28.2 ± 0.7 24.0 ± 0.9 15.4 ± 0.2 28.3 ± 0.1 64.8 ± 0.7
5a 30.6 ± 1.3 25.2 ± 1.3 98.4 ± 0.8 69.3 ± 1.1 32.5 ± 0.6 80.3 ± 1.1 42.9 ± 2.1 28.2 ± 2.1 48.1 ± 2.3 50.6 ± 0.6
5b 2.5 ± 0.6 – 34.4 ± 2.4 – 23.9 ± 2.0 22.7 ± 0.7 23.4 ± 1.1 20.9 ± 2.2 44.0 ± 0.9 28.4 ± 2.8
5c 85.2 ± 1.0 84.1 ± 0.7 57.1 ± 0.6 80.3 ± 1.5 58.5 ± 1.2 96.1 ± 0.8 67.9 ± 0.7 53.7 ± 1.5 43.3 ± 0.7 31.8 ± 0.2
5d 38.9 ± 0.6 19.4 ± 1.3 37.1 ± 0.8 64.0 ± 0.6 40.0 ± 0.6 76.3 ± 0.6 51.2 ± 1.7 30.8 ± 1.2 38.9 ± 0.9 65.4 ± 1.5
5e 58.3 ± 1.3 41.7 ± 1.3 33.9 ± 1.3 16.0 ± 0.6 52.5 ± 0.6 90.8 ± 0.6 51.1 ± 1.0 46.2 ± 0.9 63.0 ± 0.9 56.8 ± 1.0
5f 85.7 ± 1.3 52.4 ± 1.9 10.6 ± 2.0 80.9 ± 1.3 28.6 ± 1.3 92.4 ± 0.7 45.3 ± 1.8 23.7 ± 2.5 27.8 ± 2.3 78.4 ± 0.6
5g 5.6 ± 1.3 8.3 ± 1.3 17.7 ± 2.4 41.3 ± 0.1 28.8 ± 0.6 42.1 ± 1.1 38.8 ± 1.7 33.3 ± 0.2 50.0 ± 0.9 51.9 ± 1.5
5h 33.3 ± 3.5 36.1 ± 2.3 17.7 ± 0.8 58.7 ± 0.6 28.8 ± 1.0 64.5 ± 0.6 46.9 ± 0.8 43.6 ± 1.2 24.1 ± 0.9 76.5 ± 1.5
5i 58.5 ± 1.0 48.2 ± 0.6 21.2 ± 0.9 75.8 ± 2.6 68.7 ± 1.2 71.2 ± 1.2 68.1 ± 1.4 55.1 ± 1.3 43.3 ± 1.1 91.1 ± 0.8
5j 50.0 ± 2.4 25.6 ± 2.2 70.3 ± 2.2 37.8 ± 1.9 62.0 ± 2.0 54.5 ± 1.4 63.8 ± 2.0 58.1 ± 0.7 60.1 ± 0.9 85.1 ± 0.1
5k 22.2 ± 0.9 30.6 ± 2.3 43.5 ± 0.8 30.7 ± 1.1 38.8 ± 0.6 48.7 ± 0.6 49.0 ± 1.7 43.6 ± 1.2 59.3 ± 2.3 66.7 ± 1.0
5l 53.3 ± 1.2 10.9 ± 0.1 44.7 ± 2.0 33.3 ± 0.9 4.3 ± 1.0 38.0 ± 1.8 30.0 ± 0.9 23.1 ± 1.2 32.6 ± 1.0 50.7 ± 1.3
5m 27.8 ± 1.3 27.8 ± 2.3 77.4 ± 0.5 45.3 ± 1.1 46.3 ± 0.6 53.9 ± 1.1 59.2 ± 1.7 48.7 ± 1.2 59.3 ± 0.9 77.8 ± 2.5
5n – 22.2 ± 2.9 16.1 ± 1.3 26.7 ± 0.6 35.0 ± 0.6 30.3 ± 1.1 40.8 ± 2.5 30.8 ± 1.2 48.1 ± 0.9 56.8 ± 0.6
5o 28.9 ± 0.2 26.1 ± 1.0 – 27.5 ± 1.8 – 31.0 ± 0.3 26.1 ± 0.9 20.5 ± 1.2 17.4 ± 1.1 42.3 ± 0.7
6a 61.0 ± 1.1 23.1 ± 1.2 30.8 ± 0.9 5.8 ± 0.9 31.1 ± 0.9 34.7 ± 0.7 30.8 ± 0.9 14.6 ± 1.1 27.5 ± 0.7 96.4 ± 0.1
6b 61.1 ± 1.1 38.5 ± 1.2 32.7 ± 0.9 – 17.6 ± 0.6 63.9 ± 0.7 48.1 ± 0.9 26.8 ± 1.1 60.8 ± 0.9 58.9 ± 0.8
6c 54.4 ± 1.2 42.8 ± 1.3 42.3 ± 0.9 46.5 ± 0.9 37.8 ± 1.0 63.5 ± 0.9 38.5 ± 0.4 29.1 ± 0.3 25.9 ± 0.3 90.2 ± 0.1
6d 68.9 ± 1.1 42.5 ± 2.0 57.4 ± 0.8 60.8 ± 2.2 43.9 ± 2.0 57.1 ± 1.1 38.0 ± 1.7 33.3 ± 1.9 34.8 ± 0.8 98.6 ± 1.2
6e 84.4 ± 1.0 54.3 ± 1.0 14.9 ± 2.0 68.6 ± 1.8 – 71.8 ± 0.7 48.0 ± 0.9 41.0 ± 1.2 41.3 ± 0.1 56.3 ± 0.7
6f 57.1 ± 2.7 52.4 ± 1.1 42.6 ± 2.0 60.3 ± 0.7 57.1 ± 0.7 75.8 ± 1.2 45.3 ± 1.8 31.6 ± 1.2 51.9 ± 0.9 90.5 ± 0.6
6g 72.7 ± 2.1 56.4 ± 3.2 91.9 ± 0.6 55.7 ± 0.6 59.5 ± 0.6 68.6 ± 1.7 53.8 ± 0.9 41.5 ± 1.1 60.8 ± 0.9 84.4 ± 0.8
6h 83.0 ± 1.3 60.5 ± 1.1 58.3 ± 1.7 59.7 ± 2.9 48.6 ± 0.7 77.8 ± 0.7 61.7 ± 1.5 45.9 ± 2.2 58.7 ± 1.8 80.3 ± 1.3
6i 42.2 ± 3.1 32.6 ± 0.1 12.8 ± 1.0 33.3 ± 0.9 – 35.2 ± 0.2 24.0 ± 0.9 20.5 ± 1.2 10.9 ± 0.1 43.7 ± 1.3
7a 15.0 ± 1.2 9.3 ± 1.1 12.5 ± 0.7 31.1 ± 1.3 36.6 ± 2.8 27.3 ± 0.7 36.2 ± 2.0 32.6 ± 1.1 48.0 ± 2.8 58.2 ± 3.5
7b 8.3 ± 1.3 8.3 ± 1.3 24.2 ± 0.8 24.0 ± 0.6 17.5 ± 0.9 18.4 ± 1.1 34.7 ± 1.0 28.2 ± 1.2 31.5 ± 1.5 45.7 ± 1.5
7c 73.9 ± 1.2 53.5 ± 1.1 65.6 ± 2.2 78.4 ± 1.3 70.1 ± 0.7 65.2 ± 2.9 74.5 ± 0.4 69.8 ± 0.1 68.0 ± 0.2 85.5 ± 0.2
7d 80.9 ± 1.0 72.1 ± 1.1 89.6 ± 0.3 56.9 ± 1.7 72.9 ± 1.8 70.8 ± 0.7 74.5 ± 1.0 70.3 ± 1.3 71.7 ± 1.5 88.7 ± 1.1
8a – 2.8 ± 1.3 11.3 ± 1.3 9.3 ± 0.6 21.3 ± 0.6 18.4 ± 0.6 51.0 ± 1.0 15.4 ± 1.2 44.4 ± 1.5 –
8b 14.9 ± 1.0 7.0 ± 1.1 – 20.8 ± 2.1 8.6 ± 0.7 16.7 ± 0.7 23.4 ± 1.0 13.5 ± 1.3 32.6 ± 0.6 38.0 ± 0.7
Chl 76.6 ± 2.0 69.2 ± 1.2 72.6 ± 0.8 70.7 ± 0.6 81.1 ± 1.1 66.7 ± 0.7 49.9 ± 0.9 49.4 ± 4.4 45.7 ± 1.0 98.2 ± 0.8
Hym 63.9 ± 2.3 46.2 ± 2.1 21.2 ± 0.9 63.8 ± 1.2 75.6 ± 1.2 29.2 ± 0.7 65.6 ± 1.0 82.1 ± 1.2 86.4 ± 1.7 72.7 ± 3.1
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selected compounds were further determined at six different 
concentrations (50, 25, 12.5, 6.25, 3.125, and 1.5625 μg/
mL). As displayed in Fig. 3, many compounds exhibited 
obvious inhibitory effects against the eight tested fungi. 
For instance, compound 5f (5.1 μg/mL) exhibited the best 
antifungal activity against F. solani; compounds 4c, 7c, 
and 7d had anti-A. brassicae  EC50 values of 15.4, 18.9, and 
19.7 μg/mL, respectively, superior to hymexazol (26.6 μg/
mL) and chlorothalonil (> 50 μg/mL); the  EC50 range values 
of compounds 4b, 4e, 5a, 6 g, 7c, and 7d against B. dothidea 
were 10.3–24.9 μg/mL, which was better than hymexazol 
(> 50 μg/mL) but lower than chlorothalonil (7.9 μg/mL); the 
inhibitory effects of 4e (28.8 μg/mL) and 7c (23.7 μg/mL) 
on P. oryzae were equivalent to that of hymexazol (24.9 μg/
mL). For A. alternata, eight compounds possessed more pro-
nounced antifungal activity than chlorothalonil, especially 
compound 7c (11.2 μg/mL), which was better than hymex-
azol (16.7 μg/mL). Regarding the F. graminearum strain, 
seven compounds exhibited higher activity than hymexazol, 
but failed to exceed chlorothalonil. Furthermore, it is for-
tunate that twelve compounds demonstrated more promis-
ing potential in controlling V. mali, especially compounds 
5c and 5f with  EC50 values lower than 6.0 μg/mL; thirteen 
compounds (1.4–15.2 μg/mL) displayed obvious antifungal 
activity against B. cinerea, particularly compounds 4a, 4e, 
6a, 6c, and 6d exhibited 3.0–8.5 folds more potent activities 
than hymexazol. In addition, the concentration-dependent 
suppression of the mycelial growth of F.solani, V.mali, and 
B. cinerea by compounds 5f or 6a could also be clearly 
observed in Fig. 4.

Effects of compounds on mycelial growth and spore 
germination [19]

To elucidate the preliminary mechanism of the antifungal 
activity of these compounds, light microscopy was used to 
investigate the influence of compound 5c (6.25 μg/mL) on 
the hyphal growth and spore germination of V. mali (VM) 
fungi. As shown in Fig. 5, in the blank control, the myce-
lium had a smooth surface, much-branched and abundant 
attachment of spindle-shaped spores. In contrast, the myce-
lium of the compound 5c treatment group appeared obvious 

shrinkage and no spore formation. Furthermore, inhibiting 
spore germination is an important means to prevent fungal 
regeneration and infection in plants. Figure 6 shows that 
the spore germination and germ tube elongation were both 
significantly suppressed in the presence of compound 5c at 
different concentrations, and the inhibition rates at concen-
trations of 25, 12.5, and 6.25 μg/mL were 94.4%, 70.3%, 
and 54.1%, respectively. This phenomenon demonstrated 
that compound 5c likely exerted antifungal effects by dis-
rupting hyphal differentiation, spore germination, and germ 
tube growth.

Cell cytotoxicity

Finally, the cell cytotoxicity of the six compounds (4a, 
4e, 5c, 6a, 6c, and 6d) with promising antifungal activity 
against mouse microglia (BV2) cells was further investigated 
in vitro using the CCK-8 assay [20, 21]. From Fig. 7, we 
can see that the cell viability of the tested compounds was 
more than 82.7% on BV2 cells at the high concentration of 
100 μg/mL, and the current results suggested that the tested 
compounds showed low toxicities.

Conclusions

In summary, thirty-six imidazo[1,2-a]quinoxaline derivatives 
were synthesized and evaluated for their fungicidal activ-
ity against ten common phytopathogenic fungi. The results 
showed that some compounds exhibited more excellent and 
broad-spectrum fungicidal activity in vitro than the positive 
controls chlorothalonil and hymexazol, particularly V. mali 
and B. cinerea strains exhibited the highest susceptibility 
with an  EC50 values of 1.4–27.0 μg/mL for more than ten 
compounds. Among them, compounds 5c and 5f displayed 
the most promising antifungal activity against V. mali and F. 
solani, with an  EC50 values of 5.6 and 5.1 μg/mL, respectively, 
which can be considered as the potential candidate compounds 
for controlling specific fungi. SAR analysis showed that the 
type of substituents on the imidazo[1,2-a]quinoxaline skeleton 
significantly effects the antifungal activity. Preliminary studies 
on the mechanism of action indicated that these compounds 
likely exerted their antifungal effects by disrupting hyphal 

 

Fig. 2  The preliminary structure–activity relationships of the compounds against tested fungi
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differentiation, spore germination, and germ tube growth. 
Moreover, the cell experiment results indicated that the sig-
nificantly bioactive compounds possessed good safety to BV2 
cells. It is worth pointing out that this is the first report on 
the application of an imidazo[1,2-a]quinoxaline skeleton as 

agricultural antifungal agent, and further studies on the struc-
tural optimization and target exploration are still underway in 
our laboratory. Overall, our findings may provide a theoretical 
basis for the future utilization of imidazo[1,2-a]quinoxaline 
scaffolds as novel fungicides in agriculture.

Fig. 3  EC50 values (μg/mL) of 
selected compounds against 
eight phytopathogenic fungi
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Experimental

All starting materials were obtained from commercial 
sources and used without further purification. Melting points 
were determined by the X-4 digital display micro melting 
point apparatus (Beijing Tech Instrument Co., Ltd). 1H NMR 
and 13C NMR spectra were recorded on Bruker Avance NEO 
600 MHz and 150 MHz instruments, respectively, using 
TMS as the internal standard and  CDCl3 or DMSO-d6 as the 
solvent. High-resolution mass spectra (HRMS) were carried 
out with an APEX II Bruker 4.7 T AS instrument.

Synthesis

See the “Supporting information” section for the synthetic 
methods of the target compounds.

Antifungal activity and spore germination assay

Antifungal activity assay [18]

The target compounds were screened in vitro for their anti-
fungal activity against ten phytopathogenic fungi (Fusarium 
solani, Fusarium oxysporum, Botryosphaeria dothidea, 
Fusarium graminearum, Sclerotinia sclerotiorum, Valsa 
mali, Alternaria alternata, Pyricularia oryzae, Alternaria 
brassicae, and Botrytis cinerea) by using the mycelial 
growth rate method. Potato dextrose agar (PDA) medium 
was prepared in the flasks and sterilized. The target com-
pounds were dissolved in DMSO before mixing with PDA, 
and the concentration of test compounds in the medium was 
fixed at 50 μg/mL. The medium was then poured into steri-
lized Petri dishes. The mycelia disks (4 mm) were inoculated 
in the center of the Petri dishes (three replicates for each 
treatment) and incubated at 27 ± 1 °C for 4 days. DMSO 

Fig. 4  Effects of compound 5f or 6a on the growth of F.solani, V.mali, and B. cinerea at different concentrations (CK: blank control group)

Fig. 5  Effects of compound 5c on the mycelial morphology of V. mali at 6.25 μg/mL. (VM-CK represented the normal mycelial morphology of 
VM, and VM-5c represented the mycelial morphology of VM after treatment with compound 5c)



Molecular Diversity 

1 3

without any compounds mixed with PDA served as a con-
trol (the final concentration of DMSO < 0.5%). Hymexa-
zol and chlorothalonil were used as positive controls. The 
radial growth of the fungal colonies were measured and 

the data were statistically analyzed. The inhibitory rate 
was calculated by the following formula: inhibition rate 
(%) = (C–T) × 100/(C–4 mm), where C represents the diam-
eter of fungi growth on untreated PDA, and T represents 

Fig. 6  Inhibitory effect of different concentrations of compound 5c on the spore germination of V. mali. (400 × ; scale bar: 50 μm)

Fig. 7  In vitro cytotoxicity of 
some compounds to BV2 cells
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the diameter of fungi on treated PDA. Finally, the linear 
regressions of inhibition rates (%) versus seven concentra-
tions of some selected compounds, were obtained, and the 
 EC50 values were calculated. Statistical analyses of the data 
were performed with GraphPad Prism 5.0.

Spore germination assay [19]

The V. mali was retrieved from the storage tube and cultured 
for 2 weeks at 27.5 °C on potato dextrose agar (PDA, Difco). 
Plates were then flooded with sterile distilled water, and 
conidia were scraped with a glass stick. Mycelial debris was 
removed by filtration through double-layer cheesecloth, and 
the spores were harvested and suspended in sterile distilled 
water containing 0.1% (v/v) Tween 20. Spores were counted 
using a hemocytometer and adjusted to 1.0 ×  106 spores/mL.

Three concentrations (6.25  µg/mL, 12.5  µg/mL, and 
25 µg/mL) of compound 5c and the control (0.5% DMSO) 
were separately tested for spore germination of V. mali. The 
samples were inoculated with spore suspension of V. mali 
containing 1.0 ×  106 spores/mL. Aliquots of 10 μL of pre-
pared spore suspension were placed on 96-hole plate in six 
copies. 96-hole plate containing the spores was incubated 
in a moisture chamber at 25 °C for 48 h. Each hole was then 
observed under the microscope for spore germination. The 
spore-generated germ tubes were enumerated, and the per-
centage of spore germination was calculated.

Cytotoxicity activity [21]

The cytotoxicity of the target compounds was detected by 
Cell Counting CCK-8 kit (CCK-8 assay). CCK-8 was based 
on the water-soluble tetrazolium salt WST8 (2-(2-methoxy-
4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-dinitrophenyl)-2H-
tetrazole monosodium salt). The BV2 cells were seeded at 
a density of 1.5 ×  104 cells per well in the 96-hole plate and 
incubated at 37 °C in an atmosphere of 5%  CO2 for 24 h. 
After incubation, different concentrations of the target com-
pounds were added and incubated for 24 h. 10 μL of CCK-8 
reagent was added to each well and incubated for 1 h in the 
dark. The absorbance at 450 nm was measured by microplate 
reader. The untreated group was considered as the control. 
The data were analyzed by GraphPad Prism 5.0.

Supporting information

Spectral images of 1H-NMR, 13C-NMR and HRMS are pro-
vided in the Supporting Information Section.
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