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Abstract
Virtual screening (VS) is an important approach in drug discovery and relies on the availability of a virtual library of syntheti-
cally tractable molecules. Ugi reaction (UR) represents an important multi-component reaction (MCR) that reliably produces 
a peptidomimetic scaffold. Recent literature shows that a tactically assembled Ugi adduct can be subjected to further chemical 
modifications to yield a variety of rings and scaffolds, thus, renewing the interest in this old reaction. Given the reliability 
and efficiency of UR, we collated an UR derived library (URDL) of small molecules (total = 5773) for VS. The synthesis of 
the majority of URDL molecules may be carried out in 1–2 pots in a time and cost-effective manner. The detailed analysis 
of the average property and chemical space of URDL was also carried out using the open-source Datawarrior program. The 
comparison with FDA-approved oral drugs and inhibitors of protein–protein interactions (iPPIs) suggests URDL molecules 
are ‘clean’, drug-like, and conform to a structurally distinct space from the other two categories. The average physicochemical 
properties of compounds in the URDL library lie closer to iPPI molecules than oral drugs thus suggesting that the URDL 
resource can be applied to discover novel iPPI molecules. The URDL molecules consist of diverse ring systems, many of 
which have not been exploited yet for drug design. Thus, URDL represents a small virtual library of drug-like molecules 
with unexplored chemical space designed for VS. The structures of all molecules of URDL, oral drugs, and iPPI compounds 
are being made freely accessible as supplementary information for broader application.
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Introduction

Modern drug discovery relies on the identification of small 
molecules capable of interacting with a biological target 
of interest (receptor or enzyme) to achieve a therapeutic 
action. In a typical ‘target-based’ approach, finding a ‘hit’ 
molecule for the desired target is one of the major bottle-
necks in drug discovery. One of the widely used strategies 
is to conduct high throughput screening (HTS) [1] of a 
large or ultra-large molecule collection at a miniature scale 
using robotic tools. The obtained hits are then further vali-
dated and structurally optimized to obtain lead molecules 
with potent biological activity, optimum pharmacokinet-
ics, and low toxicity potential. However, HTS requires 
enormous resources in terms of sophisticated equipment, 
time, and skilled manpower, adding to the overall cost of 
drug development [2]. One of the alternatives is to screen 
large libraries of molecules using in silico or molecular 
modelling techniques rather than in wet labs. The in-silico 
or virtual screening (VS) relies on computational models 
to represent biomolecular targets and small molecules [3, 
4]. In the widely employed structure-based VS (SBVS) 
approach, interactions between the protein and ligands are 
modelled to predict the binding affinity and pose [5–9]. 
The inherent advantage of VS is that only the molecules 
that appear promising in these models need to be experi-
mentally validated. Thus, several small molecule libraries 
have emerged over the years for their application in VS and 
drug discovery [10, 11]. The most notable among these 
are ZINC [12], ChEMBL [13, 14], DrugBank [15], and 
PubChem [16], which are publicly accessible to download 
and use. However, these databases have some common 
set of molecules and hence overlapping chemical space 
[17]. With the availability of various open-source compu-
tational tools, enumerating ultra-large virtual libraries has 
increasingly become effortless, and so is their application 
in drug design [7, 9, 18]. However, one of the biggest chal-
lenges after a hit is obtained through VS is the molecules’ 
availability and synthetic tractability for experimental 
validation. Most commonly, the predicted hit compounds 
are purchased from commercial vendors who provide a 
variety of small molecules including target-focused and 
on-demand compounds. However, the price is often exor-
bitantly high and often in the range of 20–200 USD per 
milligram for in-stock compounds. The cost is even higher 
for tailor-made molecules synthesized on demand. Thus, 
dependence on the commercial supply of molecules is not 
always economically viable, especially in small academic 
labs. Additionally, even a small amount of impurity in 
the sourced samples due to inadequate quality control or 
generated during long shelf storage might result in false 

positives. Therefore, resynthesis of the hits to obtain high 
purity samples is important for any VS approach. How-
ever, the chemical synthesis of such commercial com-
pounds may not be reported and might involve several 
steps consisting of challenging chemistry.

One solution is to curate virtual libraries of molecules 
obtainable from highly reliable reactions. One notable 
example is the commercially available REadily Acces-
sibLe (REAL) database provided by Enamine com-
pany, reported to have ~ 80% synthesis success rate [19]. 
Recently, the LibINVENT tool reported by Patronov and 
coworkers [20] has also been made available to generate 
in silico libraries based on different reactions. However, 
the synthesis of molecules from these libraries may still 
involve multiple steps and unforeseen practical problems 
such as the unavailability of the starting materials and 
lower yields.

Multi-component reactions (MCRs) produce com-
plex molecules with high pot economy [21] and hence, 
are potential candidates to enumerate virtual libraries 
[22–24]. The Ugi-reaction (UR) is one of the oldest and 
most widely studied MCRs that typically yields a pepti-
domimetic scaffold in a single pot reaction between an 
aldehyde, carboxylic acid, amine, and isonitrile compo-
nents [25, 26]. UR also possess high atom economy since 
only one water molecule is produced as a by-product. In 
the last 2 decades, application of UR in the synthesis of 
novel scaffolds has increased, as indicated by the number 
of papers appearing in PubMed (Fig. 1). A typical strategy 
involves the formation of UR adducts from commercially 
available building blocks followed by a series post-Ugi 
modifications that may include intramolecular heteroatom  
alkylation/acylation, condensation, and rearrangement 
reactions [27–32]. In several cases UR and post-Ugi modi-
fications can be done in one pot without the need of isolat-
ing the UR product, thus leading to facile access to diverse 
chemotypes for wider application [27, 33–38].

Additionally, with the commercial availability of a vari-
ety of starting materials for UR, it is convenient to gen-
erate analogues for structure–activity relationship (SAR) 
studies in a parallel fashion [39]. Despite these advantages 
recently reported UR-derived and post-Ugi-derived inter-
esting chemotypes remain unexplored in medicinal chem-
istry (vide infra). The plausible reason might be that  such 
reports mostly appear in organic chemistry literature, pri-
marily focusing on optimising synthetic methodology and 
characterization. To tap this unexplored chemical space we 
planned to curate a UR derived library (URDL) of small 
molecules reported in the literature, intending to evaluate 
its chemical space [40] and make it accessible for VS. The 
property and chemical space of URDL is also compared 
with the FDA-approved oral drugs as a standard.
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Results and discussion

Library curation and description

The PubMed search engine was used to collate literature 
discussing the synthesis of novel scaffolds/rings using 
either UR or post-Ugi modifications. Many of these mol-
ecules are reported to be synthesized conveniently in 1–4 
synthetic steps which in several cases may be performed 
in 1–2 pots without the need of isolating/purifying the 
intermediates. In such cases, we included products of all 
the steps except the ones which are not isolated or not 
characterized to represent ‘real’ molecules. In addition, 
to signify the facileness of synthesis we have annotated 

each compound with the number of pots required for its 
synthesis, rather than the number of synthetic steps.

For instance, representative compound 1 (Fig. 2A) in 
URDL is synthesized in 2 steps; UR followed by post-Ugi 
Povarov-type reaction [41]. However, both steps can be car-
ried out in a single pot without the need of isolation of the 
Ugi products. Thus, only the final molecules belonging to 1 
substructure are included in the library and annotated with 
1 pot synthesis. The Ugi-product intermediates which were 
neither isolated nor characterized, are not included in the 
library even though they were obviously synthesized during 
the 1 pot process. Likewise, Fig. 2B represents a cascade 
reaction where the synthesized Ugi-products are converted 
to molecule 2 in a single pot without isolation [42]. Thus, 

Fig. 1  PubMed search result 
using the term ‘Ugi reaction’ in 
title/abstract. The result shows 
the increase in UR literature in 
the recent years

Fig. 2  Representative examples of products of UR and post-Ugi modification
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only the molecules belonging to structure 2 were included 
in the library.

In certain reports, building blocks are synthesized and 
isolated to obtain the desired Ugi product. In such cases, the 
steps involved in the synthesis of a building block are added 
to the total pot count, but the resulting building block is not 
part of URDL. For example, isocyanide 3 is synthesized in 3 
pots to obtain pyrrolidone derivatives 4 (Fig. 3A) [43]. Simi-
larly, the structure of aldehyde 5 required for the synthesis of 
chromenepyrrole scaffold 7 (Fig. 3B) [44], was not included 
in the library although steps in its synthesis were counted 
towards the synthesis of molecules 6 and 7, which are part 
of URDL. In rare cases where clarity regarding the source of 

building blocks is not available, the later are assumed to be 
commercially available, and pots are numbered accordingly.

Many literature reports describe structurally close ana-
logues with a minor variation in ring-substituents. In such 
situations, to avoid manual work and maintain diversity, 
we omitted certain close analogues with minor structural 
variations (e.g. methyl vs ethyl). We believe such omis-
sions may not affect the VS results significantly, and a 
medicinal chemist would be able to design and access 
such missing analogues during SAR exploration. Since 
the intended application of URDL is in drug discovery, 
we retained only small molecules (MW ≤ 900 Da) lacking 
general reactivity. This curation process resulted in the Ugi 
reaction-derived library (URDL) consisting of about 5773 

Fig. 3  Examples of URDL molecules where synthesis of UR building requires additional steps
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molecules obtained from 274 references. About 92% of the 
molecules in URDL can be synthesized in either one or 
two pots (Fig. 4) thus, signifying the synthetic tractabil-
ity of the library. Additionally, 85% of these molecules 
appeared in the last decade and hence represent the recent 
developments in this area.

Despite its small size, URDL has several advantages 
over commercially available libraries for VS application. 
For example, the URDL molecules are cherry-picked from 
high-impact organic chemistry literature with robust struc-
tural validation data of the synthesized molecules using 
spectroscopy and X-ray crystallography. The URDL mol-
ecules are synthetically tractable with high atom and pot 
economy and essentially from commercially available 
inexpensive building blocks. The conditions reported for 
synthesising these molecules are often mild, catalytic, 
and facile enough to be carried out by novice chemists. In 
many cases, Ugi adducts are known to precipitate from the 
reaction mixture, thus reducing the workup and purifica-
tion steps. Moreover, the biological activity of most URDL 
molecules is not reported despite the presence of novel 
structural features in these molecules (vide infra). Thus, 
URDL has additional value in terms of unexplored chemi-
cal space for drug discovery. The availability of informa-
tion on the number of pots required for the synthesis of 
URDL members may serve as one of the important criteria 
when shortlisting compounds for synthesis and experimen-
tal validation.

Physicochemical profiling

Physicochemical properties of molecules such as size, shape, 
polarity, and lipophilicity play important role in drug devel-
opment. Indeed, the molecular descriptors such as molecu-
lar weight (MW), partition coefficient (clogP), number of 
H-bond donors/acceptors (HBD/HBA), topological surface 
area (TPSA), number of rotatable bonds (RB), fraction of 
sp3 carbons (Fsp3), are found to correlate with solubility, 
bioavailability, cell permeability, clinical success, and toxic-
ity [45–52]. Thus, property-based criteria such as Lipinski’s 
‘rule-of-five’[49] and Veber’s rule [50] are widely used to 
estimate the ‘druglikeness’ of a molecule, albeit with known 
limitations [53, 54]. Certain molecular properties are also 
desirable for targeting a particular receptor or organ [55–58]. 
For instance, drugs crossing BBB are primarily restricted 
to a property space occupied by small, uncharged, and lipo-
philic molecules [59, 60]. The presence of primary amines 
and molecular globularity is reported to play a significant 
role in facilitating the entry of molecules in Gram-negative 
bacteria [61]. We have recently shown that the sum of basic 
and aromatic nitrogen (SBAN) is a key descriptor, among 
other properties, required for potent antimalarial activity 
[62]. Thus, understanding the physicochemical property 
space of a molecular library may assist in the identification 
of potential targets/diseases for its application.

For physicochemical characterization of URDL we calcu-
lated key properties of the molecules and compared it with 
the property-space of oral drugs as a reference. A recently 
compiled library of orally used small drugs (MW < 900 Da) 
by us [62], was updated with the oral drugs approved in the 
year 2021. Thus, the oral drug library consists of 1998 FDA-
approved drug molecules with proven oral bioavailability. 
Since UR usually yields a dipeptide-like molecules that may 
serve as the inhibitor of protein–protein interactions (iPPI), 
we also compared URDL with the publicly available iPPI 
library [63] consisting of 3853 molecules. The t-test was 
used to determine the statistical significance among the three 
categories.

First, we compared the druglikeness of the three librar-
ies using the widely used Lipinski’s and Veber’s rule. Not 
surprisingly, 91.4% of oral drugs cleared the criteria for 
Lipinski’s rule while the percentage was lower (85.5%) for 
the URDL molecules (Table 1). Only, 74.3% molecules in 
the iPPI library passed the druglikeness criteria based on 
Lipinski’s rule, which is expected since these molecules usu-
ally interact with the larger protein surface and thus, tend 
to have higher MW. Indeed, all 835 iPPI molecules non-
compliant to Lipinski’s rule possess MW equal or greater 
than 500 Da. In contrast, Veber’s criteria which propose the 
cut-off of TPSA ≤ 140 Å2 and RB ≤ 10, predicted URDL 
library to have the highest percentage (85.4%) of drug-like 
molecules, followed by oral drugs and iPPI (Table 1). Based 

Fig. 4  Percentage of molecules vs the number of pots required for 
their synthesis. The bars are coloured according to the year in which 
molecule is reported depicting most of the reports to be recent
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on these two rules, it can be concluded that URDL mol-
ecules are closer to oral drugs in terms of druglikeness and 
are expected to have optimal oral bioavailability.

One of the criteria to judge the quality of screening com-
pounds is to look for the reactive functional groups and 
structural motifs that may interfere with the biochemical 
assay readouts thus appearing as ‘frequent hitters’. Such 
molecules were termed as pan assay interference com-
pounds (PAINS) by Baell and Holloway [64] who proposed 
to exclude such compounds using a set of substructure fil-
ters. Similarly, Bruns and Watson from Eli Lilly labs also 
proposed a set of 275 rules to identify promiscuous com-
pounds [65]. Thus, to obtain ‘clean’ molecules for screening, 
PAINS structural alerts and other rules are often used. How-
ever, these rules and alerts are not without limitations and 
should not be applied fastidiously without context [66–69]. 
For example, the PAINS filter should not be used in phe-
notypic screening or when looking for covalent inhibitors 
[66]. Nonetheless, there is a broad consensus that molecules 
possessing PAINS and ‘nasty’ functions should be flagged 
early and must be carefully validated before advancing them 
in the drug discovery pipeline.

We used a recently reported open-source Konstanz Infor-
mation Miner (KNIME) workflow [70, 71] to identify mole-
cules with PAINS feature in our libraries. Only 5% of URDL 
molecules have PAINS feature which is lower than the pro-
portion of FDA-approved oral drugs (6.9%) that failed the 
test (Table 1). The iPPI library displayed 19% failure rate 
warranting cautious use and interpretation of PAINS alerts 
when applied to discovery of iPPIs. We also employed the 
open-source Datawarrior program [72] to identify ‘nasty’ or 
reactive functional groups defined by the medicinal chemists 
at Actelion [73]. The failure rate in terms of such problem-
atic groups is comparable (~ 12–14%) in all three libraries. 
While molecules belonging to oral drugs and iPPI possess 
a variety of reactive functions, URDL molecules have lim-
ited types for such moieties (Supplementary Information 
Figure S1). An aromatic nitro group seems to be the most 
frequently occurring problematic function in all three librar-
ies especially in case of URDL where ignoring this ‘nasty’ 
function reduces the failure rate by almost half (Table 1). 
The high occurrence of aromatic nitro group in URDL can 
be explained by the fact that most of these molecules are 

taken from organic chemistry literature discussing newly 
optimized reactions conditions. In such studies, authors are 
expected to demonstrate broad substrate scope and hence 
frequently use building blocks having electron-donating 
and electron-withdrawing (such as nitro) functional groups. 
Thus, URDL library molecules are drug-like and ‘clean’ 
when considering oral drugs as standard.

Next, we calculated and compared the average property 
space of the molecules in the three libraries using Datawar-
rior [72], an open-source cheminformatics program. The 
statistical details such as mean, median, p-values, quartiles, 
standard deviation, for the three libraries are provided in 
the Supplementary information (Table S1). Interestingly, the 
mean/median of most of the studied properties of URDL 
molecules are closer to iPPIs than oral drugs (Fig.  5). 
Among the three categories, the significantly higher val-
ues of MW, clogP, HBA/D, TPSA, RB, and aromatic rings 
for iPPIs are in line with the earlier reports [74, 75]. This 
observation is justified by the interactions of iPPIs over a 
large protein interface rather than smaller well-defined pock-
ets. On average URDL molecules possess higher values for 
MW (Fig. 5A), clogP (Fig. 5B), HBA (Fig. 5C), and RB 
(Fig. 5F) than the oral drugs. In contrast, URDL molecules 
have significantly lower average values for HBD (Fig. 5D), 
TPSA (Fig. 5E), and Fsp3 (Fig. 5G) in comparison to oral 
drugs. The molecules belonging to URDL and iPPI, are 
also structurally more complex (Fig. 5H) as evaluated by 
the Datawarrior program. This complexity may result from 
more rings (7-membered or smaller) present in these mol-
ecules (Fig. 5I). However, it must be noted that molecular 
complexity may be calculated in several ways [76, 77]. For 
instance, oral drugs possess more chiral centres than URDL 
and iPPI molecules (Fig. 5J), which is another proposed 
measure of complexity together with Fsp3 [76]. The URDL 
and iPPI molecules have a higher number of carboaromatic 
rings (ArC) (Fig. 5K), suggesting these compounds are more 
disc-like than oral drugs. Similarly, orally used drugs have a 
lower number of heteroaromatic rings in their structure than 
the other two libraries (Fig. 5L).

Overall, this analysis indicates that URDL and oral drug 
libraries are comparable in terms of druglikeness as well as 
compound quality. However, in terms of physicochemical 
properties, the URDL molecules are closer to iPPIs.

Table 1  The percentage of molecules meeting the criteria of druglikeness, and quality based on different cheminformatics rules

Lipinski’s rule (%) Veber’s rules (%) PAINS failure (%) Datawarrior ‘nasty’ functions 
(aromatic nitro included)  (%)

Datawarrior ‘nasty’ 
functions (aromatic nitro 
excluded)  (%)

Oral drugs 91.4 81.7 6.9 12.8 9.7
URDL 85.5 85.4 5.0 13.8 6.2
iPPI 74.3 82.1 18.8 11.8 7.2
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For comparison and visualization of different sets of mol-
ecules, medicinal chemists often rely on different dimension 
reduction approaches [78]. The multi-dimensional infor-
mation coded in structural descriptors or physicochemi-
cal properties can be reduced and projected in two (2D) or 
three dimensions (3D) for comprehensibility [79–81]. Thus, 
the molecules bearing structure or property-based similar-
ity are expected to be placed nearer to each other in these 
projections.

To compare the chemical space of URDL with oral 
drugs and iPPI molecules, we calculated the SkelSphere 
descriptors implemented in the Datawarrior program. This 

descriptor encodes circular spheres of atoms and bonds into 
a hashed binary fingerprint of 1024 bits together with the 
stereochemistry and other structural details. The 1024 bits of 
structural information were then reduced using T-distributed 
stochastic neighbour embedding (t-SNE) [82, 83], a non-
linear dimensionality reduction technique. Consequently, 
a 3D projection of chemical space was obtained with the 
similar molecules being closer to each other than the dis-
similar ones. The oral drugs and URDL molecules seem to 
form separate clusters with limited overlap, suggesting the 
structural features present in URDL molecules are distinct 
from the FDA-approved drugs (Fig. 6). On the other hand, 

Fig. 5  Box plots displaying average properties of oral drugs (cyan), 
URDL (pink) and iPPI (green) molecules; A molecular weight, B cal-
culated logP, C hydrogen bond acceptors, D) hydrogen bond donors, 
E topological polar surface area, F rotatable bonds, G fraction of 

sp3 carbons, H molecular complexity, I small rings, J stereocenters, 
K carbo-aromatic rings, L hetero-aromatic rings. The red and black 
lines within the boxplots represent the mean and median, respectively



44 Molecular Diversity (2024) 28:37–50

1 3

iPPI molecules form several smaller clusters, a few overlap-
ping with either oral drugs or URDL, displaying a broader 
diversity in these molecules.

Overall, physicochemical profiling suggests that URDL 
molecules conform to a distinct chemical space in compari-
son to the existing oral drugs.

Scaffold and ring analysis

A recent analysis has revealed that FDA-approved drugs 
lack diverse rings [84]. On the other hand, 1 million ring 
systems (size 1–4, < 30 atoms) are possible theoretically, 
98.6% of which do not exist in big databases like ZINC 
or ChEMBL [85]. The distinct chemical space in URDL 
compared to oral drugs (Fig. 6) indicates the presence of 
unique scaffolds and ring systems in URDL molecules 
which was also observed during the library curation. 
Indeed, several novel heterocycles can be generated using 
UR [27]. For comparison, the ‘most central rings’, the 
ring closest to the topological centre of the given mol-
ecule, were extracted from both URDL and oral drugs 
using Datawarrior. This analysis resulted in 417 and 316 
‘most central rings’ from oral drugs and URDL, respec-
tively. Among the top ten most frequently appearing rings, 

benzene, piperidine, and pyrrolidine are common in both 
libraries (Fig. 7). One-third (103) of the rings in URDL 
display SkelSphere similarity of 80% or higher to the rings 
extracted from oral drugs rings, and only 62 rings (19.6%) 
are structurally identical. The t-SNE plot derived from 
the SkelSphere descriptor of ‘most central rings’ (Figs. 8 
and 9) reveals several unique ring systems in URDL that 
are not represented in oral drugs. The majority of these 
diverse ring systems (Fig. 9) can be obtained in 2 pot reac-
tion sequence from Ugi adducts indicating facile access 
to these rings. Additionally, these rings possess varying 
sizes, lipophilicity, H-bonding capacity (HBA/HBD), PSA, 
and globularity volume, suggesting these may be exploited 
to design ligands against different protein binding pockets. 
A substructure search using the rings displayed in Fig. 9 
in the ChEMBL database resulted in no hits underscoring 
the structural novelty of URDL ring systems.

Together, this analysis confirms that the URDL library 
consists of molecules based on novel ring systems that 
are synthetically tractable and remain unexplored in drug 
design.

Fig. 6  t-SNE 3D plot for oral 
dugs, URDL and iPPI library 
molecules shown as cyan, pink 
and green spheres, respectively. 
The multi-dimensional informa-
tion stored in the SkelSphere 
descriptor of the molecules was 
reduced using t-SNE algorithm 
of Datawarrior to display 
distinct clusters of similar 
molecules
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UR in the synthesis of drugs and their analogues

Some of the URDL scaffolds and molecules also showed 
structural overlap with oral drugs (Figs. 6 and 8) indicating 
the latter may be accessed in an efficient way using UR. To 
find the examples of oral drugs or their close analogues in 
URDL we performed a similarity search between URDL 
and oral drugs using SkelSphere descriptor. A total of 114 
of the URDL molecules were found to be structurally iden-
tical or similar (≥ 0.75 SkelSphere similarity index) to the 
46 unique oral drugs (Supplementary Information Figure 
S2 and S3). Among these, the two-pot gram-scale synthesis 
of praziquantel (8) is a well-known example displaying the 
efficiency of UR in drug synthesis (Fig. 10) [86]. A two-pot 
gram-scale enantioselective synthesis of R-lacosamide (9) 
has been achieved recently via Ugi3CR [87]. Similarly, a 
two-pot synthesis of an epimer of Tadalafil (10) is described 
using the UR-derived intermediate followed by cyclization 
[88]. In addition, close analogues of several other drugs, 

such as Roxatidine [89], Vorinostat [89], Racecadotril [90], 
and Pinazepam [91], are present in URDL (Supplementary 
Information Figure S2 and S3). Given the efficient synthesis 
of URDL molecules, it would be interesting to synthesize 
structurally similar analogues of FDA-approved drugs and 
test them against the corresponding targets. Analogously, 
one can conduct a similarity analysis of any other molecule 
of interest against URDL to find synthetically tractable close 
analogues. Such efforts may also result in scaffold hopping 
[92, 93], an important strategy in drug design that may be 
useful to overcome intellectual property constraints.

Conclusions

In conclusion, we have curated a library of molecules 
derived from Ugi reaction, cherry-picked from the recently 
reported literature. The synthesis of the majority of the 
URDL molecules involves mild reaction conditions with 

Fig. 7  Top 10 ‘most central rings’ appearing in oral drugs and URDL
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Fig. 8  t-SNE plot of ‘most 
central rings’ of oral drugs 
(cyan) and URDL (pink) using 
SkelSphere descriptor

Fig. 9  A 2D t-SNE plot of the representative set of diverse URDL rings. The circle represents rings in the chemical space and colour is coded by 
TPSA. The background of the circles is coloured according to the globularity volume of the rings
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high pot economy (1–2 pots) and reported methodology. 
Thus, large samples of the molecules can be obtained cost-
effectively for the experimental validation of the in-silico 
screening results. The comparison with oral drugs shows 
that URDL consists of drug-like molecules but occupy a 
distinct chemical space in terms of structural descriptor. 
Additionally, URDL compounds show a lower frequency 
of PAINS alerts and reactive functional groups compared 
to oral drugs. In terms of property space, URDL molecules 
are closer to known inhibitors of PPIs. Many of the URDL 
molecules consist of novel ring systems absent in the cur-
rently approved drugs or in ChEMBL database. Several 
oral drugs and their close analogues are also included in 
URDL, suggesting that UR and post-Ugi modification may 
efficiently synthesise these molecules and result in scaffold 
hoping. Thus, the URDL molecules represent synthetically 
tractable unexplored chemical space fit for the purpose of 
VS and similarity searching. The URDL library is freely 
accessible as a part of the supplementary information of 
this manuscript.

Materials and methods

Library curation

The PubMed search was performed using term ‘Ugi reac-
tion’ in Title/Abstract field to identify literature reports dis-
cussing the application of UR. The cross-references in the 
review articles were also used to identify relevant original 
papers. The structures of the molecules were drawn manu-
ally or interpreted from the IUPAC nomenclature provided 
in the original papers using Osiris Datawarrior (v. 5.5.0) 
[72]. The synthetic schemes were carefully studied to iden-
tify the number of pots involved in synthesising different 
molecules reported in the research article. The molecules 
with MW > 900 were filtered out. The URDL library was 
finally annotated with detailed references, DOIs and the 
number of pots required for the synthesis.

Cheminformatic analysis

The URDL library (total molecules = 5773) was appended 
with oral drugs (total molecules = 1998) [62] and iPPI 
database [63] (total molecules = 3853) annotated with 
dataset names (Oral drugs, iPPI, URDL). For the sake of 
reproducibility, all processing and cheminformatics analy-
sis was performed in open-source programmes, KNIME 
analytics platform 4.5.2 [70] and Datawarrior 5.5.0 [72].

The KNIME workflow developed by Bren and cowork-
ers (https:// gitlab. com/ Jukic/ knime_ medch em_ filte rs/) 
[71] was used to identify PAINS alerts in all three librar-
ies. The compounds comprising reactive functional groups 
were identified using the ‘nasty functions’ [73] feature of 
Datawarrior 5.5.0. The SkelSphere descriptor, physico-
chemical descriptors, and other properties shown in Fig. 5 
were calculated using Datawarrior. The boxplots and the 
mean/median and p-values, were obtained using the 2D 
plot function of Datawarrior. The rings were extracted 
using the ‘Most Central Ring’ feature of Datawarrior. The 
t-SNE plots were generated with perplexity = 40, source 
dimensions = 50 and iterations = 1000. The similarity com-
parison between the oral drugs and URDL library was per-
formed using the threshold of 0.75 SkelSphere-based simi-
larity index. The ChEMBL database (v. 30) was searched 
within Datawarrior employing the ‘superstructures of’ 
option with various ring structures as queries.
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