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Abstract
A new series of 1,3,5-trisubstituted 2-pyrazoline derivatives (3a–l) are synthesized in good to excellent yields from the cor-
responding chalcones (1a–h) and acid hydrazides (2a–e) in polyethylene glycol-400 (PEG-400) as a green reaction medium. 
The newly synthesized 2-pyrazoline derivatives are screened for their antibacterial and antifungal activity. The synthesized 
trisubstituted pyrazolines displayed moderate to good antibacterial and antifungal properties as compared with the standard 
reference penicillin and fluconazole drugs. Additionally, the antioxidant potential of the 1,3,5-trisubstituted 2-pyrazolines is 
evaluated by OH and DPPH assay. The 1,3,5-trisubstituted 2-pyrazolines showed good radical scavenger activity and were 
found as good antioxidant agents.
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Introduction

Several well-known antimicrobial drugs are no longer 
effective against microorganisms due to a rise in microbial 
resistance built on by the misuse of antimicrobial treatments 
[1–3]. Antimicrobial resistance is a severe global threat to 
the human, animal, and environmental health that is becom-
ing increasingly concerning. Similarly, the imbalances in 
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the formation and scavenging of reactive oxygen species 
may develop owing to a lack of antioxidant capabilities, as 
a result, biomolecules suffer severe oxidative damage, and 
diseases associated with oxidative stress, such as cancer 
and aging, are developed [4, 5].To avoid illnesses induced 
by oxidative damage to tissues and cells, a proper balance 
between reactive oxygen species production and components 
of the bio-immune system is required. In order to avoid 
microbial infection as well as to stop, lessen, and repair rad-
ical-induced damage to target biomolecules, newer organic 
compounds are desperately needed.

The α,β-unsaturated ketone moiety is a prominent struc-
tural motif in a wide range of biologically active compounds, 
including synthetic and natural products [6–8]. Chalcones 
and their analogs are particularly important starting materi-
als or intermediates in the synthesis of naturally occurring 
flavonoids and several nitrogen-containing heterocyclic 
compounds such as pyrazolines [9], 1,5-benzodiazepine [10, 
11], 1,5-benzothiazepines [12], thiazines [13], pyrimidines 
[14–18], indazole [19], 2-quinoline carboxylic acid [20, 
21] and so on. Chalcones and their analogues shows a wide 
range of pharmacological properties, such as antibacterial 
[22], antifungal [23], antitumor [24], antioxidant [25], anti-
inflammatory [26], antimalarial [27], and antiproliferative 
[28] activity.

The five membered ring heterocyclic compounds, serve 
as core components of a large number of substances that 
possess a wide range of interesting biological activities 
[29–34]. Azoles are five-membered heterocyclic compounds 
with two or more heteroatoms in their rings, with one of the 
heteroatoms being nitrogen [35–39]. Azoles are an essen-
tial class of heterocyclic compounds that has intrigued the 
interest of many researchers in the fields of pharmaceutical 
chemistry, medicinal chemistry, and pesticide chemistry [30, 
40, 41]. Since azole derivatives, such as triazole, pyrazole, 
pyrazoline, imidazole, tetrazole, exhibit a wide range of bio-
logical activities, their synthesis and transformation have 
attracted the attention of researchers [42–47].

Amongst the azole family, pyrazolines have gained much 
attention due to their numerous applications [48–51]. Pyra-
zolines are a valuable synthon that is typically employed in 
organic synthesis, and they have contributed significantly to 
the theories and concepts generation of heterocycle chemis-
try [52]. Several pyrazoline derivatives are useful materials 
in drug development because they have key biological prop-
erties. Pyrazolines are classified into three types: 1-pyrazo-
line, 2-pyrazoline, and 3-pyrazoline. Amongst these, 2-pyra-
zoline appears to be the most commonly investigated since it 
has monoamine characteristics and stability. The 2-pyrazo-
line derivatives' lipophilic nature causes them to be insoluble 
in water but soluble in propylene glycol [53]. A wide range 
of biological activities have been documented for 2-pyra-
zolines including anticancer [54, 55], anticonvulsant [56], 

anti-inflammatory [57], analgesic [58–60], antimicrobial 
[61–64], antidepressant [65, 66], anti-HIV [67], antioxidant 
[68], antileishmanial [69], antitubercular [69], antihyperlipi-
demic [70] and anti-diabetic [71]. According to previous 
literature, the 1,3,5-trisubstituted 2-pyrazolines show signifi-
cant antioxidant potential [72–77]. The N–N bond linkage in 
the pyrazoline ring is thought to be the most important com-
ponent in their biological activity. As a result, there is ongo-
ing interest in developing simple and efficient methods for 
preparing 1,3,5-trisubstituted 2-pyrazolines. A literature sur-
vey reveals that several methods were reported for the syn-
thesis of 1,3,5-trisubstituted 2-pyrazolines from chalcones 
and acid hydrazide derivatives under various reaction condi-
tions [78–84]. Many of these procedures, however, have one 
or more downsides, such as a time-consuming experimen-
tal protocol, drastic reaction conditions, inadequate yield, 
longer reaction time, and the usage of hazardous and toxic 
solvents. Due to strict environmental regulations and safety 
concerns, industries require environment friendly alterna-
tive ways for the synthesis of the heterocyclic compound. 
Polyethylene glycol (PEG) solvents have grown popular in 
recent years due to the numerous benefits they provide. It 
is well known that PEG solvents are inexpensive, widely 
available, non-toxic, recyclable, non-flammable, biologically 
friendly, and possess thermal stability [85, 86]. It is applied 
in chemical synthesis not only as a reaction medium but 
also as a phase transfer catalyst, usually substituting costly 
and ecologically hazardous catalysts [87]. PEG solvents are 
employed as solvents and catalysts in a variety of organic 
transformations owing to its superior properties [88–92].

In the present work, we report the synthesis of a new 
library of 1,3,5-trisubstituted 2-pyrazolines in polyethylene 
glycol-400 (PEG-400) as a green reaction medium. To dis-
cover the effective antibacterial and antioxidant agents, syn-
thesized compounds are tested for antibacterial, antifungal, 
and radical scavenger activity.

Experimental

Material and physical measurements

All chemicals of AR grade with purity > 99% were used in 
the present research. The melting points of the synthesized 
compounds were taken in open capillaries. All reactions 
were monitored using thin layer chromatography method. 
The FT-IR study was performed on Shimadzu spectrom-
eter using KBr method. The 1H NMR spectral study was 
performed on a Brucker Advance II 500 MHz instrument 
using TMS as an internal standard. The high-resolution mass 
spectral study was carried out using the ESI mode on the 
Bruker Impact II instrument.
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General method for the synthesis of 1,3,5‑trisubsti‑
tuted 2‑pyrazoline derivatives

A mixture of previously synthesized chalcones (1a–h) 
(10 mmol) and benzohydrazide derivatives (2a–e) (12 mmol) 
were taken in a round bottom flask containing 10 mL PEG-
400. To this reaction mass, 1 mL of glacial acetic acid was 
added. The reaction mass was then heated at 70–80 °C while 
being continuously stirred on a magnetic stirrer until the 
reaction was complete. The progress of the reaction was 
checked by TLC. After completion of the reaction, the reac-
tion mass was cooled and then poured into a beaker with 
crushed ice. The precipitate was formed which was then 
filtered off and recrystallized using isopropanol to give the 
pure products (3a–l). The synthesis of pyrazolines via chal-
cone pathway in PEG-400 medium is depicted in scheme 1.

(5‑(2,6‑Dichlorophenyl)‑3‑(4‑methoxyphenyl)‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)(phenyl) methanone (3a)

FT-IR (KBr, in cm−1): 3057.50,3020.07,2923.55,2839.2
8,1627.92, 1593.20, 1433.11, 1327.03, 1247.94, 1172.72, 
1099.43, 1026.13, 947.05, 833.25,752.24, 702.09, 597.93, 
547.78, 507.28, 422.41; 1H NMR (500 MHz, DMSO) δ 7.74 
(d, J = 1.8 Hz, 1H), 7.56–7.50 (m, 4H), 7.39–7.37 (m, 2H), 
7.35–7.29 (m, 3H), 6.98–6.95 (m, 2H), 5.72 (dd, J = 11.7, 
4.8 Hz, 1H), 3.94 (dd, J = 18.1, 11.7 Hz, 1H), 3.77 (s, 
3H), 3.21 (dd, J = 18.1, 4.8 Hz, 1H); 13C NMR (126 MHz, 
DMSO) δ 163.38, 161.65, 156.48, 142.23, 135.69, 134.82, 
131.67, 130.78, 129.29, 129.23, 128.95,127.92,127.79, 
126.17, 123.54, 114.73, 60.46, 55.82, 42.94; HR-MS calcu-
lated 425.0824 [M + H], found 425.0821 [M + H].

(3‑(4‑Fluorophenyl)‑5‑(4‑isopropylphenyl)‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)(phenyl)methanone (3b)

 FT-IR (KBr, in cm−1): 3055.24, 2962.66, 2872.01, 1635.64, 
1602.85, 1506.41, 1423.47, 1328.95, 1222.87, 1145.72, 
1103.28, 1058.92, 1020.34, 948.98, 831.32, 783.10, 707.88, 
667.37, 563.21, 536.21; 1H NMR (500 MHz, CDCl3) δ 

8.00 (d, J = 7.6 Hz, 2H), 7.72–7.66 (m, 2H), 7.50–7.47 
(m, 1H), 7.44 (d, J = 7.6  Hz, 2H), 7.26–7.17 (m, 4H), 
7.12–7.05 (m, 2H), 5.81 (dd, J = 11.7, 4.8 Hz, 1H), 3.75 
(dd, J = 17.5, 11.7 Hz, 1H), 3.20 (dd, J = 17.5, 4.8 Hz, 1H), 
2.87 (sept, J = 6.9 Hz, 1H), 1.22 (d, J = 6.9 Hz, 6H); 13C 
NMR (126 MHz, CDCl3) δ 166.45, 165.06, 163.08, 153.64, 
148.34, 139.05, 134.41, 130.93, 130.10, 128.78, 128.71, 
127.77, 127.74, 127.64, 127.04, 125.65, 115.97,115.80 
61.06, 41.65, 33.80, 23.95, 23.93; HRMS calculated 
387.1873; [M + H], found 387.1876 [M + H].

(3‑(4‑Chlorophenyl)‑5‑(2,6‑dichlorophenyl)‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)(phenyl) methanone (3c)

 FT-IR (KBr, in cm−1): 3066.82, 1633.71, 1585.49, 1492.90, 
1433.11, 1330.88, 1257.59, 1182.36, 1085.92, 1020.34, 
954.76, 835.18, 792.74, 702.09, 530.42, 433.98; 1H NMR 
(500 MHz, CDCl3) δ 7.97 (d, J = 7.3 Hz, 2H), 7.64 (d, 
J = 8.5 Hz, 2H), 7.51–7.37 (m, 6H), 7.31–7.26 (m, 1H), 7.16 
(t, J = 8.0 Hz, 1H), 6.48 (dd, J = 12.9, 8.8 Hz, 1H), 3.71 (dd, 
J = 17.6, 12.9 Hz, 1H), 3.37 (dd, J = 17.6, 8.8 Hz, 1H);13C 
NMR (126 MHz, CDCl3) δ 166.63, 153.15, 136.28, 136.26, 
134.60, 133.85, 133.82, 131.13, 130.22, 129.98, 129.76, 
129.21,129.00, 128.61, 127.93, 127.63, 57.87, 38.03; HRMS 
calculated 429.0328 [M + H]; found 429.0331 [M + H].

(4‑Chlorophenyl)(5‑(2,6‑dichlorophenyl)‑3‑(4‑fluorophenyl)
‑4,5‑dihydro‑1H‑pyrazol‑1‑yl)methanone (3d)

 FT-IR (KBr, in cm−1): 3074.53, 1618.28, 1504.48, 1427.32, 
1325.10, 1230.58, 1170.79, 1091.71, 1016.49, 952.84, 
835.18, 675.09, 590.22; 1H NMR (500 MHz, CDCl3) δ 
7.93 (d, J = 8.4 Hz, 2H), 7.69 (dd, J = 8.8, 5.3 Hz, 2H), 
7.41–7.35 (m, 3H), 7.30–7.26 (m, 1H), 7.15 (t, J = 8.0 Hz, 
1H), 7.14–7.05 (m, 2H), 6.45 (dd, J = 12.8, 8.7 Hz, 1H), 
3.70 (dd, J = 17.7, 12.8 Hz, 1H), 3.36 (dd, J = 17.7, 8.7 Hz, 
1H); 13C NMR (126 MHz, CDCl3) δ 165.44, 165.06, 163.06, 
153.64, 137.21, 136.24, 134.50, 133.79, 132.30, 131.66, 
130.00,129.27, 128.74, 128.68, 128.64, 128.33, 127.90, 

Scheme 1   Synthesis of pyrazolines via chalcone pathway in PEG-400 medium
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127.36, 116.05, 115.88, 57.87, 38.24; HRMS calculated 
447.0234 [M + H], found 447.0229 [M + H].

(4‑Chlorophenyl)(5‑(2,6‑dichlorophenyl)‑3‑(4‑methoxyphe
nyl)‑4,5‑dihydro‑1H‑pyrazol‑1‑yl) methanone (3e)

  FT-IR (KBr, in cm−1): 3076.46, 2947.23, 2837.29, 
1608.63, 1516.05, 1429.25, 1325.10,1247.94,1174.65, 
1126.43, 1093.64, 1026.13, 956.69, 837.11, 790.81, 
748.38, 675.09, 594.08, 526.57; 1H NMR (500  MHz, 
CDCl3) δ 7.96 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.9 Hz, 2H), 
7.42–7.35 (m, 3H), 7.30–7.26 (m, 1H), 7.15 (t, J = 8.1 Hz, 
1H), 6.94 (d, J = 8.9 Hz, 2H), 6.43 (dd, J = 12.7, 8.6 Hz, 
1H), 3.85 (s, 3H), 3.71 (dd, J = 17.6, 12.7 Hz, 1H), 3.37 
(dd, J = 17.6, 8.6 Hz, 1H);13C NMR (126 MHz, CDCl3) δ 
165.22, 161.44, 154.44, 137.05, 136.21, 134.69, 133.82, 
132.42, 131.75, 129.98, 129.15, 128.58, 128.33,127.84, 
123.66, 114.18, 57.68, 55.42, 38.27; HRMS calculated 
459.0434 [M + H], found 459.0428 [M + H].

(5‑(2,6‑Dichlorophenyl)‑3‑(4‑methoxyphenyl)‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)(4‑fluorophenyl) methanone (3f)

  FT-IR (KBr, in cm−1): 3080.32,2873.94,1610.56,15
06.41,1429.25, 1323.17, 1242.16,1159.22, 1141.86, 
1122.57, 1029.99, 952.84, 839.03, 788.89, 765.74,746.45, 
678.94, 597.93, 542.00; 1H NMR (500 MHz, CDCl3) δ 
8.05 (dd, J = 8.9, 5.6 Hz, 2H), 7.66 (d, J = 8.9 Hz, 2H), 
7.42–7.36 (m, 1H), 7.29–7.26 (m, 1H), 7.15 (t, J = 8.1 Hz, 
1H), 7.12–7.05 (m, 2H), 6.94 (d, J = 8.9 Hz, 2H), 6.44 
(dd, J = 12.8, 8.7  Hz, 1H), 3.85 (s, 3H), 3.71 (dd, 
J = 17.5,12.8 Hz, 1H), 3.37 (dd, J = 17.5, 8.7 Hz, 1H); 
13C NMR (126 MHz, CDCl3) δ 165.19, 163.30, 161.41, 
154.29, 136.21, 134.78, 133.83, 132.78, 132.71, 130.09, 
130.07, 129.97, 129.11,128.56, 128.31, 123.72, 114.68, 
114.51, 114.17, 70.56,57.68, 55.42, 38.23; HRMS calcu-
lated 443.0729 [M + H], found 443.0726 [M + H].

(2,4‑Dichlorophenyl)(3,5‑diphenyl‑4,5‑dihydro‑1H‑pyra‑
zol‑1‑yl)methanone (3g)

  FT-IR (KBr, in cm−1): 3057.17,1635.64,1587.42, 
1 4 8 7 . 1 2 , 1 4 3 5 . 0 4 ,  1 3 3 4 . 7 4 , 1 2 4 6 . 0 2 , 1 1 4 5 . 7 2 , 
1099.43,1064.71, 1022.27,952.84,848.68, 756.10,688.59, 
549.71,466.77,422.41;1H NMR (500  MHz, CDCl3) δ 
7.63–7.58 (m, 2H), 7.45 (d, J = 2.1 Hz, 1H), 7.42–7.35 
(m, 8H), 7.31 (dd, J = 8.2, 2.2 Hz, 2H), 5.76 (dd, J = 11.7, 
4.7 Hz, 1H), 3.84 (dd, J = 17.8, 11.7 Hz, 1H), 3.26 (dd, 
J = 17.8, 4.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 
164.36, 155.54, 141.10, 139.99, 135.60, 134.56, 132.54, 
130.97, 130.63, 130.08, 129.35, 129.00, 128.71,127.97, 

126.83, 125.88, 60.66, 42.49; HRMS calculated 395.0718 
[M + H], found 395.0720 [M + H].

(2,4‑Dichlorophenyl)(3‑(4‑methoxyphenyl)‑5‑phe‑
nyl‑4,5‑dihydro‑1H‑pyrazol‑1‑yl) methanone (3h)

  FT-IR (KBr, in cm−1): 3053.32,3013.22,2926.01, 
2833.58,1625.99, 1593.20, 1433.11, 1327.03, 1249.87, 
1172.72, 1095.57, 1024.20, 952.84, 833.25, 744.52, 704.02, 
599.86, 530.42, 426.27; 1H NMR (500 MHz, CDCl3) δ 7.54 
(d, J = 8.9 Hz, 2H), 7.43 (d, J = 2.0 Hz, 1H), 7.40–7.34 (m, 
5H), 7.29 (dd, J = 8.3, 1.8 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 
5.72 (dd, J = 11.7, 4.7 Hz, 1H), 3.84–3.76 (m, 4H), 3.21 
(dd, J = 17.6, 4.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) 
δ 164.10, 161.56, 155.31, 141.21, 135.46, 134.71, 132.52, 
130.07, 129.29, 128.95, 128.47,127.88, 126.78, 125.87, 
123.59, 114.11, 60.53, 55.37, 42.54; HRMS calculated 
425.0824 [M + H], found 425.0816 [M + H].

(2,4‑Dichlorophenyl)(3‑(4‑fluorophenyl)‑5‑phenyl‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)methanone (3i)

 FT-IR (KBr, in cm−1): 3059.10, 1639.49, 1593.20, 1442.75, 
1330.88, 1232.51, 1151.50, 1101.35, 842.89, 705.95, 
601.79, 547.78, 507.28; 1H NMR (500 MHz, CDCl3) δ 
7.63–7.56 (m, 2H), 7.45 (d, J = 2.0 Hz, 1H), 7.40–7.34 
(m, 5H), 7.33–7.28 (m, 2H), 7.10–7.03 (m, 2H), 5.76 (dd, 
J = 11.7, 4.8 Hz, 1H), 3.83 (dd, J = 17.6, 11.7 Hz, 1H), 3.23 
(dd, J = 17.6, 4.8 Hz, 1H);13C NMR (126 MHz, CDCl3) δ 
167.83, 164.33, 163.16, 154.48, 140.98, 135.66, 134.50, 
132.50, 130.05, 129.36, 129.03, 128.89, 128.82, 128.03, 
127.28,127.26, 126.86, 125.84, 116.00, 115.82, 60.76, 
42.55; HRMS calculated 413.0624 [M + H], found 413.0617 
[M + H].

(3,5‑Bis(4‑chlorophenyl)‑4,5‑dihydro‑1H‑pyrazol‑1‑yl)
(2,4‑dichlorophenyl)methanone (3j)

 FT-IR (KBr, in cm−1): 3070.68,1639.49,1591.27,1483.2
6, 1431.18, 1332.81, 1139.93, 1093.64, 1014.56, 950.91, 
835.18, 785.03, 667.37, 532.35, 489.92, 383.83;1H NMR 
(500 MHz, CDCl3) δ 7.53 (d, J = 8.7 Hz, 2H), 7.46 (d, 
J = 2.0 Hz, 1H), 7.37–7.29 (m, 8H), 5.72 (dd, J = 11.8, 
5.0 Hz, 1H), 3.83 (dd, J = 17.8, 11.8 Hz, 1H), 3.19 (dd, 
J = 17.8, 5.0  Hz, 1H); 13C NMR (126  MHz, DMSO) δ 
163.73, 155.90, 140.89,135.78, 135.26, 135.06, 132.57, 
131.66, 130.80, 129.88, 129.42, 129.36, 129.21, 129.01, 
128.41,127.86, 60.22, 42.51; HRMS calculated 462.9938 
[M + H], found 462.9933 [M + H].
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(2,4‑Dichlorophenyl)(5‑(2,6‑dichlorophenyl)‑3‑(4‑methoxy
phenyl)‑4,5‑dihydro‑1H‑pyrazol‑1‑yl)methanone (3k)

 FT-IR (KBr, in cm−1): 3055.24,2835.36, 1641.42, 1591.27, 
1521.84, 1431.18, 1325.10, 1249.87, 1176.58,1047.35, 
846.75, 785.03, 597.93, 551.64, 435.91; 1H NMR (500 MHz, 
CDCl3) δ 7.56 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 2.0 Hz, 1H), 
7.42–7.39 (m, 2H), 7.31 (dd, J = 8.1, 1.4  Hz, 1H), 7.28 
(dd, J = 8.1, 2.0 Hz, 1H), 7.19 (t, J = 8.1 Hz, 1H), 6.89 (d, 
J = 8.5 Hz, 2H), 6.42 (dd, J = 12.7, 8.2 Hz, 1H), 3.83 (s, 3H), 
3.75 (dd, J = 17.6, 12.7 Hz, 1H), 3.38 (dd, J = 17.6, 8.2 Hz, 
1H);13C NMR (126 MHz, CDCl3) δ 164.15, 161.51, 154.81, 
136.23, 135.46, 134.38, 134.33, 133.77, 132.53, 130.44, 
129.95,129.40, 129.29, 128.67, 128.39,126.56, 123.53, 
114.12, 57.09, 55.40, 39.16; HRMS calculated 493.0044 
[M + H], found 493.0039 [M + H].

(5‑(2,6‑Dichlorophenyl)‑3‑(4‑fluorophenyl)‑4,5‑dihy‑
dro‑1H‑pyrazol‑1‑yl)(p‑tolyl)methanone (3l)

FT-IR (KBr, in cm−1): 3072.60,2931.80,1618.28,1564.27,151
0.26, 1429.25, 1363.67, 1325.10, 234.44,1176.58,1141.86,102
6.13,954.76,839.03, 773.46,742.59,682.80,542.00, 476.42; 1H 
NMR (500 MHz, CDCl3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.71 (dd, 
J = 8.9, 5.3 Hz, 2H), 7.42–7.26 (m, 2H), 7.22 (d, J = 8.2 Hz, 
2H), 7.15 (t, J = 8.0 Hz, 1H), 7.12–7.08 (m, 2H), 6.47 (dd, 
J = 13.0, 8.9 Hz, 1H), 3.70 (dd, J = 17.5, 13.0 Hz, 1H), 3.36 
(dd, J = 17.5, 8.9 Hz, 1H), 2.40 (s, 3H);13C NMR (126 MHz, 
CDCl3) δ 166.55, 164.92, 162.92, 152.95, 141.49, 136.23, 
134.78, 133.87, 130.95, 130.34, 129.96, 129.11, 128.68, 
128.61, 128.57, 128.31,127.63, 127.61, 115.95, 115.78, 57.84, 
38.09, 21.57; HRMS calculated 427.0780 [M + H], found 
427.0788 [M + H].

Antimicrobial assay

Disk diffusion assay

The antibacterial and antifungal potential of the synthesized 
pyrazolines was assessed using the previously described 
methods [93, 94].Briefly stated, each sterile, ready paper disc 
(Sterile Susceptibility test disc SD067 Himedia Labs Pvt Ltd.) 
contains 50 µL of the synthesized compounds (1 mg/mL). The 
Mueller–Hinton agar/potato dextrose agar medium, which had 
been speedily inoculated with 24 h old bacterial and fungal 
cultures, was then applied to the surface of each disc. Penicillin 
and Fluconazole, were chosen as standards (at concentrations 
of 1 mg/mL each) for their respective antibacterial and antifun-
gal activities. The plates were placed in the incubator at 37 °C 
and 30 °C, respectively, for 24 h after being maintained in the 
refrigerator for 3 h to allow for diffusion. Following incuba-
tion, the zone scale was used to measure the zones surrounding 
the discs (Himedia Pvt. Ltd. Mumbai).

Resazurin microtiter assay (REMA) for MIC evaluation

The REMA plate assay was performed as previous report 
[93, 94]. In brief, successive twofold dilutions of each syn-
thesized pyrazolines and reference compound were taken 
in the plate, and 100 µL of Mueller–Hinton/Potato Dex-
trose broth medium was dispersed in each well of a ster-
ile flat-bottom 96-well plate. Each well received 100 µL of 
inoculums (0.5 McFarland standards is about equivalent to 
1.5 × 108 CFU/mL). All perimeter wells underwent sterile 
cold water addition to prevent evaporation throughout the 
incubation. The plate was placed in an incubator at 37 °C 
with a sterile lid on top. Alamer blue solution (0.01% in ster-
ile D/W) (Himedia Labs. Pvt. Ltd.) was added to each well 
after 24 h of incubation, and the plate was then re-incubated 
for 8 h. The MIC was defined as the lowest medication con-
centration that inhibited the color change from blue to pink, 
which was an indication of the growth of bacteria or fungi.

Antioxidant assay

The antioxidant studies were performed using previously pub-
lished literature [93–95].

Hydroxyl radical assay (OH)

The Fenton reaction was performed to investigate the OH 
radical scavenging activity. FeCl2 (1 mM), 1–10 phenan-
throline (1 mM), phosphate buffer (0.2 M, pH 7.8), H2O2 
(0.17 M), and the synthesized pyrazolines (1 mg/mL) were 
all incorporated in the typical reaction vessel. The addi-
tion of H2O2 kicked off the reaction. The absorbance was 
measured at 560 nm following a 5-min incubation period 
at room temperature. As a reference, ascorbic acid (1 mM) 
was employed.

2‑Diphenyl‑1‑picrylhydrazyl radical scavenging assay 
(DPPH)

The ability of the synthesized compounds to donate elec-
trons was assessed through the bleaching of a 2,2-diphenyl-
1-picrylhydrazyl solution, which was purple in color. In a 
brief, the assay was carried out by combining an equivalent 
amount of the synthesized pyrazolines with DPPH solution, 
bringing the total volume to 3 mL, incubating the samples 
for 20 min, and reading the absorbance at 517 nm. An ascor-
bic acid (1 mM) as a standard was employed. The following 
formula was used to get the percent inhibition:

% radical scavenging activity = 1−T∕C × 100

% radical scavenging activity = 1−T∕C × 100
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Result and discussion

Chemistry

The 1,3,5-trisubstituted 2-pyrazoline derivatives (3a–l) 
were synthesized from chalcones and acid hydrazides in 
polyethylene glycol-400/acetic acid as an efficient reaction 
solvent system. Desirable 1,3,5-trisubstituted 2-pyrazo-
lines (3a–l) were synthesized by heating chalcones (1a–h) 
and various acid hydrazides (2a–e) in PEG-400 with acetic 
acid. The physical parameters of the pyrazoline derivatives 
are shown in Table 1. The structures of the synthesized 
pyrazolines were investigated using FT-IR, 1H NMR, 13C 
NMR and HRMS techniques. In the 1H NMR spectra of 
pyrazolines (3a–l), the CH2 protons of the pyrazoline ring 
appear as a pair of doublet of doublet at 3.19–3.38 ppm 
(Ha) and 3.70–3.85  ppm (Hm). The –CH (Hx) proton 
appeared as a doublet of doublet at 5.72–6.48 ppm due 
to vicinal coupling with the two magnetically non-equiv-
alent protons of the methylene group at position 4 of the 
pyrazoline ring. The carbon atoms’ nature was described 
and validated using 13C NMR. Because the 19F nucleus 
splits the fluorine substituted phenyl ring carbon signals, 
they appear as doublets in compounds 3b, 3d, 3i and 3l 
[96–98]. The exact molecular formula and molecular mass 
of the compounds were evaluated using HR-MS spectra. 
The probable mechanism for the formation of pyrazolines, 
by the cyclocondensation reaction of chalcones, and acid 
hydrazide derivative, is summarized in Scheme 2. The 
intermolecular nucleophilic attack of the primary nitrogen 
atom of acid hydrazide on the electron-deficient carbonyl 
carbon of the chalcone to form an intermediate, which 
loses water molecule to form an Imine bond (1,2 addition). 
Later, Intramolecular attacks of the secondary nitrogen 
atom of acid hydrazide on the olefinic carbon of the chal-
cone give trisubstituted 2-pyrazolines. The mechanism 

that occurs in an acidic media via 1, 2 addition and not 
by 1,4 addition is validated by prior research [99–101]. 
The result indicates that PEG-400/acetic acid mediated 
synthesis of pyrazoline derivative was efficient, environ-
mentally benign, and simple. This approach also offers key 
advantages, like it is a non-toxic solvent, and it is far less 
harmful than other organic solvents.

Antimicrobial activity

The aromatic framework containing diverse substitution pat-
terns of electrons withdrawing and electron releasing sub-
stituents such as OCH3, Cl, CH(CH3)2, F were chosen for the 
synthesized 1,3,5-trisubstituted 2-pyrazolines to evaluate the 
antimicrobial activity (Fig. 1).Antibacterial activity of the 
synthesized pyrazolines were tested using the disc diffusion 
method against four bacterial agents namely Escherichia coli 
(MTCC 118), Bacillus subtilis (MTCC 2274), Staphylococ-
cus aureus (MTCC 737), and Streptococcus species (MTCC 
389). Whereas the antifungal activities were also taken 
against four fungal species namely R. oryzae (MTCC 262), 
P. chrysogenum (MTCC 974), A. niger (MTCC 282), and 
C. albicans (MTCC 183). In Tables 2 and 3, respectively, 
the zone of inhibition information from the antibacterial and 
antifungal experiments is tabulated. In the antimicrobial 
experiments, the REMA assay was adopted to evaluate the 
MIC values, and the outcomes are shown in Tables 4 and 
5. Synthesized pyrazolines have been proven to have robust 
antibacterial and antifungal properties.

The pyrazolines 3a, 3f, 3h, and 3l were found to show 
broad-spectrum antibacterial activities against all tested 
bacterial agents. Similarly, pyrazolines 3a, 3c, 3f, and 3h 
were also shown broad-spectrum antifungal action against 
all four fungal species. However, it has been observed 
from the present study that the synthesized pyrazolines 
are more potent antibacterial agents than antifungal 
agents. The present antimicrobial study indicates that the 

Table 1   Physical parameters of 
the pyrazoline derivatives

Entry R R1 R2 Melting point (°C) % Yield Time (Min.)

3a 4-OMe 2,6-Dichloro C6H5 162–164 94 120
3b 4-F 4-Isopropyl C6H5 170 78 160
3c 4-Cl 2,6-Dichloro C6H5 174 92 110
3d 4-F 2,6-Dichoro 4-Cl C6H4 220 87 145
3e 4-OMe 2,6-Dichoro 4-Cl C6H4 220 93 150
3f 4-OMe 2,6-Dichoro 4-F C6H4 186 90 140
3g H H 2,4-Cl C6H3 154–156 89 120
3h 4-OMe H 2,4-Cl C6H3 202–204 82 135
3i 4-F H 2,4-Cl C6H3 178 90 140
3j 4-Cl 4-Cl 2,4-Cl C6H3 164–166 90 95
3k 4-OMe 2,6-Dichloro 2,4-Cl C6H3 166 91 89
3l 4-F 2,6-Dichloro 4-CH3 C6H4 212–214 89 85
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synthesized compounds are as good antimicrobial agents 
as tested standard compounds. The zone of inhibition and 
MIC study shows that the pyrazoline 3f has brilliant anti-
bacterial action which is good as standard. The pyrazoline 
3f was also found to be a good antifungal agent. Similarly, 
the pyrazoline 3a, 3h, 3j and 3l have shown low MIC val-
ues for antibacterial study. Pyrazolines 3d have been found 
to exert very poor antibacterial action along with pyrazo-
lines 3c, 3i, 3j, and 3k in which the former were shown 
activities against one bacterial agent and the latter against 
two bacterial agents. The pyrazolines 3b, 3e and 3g were 
observed to be active against three bacterial agents. The 
pyrazolines 3d, 3k, and 3l were shown no antifungal activ-
ity. Similarly, pyrazolines 3b, 3e and 3g were also investi-
gated to be poor antifungal agents where they were active 
against only one fungal species. Compound 3i was active 

against two fungal species and inactive against two fungal 
species. The antimicrobial investigation suggested that the 
pyrazolines 3d are showing negligible or no antibacterial 
and antifungal activities. The whole study concluded that 
the presence of chloro, methoxy and fluoro substituents on 
aryl rings A,B and C of synthesized pyrazolines has shown 
good antibacterial activity.

Scheme 2   The mechanistic pathway for the formation of pyrazoline compounds by hydrazone formation

Fig. 1   General structure of synthesized 1,3,5-trisubstituted 2-pyrazo-
line

Table 2   Zone of inhibition of synthesized pyrazolines against some 
bacterial strains

Results are the average mean of three parallel experi-
ments. + =  < 5  mm, ++ =  > 5 and < 10  mm, +++ =  > 10 and 
< 18 mm,− = No zone
NA not applicable

Entry Bacterial strains

E. coli B. subtilis S. aureus S. species

3a ++ ++ +++ +++
3b + +++ − ++
3c ++ − +++ −
3d − − − ++
3e +++ +++ − ++
3f +++ +++ +++ ++
3g +++ +++ − ++
3h ++ +++ +++ ++
3i + − ++ −
3j +++ − +++ −
3k ++ +++ − −
3l ++ ++ +++ ++
Penicillin +++ +++ +++ +++
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Antioxidant activity

% Radical scavenging studies

The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 
hydroxyl radical (OH) scavenging assays were used to assess 
the antioxidant activity of the synthesized pyrazoline deriva-
tives. Table 6 provides a summary of the characteristics of 
the investigations that used percent radical scavenging. All 

of the synthetic compounds (1 mg/mL) were proven to be 
effective DPPH reducers. When compared to ascorbic acid, 
the DPPH radical scavenging activity was found to have a 
moderate to high scavenging potential. The % DPPH scav-
enger activity increases in the order of 3i > 3j > 3e > 3g > 3
l > 3c > 3d = 3k > 3f > 3a > 3h > 3b. Comparing the synthe-
sized pyrazoline derivatives to the standard ascorbic acid, it 
was discovered that they were effective OH radical scaven-
gers with reducing ability up to 74.5%. The radical reducing 
capability of the compounds (3a-l) was found to be between 
54.6% and 74.5%. In a series of synthesized pyrazolines, 

Table 3   Zone of inhibition of synthesized pyrazolines against some 
fungal strains

Results are the average mean of three parallel experi-
ments. + =  < 5  mm, ++ =  > 5 and < 10  mm, +++ =  > 10 and 
< 18 mm,− = No zone
NA not applicable

Entry Fungal strains

R. oryzae P. chrysogenum A. niger C. albicans

3a ++ ++ ++ ++
3b − ++ − −
3c ++ ++ ++ ++
3d − − − −
3e − − − ++
3f ++ ++ ++ ++
3g ++ − − −
3h ++ ++ ++ ++
3i ++ ++ − −
3j − ++ − −
3k − − − −
3l − − − −
Fluconazole +++ +++ +++ +++

Table 4   Minimum inhibitory concentration of synthesized pyrazo-
lines against some bacterial strains

Entry Bacterial strains

E. coli B. subtilis S. aureus S. species

3a 125 125 31.2 31.2
3b 250 62.5  > 250 62.5
3c 125  > 250 250  > 250
3d  > 250  > 250  > 250 62.5
3e 7.8 7.8  > 250 125
3f 3.9 7.8 15.6 125
3g 31.2 62.5  > 250 15.6
3h 125 62.5 15.6 62.5
3i  > 250  > 250 62.5  > 250
3j 3.9  > 250 31.2  > 250
3k 125 31.2  > 250  > 250
3l 125 125 15.6 125
Penicillin 1.95 3.9 3.9 1.95

Table 5   Minimum inhibitory concentration of synthesized pyrazo-
lines against some fungal strains

Entry Fungal strains

R. oryzae P. chrysogenum A. niger C. albicans

3a 250 250 250 250
3b  > 250 250  > 250  > 250
3c 125 250 250  > 250
3d  > 250  > 250  > 250  > 250
3e  > 250  > 250  > 250 125
3f 250 250 125 250
3g 250  > 250  > 250  > 250
3h 250 125 125 250
3i 250 250  > 250  > 250
3j  > 250 250  > 250  > 250
3k  > 250  > 250  > 250  > 250
3l  > 250  > 250  > 250  > 250
Fluconazole 1.95 1.95 1.95 3.9

Table 6   Antioxidant properties 
of synthesized pyrazolines

Results are the mean values 
of three independent experi-
ments ± SD

% Free radical scavenging 
activity

Entry DPPH OH

3a 66.2 73.9
3b 62.8 68.9
3c 68.4 68.7
3d 67.5 54.6
3e 72.4 69.4
3f 66.4 62.4
3g 71.4 69.7
3h 64.5 69.4
3i 78.9 74.5
3j 73.4 70.4
3k 67.5 64.7
3l 68.5 65.8
Ascorbic acid 87.6 84.2
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compound 3i had the highest scavenger potential of 74.5%, 
whereas compound 3d had the lowest reducing ability of 
54.6%.

Conclusion

The series of 1,3,5-trisubstituted 2-pyrazoline derivatives are 
synthesized by treatment of acid hydrazide derivatives with 
chalcones in PEG-400/AcOH as a green reaction medium. 
PEG-400 is a reaction media that offers a convenient, non-
toxic, thermally stable, and low-cost reaction medium for 
the synthesis of pyrazolines. This method has various advan-
tages, including cleaner reactions, good product yields, and 
a simple experimental and work-up procedure, making it a 
viable and appealing process for pyrazolines’ synthesis. The 
synthesized 1,3,5-trisubstituted 2-pyrazolines were screened 
for their in vitro antimicrobial activity. Disk diffusion assay 
was used to explore the zone of inhibition. Resazurin micro-
titer assay (REMA) was used for MIC evaluation. The find-
ings of the antibacterial and antifungal evaluation suggest 
that most of the screened compounds exhibit significant 
activities towards the tested microbial strains. Additionally, 
the OH and DPPH assay is used to test the 1,3,5-trisubsti-
tuted 2-pyrazoline for their capacity to scavenge free radi-
cals. The screened 1,3,5-trisubstituted 2-pyrazolines showed 
good radical scavenger activity and found good antioxidant 
agents.
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