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Abstract
In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some 
dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the 
hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been rec-
ognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In 
the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and 
phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahy-
droisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All 
the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and 
KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 
11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more 
effectiveness than standard drug epalrestat. The synthesized molecules’ absorption, distribution, metabolism, and excretion 
(ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated 
using molecular-docking simulations.
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Introduction

The acyl hydrazone skeleton is an important intermediate 
used in the synthesis of interesting biologically active heter-
ocyclic compounds and is also used as a ligand in the forma-
tion of metal complexes [1, 2]. Hydrazone-type compounds 
containing azomethine protons constitute a significant class 
of compounds for novel drug research [3], such as anti-anti-
microbial [4], inflammatory [5], antioxidants [6], antitu-
bercular [7], analgesic [8], anti-candida [9], α-glucosidase 

[10], anticancer [11], and antiproliferative [12] activities in 
medicinal fields [13–15]. Acyl hydrazone fragments bound 
to heterocyclic systems were displayed to provide enhanced 
activity. This bioactivity of acyl hydrazones is explained by 
their tendency to form a hydrogen bond with the molecular 
target [16–18]. In addition, it has been reported by studies 
in the literature that acyl hydrazones have lower toxicity 
than hydrazides due to the blockage effects of  NH2 groups. 
These research findings further increased the importance of 
synthesizing acyl hydrazone-derived compounds [19].
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A three-component Mannich condensation builds a class 
of compounds known as Mannich bases on one pot reac-
tion of primary or secondary amine, an aldehyde reagent, 
and structurally diverse substrates containing at least one 
active hydrogen atom [20]. Mannich base also acts as essen-
tial pharmacophores for synthesizing novel compounds in 
medicinal chemistry [21]. Examples of clinically useful 
Mannich bases containing aminoalkyl scaffold in their 
structure are drugs such as trihexyphenidyl, procyclidine, 
ranitidine, and biperiden [22, 23]. Phenolic compounds are 
one of the most critical carbons Mannich bases because they 
contain active hydrogen. In the last decades, there have been 
many studies on the biological activities of phenolic Man-
nich bases, such as cytotoxic [24, 25], anticancer [26, 27], 
anticonvulsant [28], anti-inflammatory [29], antifungal [30], 
and carbonic anhydrase inhibitory activities [31, 32].

Morpholine and piperazines are privileged backbones 
that are widely used as a core structural element or sub-
stituent in effective drugs such as Noroxin (antibiotic), Clo-
zaril (an atypical antipsychotic medication), Iressa (breast, 
lung, and other cancers), and Moclobemide (depression and 
social anxiety) [33, 34]. They can also improve the phar-
macokinetic features of molecules, such as metabolic sta-
bility and solubility in water [35]. Another core structure, 
tetrahydroisoquinoline (THQ), forms the main backbone of 
many natural products (saframycin, naphthyridinomycin/
bioxalomycin, and quinocarcin/tetrazomine) and bioactive 
compounds [36]. From this perspective, with the potential of 
the drugs, it would be helpful to design and synthesize some 
novel acyl hydrazone derivatives incorporating piperazine, 
morpholine, and tetrahydroquinoline and screen them for 
potential biological activities.

Aldose reductase (AKR1B1, AR with EC number 
1.1.1.2)1 is the first rate-limiting enzyme in the polyol path-
way, belongs to the Aldo–keto reductase superfamily, and 
is a monomer comprising 315 amino acid residues [37–41]. 
This overproduction of the AR and sorbitol dehydrogenase 
on the polyol pathway and depletion in reduced  NADP+ and 
the oxidized  NAD+, which are cofactors of this process, 
causes various metabolic processes disturbances such as the 
nephropathy, retinopathy, cataracts, and neuropathy [42–46]. 
The aforementioned metabolic abnormalities are the primary 
targets of diabetic complications in those tissues involved in 
insulin-independent glucose uptake and are responsible for 
early tissue damage in the organs [47–53].

We investigated the synthesis, characterization, and 
biological activity of a series of novel acyl hydrazones to 
uncover novel AR inhibitors in the current work. In addition, 
we conducted in silico experiments, including absorption, 
distribution, metabolism, and excretion (ADME), density 
functional theory (DFT), and molecular docking, to evaluate 

the inhibitory mechanisms of those compounds against the 
target mentioned above, AR.

Experimental

Chemistry

The chemicals used in this study were supplied from Sigma 
Aldrich (Germany). Melting points were determined on 
WRS-2A Microprocessor Melting-point Apparatus and are 
uncorrected. IR spectra of compounds were recorded using 
ALPHA-P BRUKER FT-IR Spectrophotometer.1H NMR 
spectra were recorded on Bruker (400 MHz) spectrometer. 
13C NMR spectra were recorded on Bruker (100 MHz) 
spectrometer. Chemical shifts are reported as δ in ppm 
relative to tetramethylsilane (TMS) (δ 0.00 singlets) in 
deuterated chloroform  (CDCl3). High-resolution mass 
spectrometry measurements were recorded on Agilent 
6530 Accurate-Mass Q-TOF LC/MS.

General procedure for synthesis 
of compounds 2a–b

Synthesis of 2a–b was performed according to the previ-
ously reported method [54].

4‑Formyl‑2‑methoxyphenyl furan‑2‑carboxylate (2a)

White solid, yield 83%, mp: 101–103 °C (lit. 101–103 °C) 
[54].

4‑Formyl‑2‑methoxyphenyl thiophene‑2‑carboxy‑
late (2b)

White solid, yield: 81%, mp: 89–91 °C. IR (ATR,  cm−1): 
νmax 3108, 3070, 2843, 1744, 1682, 1456, 1262, 1054, 
854, 724. 1H NMR (400 MHz,  CDCl3, δ/ppm): δ 10.0 (s, 
1H), 8.0 (d, J = 3.8 Hz, 1H), 7.7 (d, J = 5.0 Hz, 1H), 7.5 
(dt, J = 7.9, 1.6 Hz, 2H), 7.4 (d, J = 7.9 Hz, 1H), 7.2 (d, 
J = 4.9 Hz, 1H), 3.9 (s, 3H). 13C NMR (100 MHz,  CDCl3, 
δ/ppm): δ 191.0 159.5, 152.2, 144.7, 135.7, 135.2, 133.9, 
132.0, 128.2, 124.7, 123.6, 111.0, 56.2. HRMS (Q-TOF) 
m/z calcd for  C15H14O5S [M +  H]+: 262.0323, Found: 
262.0341.

General procedure for synthesis of compounds 3a–e

Synthesis of 3a–e was carried out according to the previ-
ously reported method [55].
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4‑Hydroxy‑3‑methoxy‑5‑(morpholinomethyl)benza‑
ldehyde (3a)

White solid; yield: 85%, mp: 99–100 °C; IR (ATR,  cm−1) 
νmax 2945, 2866, 2829, 2733, 1647, 1592, 1270, 1120, 868, 
705; 1H NMR (400 MHz,  CDCl3) δ 9.79 (s, 1H), 7.36 (m, 
1H), 7.19 (m, 1H) 3.95 (s, 3H), 3.82 (s, 2H), 3.78 (m, 4H), 
2.63 (m, 4H); 13C NMR (100 MHz,  CDCl3)δ 190.6, 153.5, 
148.6, 128.5, 125.5, 120.3, 109.8, 66.6, 61.1, 56.0, 52.7.

4‑Hydroxy‑3‑methoxy‑5‑((4‑phenylpiperazin‑1‑yl)
methyl)benzaldehyde (3b)

White solid; yield: 90%, mp: 156  °C (lit: 156–157  °C) 
[56]; IR (ATR,  cm−1) νmax 2959, 2938, 2827, 2737, 1677, 
1586, 1315, 1235, 1141, 760, 691; 1H NMR (400 MHz, 
 CDCl3) δ10.90 (brs, 1H), 9.81 (s, 1H), 7.39–7.38 (m, 1H), 
7.32–7.27 (m, 2H), 7.22–7.17 (m, 1H) 6.95–6.86 (m, 3H), 
3.96 (s, 3H), 3.89 (s, 2H), 3.28 (m, 4H), 2.80 (m,4H); 13C 
NMR (100 MHz,  CDCl3)δ 190.6, 153.7, 150.7, 148.7, 129.2, 
128.4, 125.5, 120.6, 120.4, 116.5, 109.9, 60.8, 56.0, 52.5, 
49.2.

4‑Hydroxy‑3‑methoxy‑5‑((3‑methylpiperidin‑1‑yl)
methyl)benzaldehyde (3c)

Light brown solid; yield: 88%, mp: 142–144 °C; IR (ATR, 
 cm−1) νmax 2946, 2922, 2853, 2748, 1651, 1592, 1271, 1147, 
864, 707; 1H NMR (400 MHz,  CDCl3) δ11.55 (s, 1H), 9.76 
(s, 1H), 7.33 (m, 1H), 7.15 (m, 1H) 3.94 (s, 3H), 3.78 (m, 
2H), 2.96–2.90 (m, 2H), 2.11 (t, J = 10.5 Hz, 1H), 1.83–1.58 
(m, 5H), 0.98–0.95 (m, 1H), 0.89 (d, J = 6.3 Hz, 3H),13C 
NMR (100 MHz,  CDCl3)δ 190.6, 154.8, 148.6, 127.8, 125.4, 
120.8, 109.5, 61.2, 60.7, 55.9, 53.2, 32.2, 31.0, 25.0, 19.2.

3‑((3,4‑Dihydroisoquinolin‑2(1H)‑yl)methyl)‑4‑hy‑
droxy‑5‑methoxybenzaldehyde (3d)

Light yellow solid; yield: 88%, mp: 181–183 °C; IR (ATR, 
 cm−1) νmax 3053, 2956, 2817, 2750, 1649, 1590, 1274, 749; 
1H NMR (400 MHz, DMSO) δ 9.79 (s, 1H), 7.45 (s, 1H), 
7.37 (s, 1H), 7.24–6.89 (m, 4H), 3.89 (s, 2H), 3.86 (s, 3H), 
3.69 (s, 2H), 2.86 (t, J = 5.4 Hz, 2H), 2.80 (t, J = 5.4 Hz, 2H); 
13C NMR (101 MHz, DMSO) δ 191.0, 152.7, 148.0, 133.8, 
133.5, 128.5, 127.8, 126.5, 126.3, 125.7 (2C), 122.9, 109.8, 
57.5, 55.7, 54.7, 49.7, 28.2.

N‑ethyl‑4‑(5‑formyl‑2‑hydroxy‑3‑methoxybenzyl)
piperazine‑1‑carboxamide (3e)

White solid, yield 80%, mp: 86–87 °C; IR (ATR,  cm−1) νmax 
2978, 2948, 2823, 2735, 1735, 1681, 1589, 1237, 1138, 863, 
694; 1H NMR (400 MHz,  CDCl3) δ 9.79 (s, 1H), 7.36 (m, 

1H), 7.18 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 
3.83 (m, 1H), 3.56 (m, 4H), 2.58 (m, 4H), 1.27 (t, J = 7.1 Hz, 
3H); 13C NMR (100 MHz,  CDCl3) δ 190.6, 155.2, 153.4, 
148.6, 128.5, 125.4, 120.4, 109.9, 61.6, 60.8, 56.0, 52.2, 
43.4, 43.3, 14.6.

General procedure for synthesis of compounds 6a–c

In a 50 mL round-bottom flask, the related secondary amine 
(10 mmol) and triethylamine (11 mmol, 1.11 g, 1.53 mL) 
were dissolved in 20 mL of THF and the solution was then 
put into an ice bath. Ethylchloroacetate (10 mmol, 1.23 g) 
in 20 mL of THF was added to this solution dropwise and 
stirred for three hours at room temperature. After comple-
tion, the solvent was removed under reduced pressure. It was 
washed with cold water to remove the triethylammonium 
chloride salt from the oily mixture obtained. Then the crude 
product was dissolved in 20 mL of ethanol and hydrazinium 
hydroxide (80%, 25 mmol) was added to the solution. The 
reaction mixture was refluxed for two hours. The solvent was 
removed under reduced pressure and the product was washed 
with cold water. The crude product was used for next step 
without any purification.

2‑(4‑Phenylpiperazin‑1‑yl)acetohydrazide (6a)

White solid, yield 88%, mp: 76–78 °C (lit. 75 °C) [57].

2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)acetohydrazide 
(6b)

White solid, yield 92%, mp: 85–87  °C [58]. 1H NMR 
(400 MHz, DMSO) δ 8.95 (s, 1H), 7.22–6.87 (m, 4H), 4.25 
(brs, 2H), 3.61 (s, 2H), 3.10 (s, 2H), 2.82 (t, J = 5.8 Hz, 2H), 
2.71 (t, J = 5.9 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 168.3, 
134.6, 133.9, 128.4, 126.2, 125.9, 125.4, 59.7, 55.2, 50.6, 28.6.

2‑Morpholinoacetohydrazide (6c)

White solid, yield 75%, mp: 95–98 °C (lit. 99–101 °C) [59].

General procedure for synthesis of compounds 7a–c, 
11a–c, 12a–c, and 13a–c

The corresponding aldehyde 2a–b, 3a–e (10 mmol) and aceto-
hydrazide derivative 6a–c (10 mmol) were dissolved in abso-
lute ethanol (20 mL), and 4–5 drops of acetic acid was added. 
Reaction mixture was refluxed for 1–2 h. Reaction was moni-
tored by TLC. After completion, half of the solvent volume 
was removed under reduced pressure. The mixture was left in 
the freezer overnight, and the formed solid was filtered off. The 
crude product was recrystallized from ethanol.



1717Molecular Diversity (2023) 27:1713–1733 

1 3

2‑Methoxy‑4‑((2‑(2‑(4‑phenylpiperazin‑1‑yl)acetyl)
hydrazono)methyl)phenylfuran‑2‑carboxylate (7a)

Beige solid, yield 77%, mp: 178–180 °C, IR (ATR,  cm−1) νmax 
3205, 3065, 2936, 1729, 1657, 1597, 1232, 1070, 745; 1H NMR 
(400 MHz,  CDCl3) δ 10.21 (s, 1H), 8.25 (s, 1H), 7.69 (s, 1H), 7.57 
(s, 1H), 7.42 (d, J = 3.4 Hz, 1H), 7.33–7.28 (m, 3H), 7.25–7.14 
(m, 2H), 7.01–6.84 (m, 2H), 6.61 (dd, J = 3.4, 1.6 Hz, 1H), 3.89 
(s, 3H), 3.35–3.33 (m, J = 10.8 Hz, 6H), 2.82 (brs, 4H). 13C 
NMR (101 MHz,  CDCl3) δ 166.0, 156.2, 151.8, 150.9, 148.0, 
147.3, 143.6, 141.2, 132.7, 129.2, 123.1, 121.8, 120.2, 119.8, 
116.3, 112.3, 109.9, 61.0, 56.2, 53.6, 49.3. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C25H26N4O5, 463.1981; found 463.1977.

4‑((2‑(2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)acetyl)
hydrazono)methyl)‑2‑methoxyphenyl furan‑2‑car‑
boxylate (7b)

Beige solid, yield 81%, mp: 105–107 °C, IR (ATR,  cm−1) 
νmax 3145, 3028, 2922, 1742, 1668, 1546, 1270, 1077, 746; 
1H NMR (400 MHz,  CDCl3) δ 10.30 (s, 1H), 8.13 (s, 1H), 
7.68 (s, 1H), 7.56 (s, 1H), 7.40 (d, J = 3.4 Hz, 1H), 7.25–7.10 
(m, 5H), 7.05 (d, J = 6.0 Hz, 1H), 6.60 (dd, J = 3.5, 1.7 Hz, 
1H), 3.86 (s, 3H), 3.79 (s, 2H), 3.38 (s, 2H), 3.00 (t, J = 5.6 Hz, 
2H), 2.91 (t, J = 5.7 Hz, 2H). 13C NMR (100 MHz,  CDCl3) δ 
166.5, 156.2, 151.7, 147.8, 147.3, 143.6, 141.1, 133.5, 128.8, 
126.7, 126.6, 126.0, 123.0, 121.8, 119.8, 112.3, 109.9, 61.0, 
56.2, 51.6, 29.2. HRMS (Q-TOF) m/z: [M +  H]+ calcd for 
 C24H23N3O5, 434.1716; found 434.1710.

2‑Methoxy‑4‑((2‑(2‑morpholinoacetyl)hydrazono)
methyl)phenyl furan‑2‑carboxylate (7c)

Beige solid, yield 75%, mp: 114–116 °C, IR (ATR,  cm−1) 
νmax 3153, 3108, 2955, 1743, 1658, 1572, 1267, 1067, 
745; 1H NMR (400 MHz,  CDCl3) δ 10.15 (s, 1H), 8.22 
(s, 1H), 7.68 (s, 1H), 7.53 (s, 1H), 7.40 (d, J = 3.3 Hz, 
1H), 7.18 (m, 2H), 6.60 (d, J = 4.9 Hz, 1H), 3.86 (s, 3H), 
3.77 (t, J = 4.4 Hz, 4H), 3.21 (s, 2H), 2.62 (t, J = 4.4 Hz, 
4H). 13C NMR (100 MHz,  CDCl3) δ 166.0, 156.2, 151.7, 
148.0, 147.3, 143.5, 141.1, 132.7, 123.0, 121.7, 119.9, 
112.3, 109.9, 66.8, 61.4, 56.2, 53.9. HRMS (Q-TOF) 
m/z: [M +  H]+ calcd for  C19H21N3O6, 388.1509; found 
388.1503.

2‑Methoxy‑4‑((2‑(2‑(4‑phenylpiperazin‑1‑yl)acetyl)
hydrazono)methyl)phenyl thiophene‑2‑carboxylate 
(8a)

White solid, yield 79%, mp: 175–177 °C, IR (ATR,  cm−1) 
νmax 3193, 3050, 2929, 1734, 1654, 1587, 1253, 1071, 755; 
1H NMR (400 MHz,  CDCl3) δ 10.21 (s, 1H), 8.24 (s, 1H), 
8.00 (d, J = 3.8 Hz, 1H), 7.69 (d, J = 5.0 Hz, 1H), 7.57 (s, 
1H), 7.38–7.25 (m, 3H), 7.26–7.13 (m, 3H), 7.03–6.90 (m, 
3H), 3.89 (s, 3H), 3.30–3.28 (m, 6H), 2.81 (t, J = 4.0 Hz, 
4H). 13C NMR (100 MHz,  CDCl3) δ 166.0, 159.9, 151.9, 
150.9, 148.0, 141.6, 134.9, 133.7, 132.2, 129.2, 128.1, 
123.1, 121.8, 120.2, 116.3, 110.0, 61.0, 56.3, 53.6, 49.3. 
HRMS (Q-TOF) m/z: [M +  H]+ calcd for  C25H26N4O4S, 
479.1753; found 479.1747.

4‑((2‑(2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)acetyl)
hydrazono)methyl)‑2‑methoxyphenyl thio‑
phene‑2‑carboxylate (8b)

White solid, yield 82%, mp: 110–112 °C, IR (ATR,  cm−1) 
νmax 3172, 3073, 2915, 1734, 1661, 1561, 1251, 1089, 
734; 1H NMR (400 MHz,  CDCl3) δ 10.34 (s, 1H), 8.13 
(s, 1H), 7.99 (d, J = 4.7 Hz, 1H), 7.67 (d, J = 5.0 Hz, 1H), 
7.55 (s, 1H), 7.25–7.12 (m, 6H), 7.05 (d, J = 6.2 Hz, 1H), 
3.86 (s, 3H), 3.81 (s, 2H), 3.39 (s, 2H), 3.00 (t, J = 5.5 Hz, 
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2H), 2.92 (t, J = 5.7 Hz, 2H). 13C NMR (100 MHz,  CDCl3) 
δ 166.4, 159.9, 151.8, 147.9, 141.6, 134.9, 133.7, 132.3, 
128.8, 128.1, 126.7, 126.6, 126.1, 123.1, 121.8, 109.9, 
61.0, 56.2, 51.6, 29.1. HRMS (Q-TOF) m/z: [M +  H]+ 
calcd for  C24H23N3O4S, 450.1488; found 450.1483.

2‑Methoxy‑4‑((2‑(2‑morpholinoacetyl)hydrazono)
methyl)phenyl thiophene‑2‑carboxylate (8c)

White solid, yield 77%, mp: 140–142 °C, IR (ATR,  cm−1) 
νmax 3177, 3053, 2956, 1735, 1655, 1572, 1247, 1082, 740; 1H 
NMR (400 MHz,  CDCl3) δ 10.18 (s, 1H), 8.20 (s, 1H), 7.99 
(d, J = 4.0 Hz, 1H), 7.68 (d, J = 4.0 Hz, 1H), 7.21–7.16 (m, 
3H), 3.85 (s, 3H), 3.77 (t, J = 4.4 Hz, 4H), 3.22 (s, 2H), 2.62 (t, 
J = 4.4 Hz, 4H). 13C NMR (10o MHz,  CDCl3) δ 166.0, 160.0, 
151.8, 148.1, 141.6, 135.0, 133.7, 132.6, 132.5, 128.1, 123.1, 
121.7, 110.0, 66.8, 61.4, 56.2, 53.9. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C19H21N3O5S, 404.1280; found 404.1274.

N′‑(4‑hydroxy‑3‑methoxy‑5‑(morpholinomethyl)
benzylidene)‑2‑(4‑phenylpiperazin‑1‑yl) acetohy‑
drazide (9a)

White solid, yield 88%, mp: 187–189 °C, IR (ATR,  cm−1) νmax 3187, 
3060, 2942, 1660, 1594, 1258, 1077, 761; 1H NMR (400 MHz, 
 CDCl3) δ 10.06 (s, 1H), 8.08 (s, 1H), 7.30–7.26 (m, 3H), 7.00 (s, 1H), 
6.94–6.87 (m, 3H), 3.90 (s, 3H), 3.75–3.72 (m, 6H) 3.25 (brs, 4H), 
2.76 (t, J = 4.0 Hz, 4H), 2.58 (brs, 4H). 13C NMR (100 MHz,  CDCl3) 
δ 165.8, 150.9, 149.7, 148.8, 148.3, 129.2, 124.6, 121.8, 120.6, 116,2, 
109.4, 66.7, 61.0, 56.1, 53.6, 52.8, 49.3. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C25H33N5O4, 468.2611; found 468.2605.

2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)‑N'‑(4‑hy‑
droxy‑3‑methoxy‑5‑(morpholinomethyl)ben‑
zylidene) acetohydrazide (9b)

White solid, yield 91%, mp: 209–211 °C, IR (ATR,  cm−1) 
νmax 3186, 3056, 2960, 1656, 1592, 1268, 1080, 742; 1H NMR 
(400 MHz,  CDCl3) δ 10.13 (s, 1H), 7.99 (s, 1H), 7.26 (s, 1H), 
7.21–7.16 (m, 3H), 7.05 (s, 1H), 6.97 (s, 1H), 3.90 (s, 3H), 
3.78 (s, 2H), 3.75 (t, J = 4.0 Hz, 4H) 3.72 (s, 2H), 3.36 (s, 2H), 
2.99 (t, J = 5.5 Hz, 2H), 2.90 (t, J = 5.5 Hz, 2H), 2.58 (brs, 4H). 
13C NMR (100 MHz,  CDCl3) δ 166.0, 149.7, 148.7, 148.3, 
133.8, 133.4, 128.8, 126.7, 126.6, 126.0, 124.7, 121.8, 120.6, 
109.4, 66.7, 61.0, 56.2, 52.8, 51.6, 29.2. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C24H30N4O4, 439.2345; found 439.2339.

N′‑(4‑hydroxy‑3‑methoxy‑5‑(morpholinomethyl)
benzylidene)‑2‑morpholinoacetohydrazide (9c)

White solid, yield 85%, mp: 183–185 °C, IR (ATR,  cm−1) 
νmax 3206, 3045, 2956, 1664, 1591, 1267, 1078; 1H NMR 
(400 MHz,  CDCl3) δ 9.98 (s, 1H), 8.05 (s, 1H), 7.22 (s, 
1H), 6.95 (s, 1H), 3.86 (s, 3H), 3.72 (t, J = 4.4 Hz, 8H), 
3.15 (s, 2H), 2.56 (t, J = 4.4 Hz, 8H). 13C NMR (100 MHz, 
 CDCl3) δ 165.7, 149.7, 148.8, 148.2, 124.6, 121.8, 120.6, 
109.3, 66.9, 66.6, 61.4, 61.1, 56.0, 53.8, 52.8. HRMS 
(Q-TOF) m/z: [M +  H]+ calcd for  C19H28N4O5, 393.2138; 
found 393.2132.

N′‑(4‑hydroxy‑3‑methoxy‑5‑((4‑phenylpiperazin‑1
‑yl)methyl)benzylidene)‑2‑(4‑phenylpiperazin‑1‑yl)
acetohydrazide (10a)

White solid, yield 91%, mp: 208–210 °C, IR (ATR,  cm−1) 
νmax 3192, 2997, 2935, 1659, 1594, 1225, 1081, 762; 1H 
NMR (400 MHz,  CDCl3) δ 10.06 (s, 1H), 8.11 (s, 1H), 
7.33–7.27 (m, 5H), 7.05 (s, 1H), 6.97–6.90 (m, 6H), 
3.94 (s, 3H), 3.81 (s, 2H), 3.28–3.26 (m, 10H), 2.79 (t, 
J = 4.4 Hz, 8H). 13C NMR (100 MHz,  CDCl3) δ 165.8, 
150.9, 150.8, 149.9, 148.9, 148.3, 129.2, 124,6, 121.8, 
120.9, 120.4, 120.2, 116.5, 116.2, 109.4, 61.1, 60.8, 56.1, 
53.6, 52.5, 49.3, 49.2. HRMS (Q-TOF) m/z: [M +  H]+ 
calcd for  C31H38N6O3, 543.3084; found 543.3080.
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2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)‑N′‑(4‑hydrox
y‑3‑methoxy‑5‑((4‑phenylpiperazin‑1‑yl)methyl)
benzylidene)acetohydrazide (10b)

White solid, yield 93%, mp: 214–216 °C, IR (ATR,  cm−1) 
νmax 3203, 3067, 2916, 1666, 1595, 1226, 1078, 739; 1H 
NMR (400 MHz,  CDCl3) δ 10.14 (s, 1H), 8.01 (s, 1H), 
7.31–7.26 (m, 3H), 7.22–7.17 (m, 3H), 7.05 (s, 1H), 7.01 
(s, 1H), 6.94–6.90 (m, 3H), 3.93 (s, 3H), 3.80 (s, 4H), 3.38 
(s, 2H), 3.26 (brs, 4H), 3.00 (t, J = 5.5 Hz, 2H), 2.91 (t, 
J = 5.5 Hz, 2H), 2.76 (brs, 4H). 13C NMR (100 MHz,  CDCl3) 
δ 166.0, 150.8, 149.8, 148.7, 148.3, 133.8, 133.5, 129.2, 
128.8, 126.7, 126.6, 126.0, 124.6, 120.9, 120.3, 116.4, 
109.4, 61.0, 60.8, 56.2, 56.1, 52.5, 51.6, 49.2, 29.3. HRMS 
(Q-TOF) m/z: [M +  H]+ calcd for  C30H35N5O3, 514.2818; 
found 514.2810.

N′‑(4‑hydroxy‑3‑methoxy‑5‑((4‑phenylpiperazi
n‑1‑yl)methyl)benzylidene)‑2‑morpholinoaceto 
hydrazide (10c)

White solid, yield 93%, mp: 188–190 °C, IR (ATR,  cm−1) 
νmax 3210, 3068, 2946, 1662, 1596, 1226, 1076, 758; 1H 
NMR (400 MHz,  CDCl3) δ 10.00 (s, 1H), 8.10 (s, 1H), 
7.28–7.24 (m, 3H), 7.01 (s, 1H), 6.92–6.86 (m, 3H), 3.91 
(s, 3H), 3.81–3.75 (m, 6H), 3.24 (brs, 4H), 3.19 (s, 2H), 
2.73 (brs, 4H), 2.60 (t, J = 4.4 Hz, 4H). 13C NMR (100 MHz, 
 CDCl3) δ 165.7, 150.8, 149.9, 148.9, 148.3, 129.2, 124.5, 
121.8, 120.9, 120.3, 116.4, 109.3, 66.9, 61.5, 60.8, 56.1, 
53.9, 52.4, 49.2. HRMS (Q-TOF) m/z: [M +  H]+ calcd for 
 C25H33N5O4, 468.2611; found 468.2603.

N′‑(4‑hydroxy‑3‑methoxy‑5‑((3‑methylpiperidin‑1
‑yl)methyl)benzylidene)‑2‑(4‑phenylpiperazin‑1‑yl)
acetohydrazide (11a)

Beige solid, yield 82%, mp: 134–136 °C, IR (ATR,  cm−1) νmax 
3208, 3064, 2926, 1657, 1593, 1232, 1076, 760; 1H NMR 
(400 MHz,  CDCl3) δ 10.04 (s, 1H), 8.06 (s, 1H), 7.30–7.24 (m, 3H), 
6.99 (s, 1H), 6.95–6.87 (m, 3H), 3.90 (s, 3H), 3.69 (d, J = 7.2 Hz, 
2H), 3.25–3.23 (m, 7H), 2.89–2.85 (m, 2H), 2.76 (t, J = 4.4 Hz, 
4H), 2.05 (t, J = 10.0 Hz, 1H), 1.75–1.69 (m, 4H), 0.95–0.86 (m, 
4H). 13C NMR (100 MHz,  CDCl3) δ 165.8, 150.9, 150.6, 149.1, 
148.2, 129.2, 124.0, 121.6, 121.2, 120.1, 116.2, 109.1, 61.2, 61.0, 
60.8, 56.1, 53.6, 53.2, 49.3, 32.3, 31.0, 19.4. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C27H37N5O3, 480.2975; found 480.2967.

2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)‑N′‑(4‑hydrox
y‑3‑methoxy‑5‑((3‑methylpiperidin‑1‑yl)methyl) 
benzylidene)acetohydrazide (11b)

Beige solid, yield 85%, mp: 170–172 °C, IR (ATR,  cm−1) νmax 
3201, 3070, 2923, 1661, 1591, 1227, 1081, 738; 1H NMR 
(400 MHz,  CDCl3) δ 10.10 (s, 1H), 7.97 (s, 1H), 7.22 (s, 1H), 
7.19–7.14 (m, 3H), 7.03 (d, J = 4.4 Hz, 1H), 6.95 (s, 1H), 
3.88 (s, 3H), 3.76 (s, 2H), 3.67 (d, J = 7.2 Hz, 2H), 3.33 (s, 
2H), 2.98–2.85 (m, 7H), 2.03 (t, J = 10.0 Hz, 1H), 1.74–1.72 
(m, 4H), 0.97–0.86 (m, 4H). 13C NMR (100 MHz,  CDCl3) δ 
166.1, 150.5, 148.9, 148.2, 133.9, 133.5, 128.8, 126.6, 126.0, 
124.0, 121.5, 121.2, 109.1, 61.3, 61.0, 60.8, 56.2, 56.0, 53.2, 
51.6, 32.3, 31.0, 29.3, 25.1, 24.2, 19.4. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C26H34N4O3, 451.2709; found 451.2704.

N'‑(4‑hydroxy‑3‑methoxy‑5‑((3‑methylpiperi‑
din‑1‑yl)methyl)benzylidene)‑2‑morpholinoaceto 
hydrazide (11c)

Beige solid, yield 81%, mp: 130–132 °C, IR (ATR,  cm−1) 
νmax 3208, 3074, 2928, 1663, 1592, 1246, 1078; 1H NMR 
(400 MHz,  CDCl3) δ 9.97 (s, 1H), 8.03 (s, 1H), 7.18 (s, 1H), 
6.91 (s, 1H), 3.84 (s, 3H), 3.74 (t, J = 4.4 Hz, 4H), 3.63 (d, 
J = 7.2 Hz, 2H), 3.13 (s, 2H), 2.94–2.54 (m, 7H), 2.00 (t, 
J = 10.0 Hz, 1H), 1.70–1.65 (m, 4H), 0.91–0.82 (m, 4H). 
13C NMR (100 MHz,  CDCl3) δ 165.6, 150.6, 149.1, 148.2, 
123.9, 121.5, 121.3, 66.8, 61.5, 61.4, 61.3, 60.8, 56.0, 53.8, 
53.2, 32.3, 31.0, 25.1, 19.3. HRMS (Q-TOF) m/z: [M +  H]+ 
calcd for  C21H32N4O4, 405.2502; found 405.2492.
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N′‑(3‑((3,4‑dihydroisoquinolin‑2(1H)‑yl)
methyl)‑4‑hydroxy‑5‑methoxybenzylidene)‑2‑(4
‑phenyl piperazin‑1‑yl)acetohydrazide (12a)

White solid, yield 94%, mp: 232–234 °C, IR (ATR,  cm−1) νmax 3209, 
3063, 2944, 1668, 1592, 1228, 1079, 750; 1H NMR (400 MHz, 
 CDCl3) δ 10.05 (s, 1H), 8.12 (s, 1H), 7.33–7.28 (m, 2H), 7.18–7.12 
(m, 4H), 7.09 (s, 1H), 7.02–6.90 (m, 5H), 3.93–3.92 (m, 5H), 3.80 (s, 
2H), 3.29–3.27 (m, 5H), 2.99 (t, J = 5.5 Hz, 2H), 2.91 (t, J = 5.5 Hz, 
2H), 2.80 (t, J = 4.4 Hz, 4H). 13C NMR (100 MHz, CDCl3) δ 165.8, 
150.9, 150.2, 149.0, 148.4, 133.3, 132.8, 129.3, 128.7, 126.7, 126.6, 
126.0, 121.8, 121.1, 120.2, 116.2, 109.5, 61.1, 60.4, 56.1, 55.1, 
53.6, 49.9, 49.3, 28.4. HRMS (Q-TOF) m/z: [M +  H]+ calcd for 
 C30H35N5O3, 514.2818; found 514.2811.

2‑(3,4‑Dihydroisoquinolin‑2(1H)‑yl)‑N′‑(3‑((3,4‑dihy
droisoquinolin‑2(1H)‑yl)methyl)‑4‑hydroxy‑5‑meth‑
oxybenzylidene)acetohydrazide (12b)

White solid, yield 92%, mp: 215–217 °C, IR (ATR,  cm−1) 
νmax 3188, 3063, 2905, 1658, 1589, 1226, 1077, 737; 1H NMR 
(400 MHz,  CDCl3) δ 10.13 (s, 1H), 8.02 (s, 1H), 7.28 (s, 1H), 
7.20–7.13 (m, 6H), 7.07–7.00 (m, 3H), 3.91 (s, 5H), 3.80 (s, 
2H), 3.78 (s, 2H), 3.38 (s, 2H), 3.02–2.96 (m, 4H), 2.92–2.87 
(m, 4H). 13C NMR (100 MHz,  CDCl3) δ 166.0, 150.2, 148.8, 
148.4, 133.9, 133.5, 133.3, 128.8, 128.7, 126.7, 126.6, 126.6, 
126.0, 124.5, 121.7, 121.1, 109.5, 61.0, 60.5, 56.2, 56.1, 55.2, 
51.6, 49.9, 29.3, 28.5. HRMS (Q-TOF) m/z: [M +  H]+ calcd 
for  C29H32N4O3, 485.2553; found 485.2548.

N′‑(3‑((3,4‑dihydroisoquinolin‑2(1H)‑yl)
methyl)‑4‑hydroxy‑5‑methoxybenzylidene)‑2‑mor‑
pholin oacetohydrazide (12c)

White solid, yield 90%, mp: 220–222 °C, IR (ATR,  cm−1) 
νmax 3199, 3069, 2936, 1660, 1565, 1229, 1081, 745; 1H 
NMR (400 MHz,  CDCl3) δ 9.97 (s, 1H), 8.13 (s, 1H), 
7.30 (s, 1H), 7.20–7.12 (m, 3H), 7.08 (s, 1H), 7.02–7.00 
(m, 1H), 3.93 (s, 5H), 3.80–3.78 (m, 6H), 3.21 (s, 2H), 
2.98–2.91 (m, 4H), 2.63 (bs, 4H). 13C NMR (100 MHz, 
 CDCl3) δ 165.6, 150.2, 149.0, 148.4, 133.2, 132.7, 128.7, 
126.7, 126.6, 126.1, 124.5, 121.8, 121.0, 114.8, 109.5, 
66.9, 61.5, 60.3, 56.1, 55.1, 53.9, 49.9, 28.4. HRMS 
(Q-TOF) m/z: [M +  H]+ calcd for  C24H30N4O4, 439.2345; 
found 439.2340.

Ethyl 4‑(2‑hydroxy‑3‑methoxy‑5‑((2‑(2‑(4‑phenyl‑
piperazin‑1‑yl)acetyl)hydrazono)methyl)benzyl) 
piperazine‑1‑carboxylate (13a)

White solid, yield 91%, mp: 181–183 °C, IR (ATR,  cm−1) 
νmax 3186, 3056, 2922, 1698, 1657, 1594, 1239, 1089, 760; 
1H NMR (400 MHz,  CDCl3) δ 10.09 (s, 1H), 8.06 (s, 1H), 
7.27–7.23 (m, 3H), 6.97 (s, 1H), 6.91–6.84 (m, 3H), 4.12 (q, 
J = 7.1 Hz, 2H), 3.89 (s, 3H), 3.51 (brs, 4H), 3.22 (m, 8H), 2.73 
(t, J = 4.4, 4H), 2.50 (brs, 4H), 1.23 (t, J = 7.1, 3H). 13C NMR 
(100 MHz,  CDCl3) δ 165.8, 155.2, 150.9, 149.6, 148.7, 148.3, 
129.2, 124.7, 121.6, 120.7, 120.1, 116.1, 109.4, 61.6, 61.0, 
60.8, 56.1, 53.6, 52.1, 49.2, 43.4, 14.6. HRMS (Q-TOF) m/z: 
[M +  H]+ calcd for  C28H38N6O5, 539.2982; found 539.2975.

Ethyl 4‑(5‑((2‑(2‑(3,4‑dihydroisoquinolin‑2(1H)‑yl)
acetyl)hydrazono)methyl)‑2‑hydroxy‑3‑methoxy 
benzyl)piperazine‑1‑carboxylate (13b)

White solid, yield 93%, mp: 188–191 °C, IR (ATR,  cm−1) 
νmax 3183, 3034, 2936, 1703, 1655, 1596, 1267, 1082, 750; 1H 
NMR (400 MHz,  CDCl3) δ 10.15 (s, 1H), 7.99 (s, 1H), 7.25 
(s, 1H), 7.20–7.14 (m, 3H), 7.04 (d, J = 5.6 Hz, 1H), 6.97 (s, 
1H), 4.14 (q, J = 7.1 Hz, 2H), 3.90 (s, 3H), 3.78 (s, 2H), 3.72 
(s, 2H), 3.54 (brs, 4H), 3.36 (s, 2H), 2.98 (t, J = 5.5 Hz,, 2H), 
2.91 (t, J = 5.5, 2H), 2.54 (brs, 4H), 1.26 (t, J = 7.1, 3H). 13C 
NMR (100 MHz,  CDCl3) δ 166.0, 155.2, 149.5, 148.6, 148.3, 
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133.7, 133.4, 128.8, 126.7, 126.6, 126.0, 124.7, 121.6, 120.7, 
109.5, 61.6, 61.0, 60.8, 56.2, 56.1, 52.2, 51.6, 43.4, 29.2, 
14.6. HRMS (Q-TOF) m/z: [M +  H]+ calcd for  C27H35N5O5, 
510.2716; found 510.2712.

Ethyl 4‑(2‑hydroxy‑3‑methoxy‑5‑((2‑(2‑mor‑
pholinoacetyl)hydrazono)methyl)benzyl)pipera‑
zine‑1‑carboxylate (13c)

White solid, yield 88%, mp: 163–165 °C, IR (ATR,  cm−1) 
νmax 3187, 3055, 2924, 1699, 1656, 1590, 1236, 1087, 764; 
1H NMR (400 MHz,  CDCl3) δ 9.99 (s, 1H), 8.06 (s, 1H), 
7.23 (s, 1H), 6.96 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.89 
(s, 3H), 3.73–3.71 (m, 5H), 3.51 (brs, 4H), 3.16 (s, 2H), 
2.57 (t, J = 4.4 Hz, 4H), 2.52 (brs, 4H), 1.23 (t, J = 7.1, 3H). 
13C NMR (100 MHz,  CDCl3) δ 165.6, 155.2, 149.6, 148.8, 
148.3, 124.7, 121.7, 120.7, 109.4, 66.9, 61.6, 61.4, 60.8, 
56.1, 53.8, 52.15, 43.5, 14.6. HRMS (Q-TOF) m/z: [M +  H]+ 
calcd for  C22H33N5O6, 464.2509; found 464.2503.

Biological studies

According to prior research, the AR purification procedure 
was carried out utilizing the  (NH4)2SO4 precipitation DE-52 
cellulose ion-exchange column, Sephadex G-100 gel filtra-
tion column, and 2′5′-ADP Sepharose-4B affinity column 
[60–65]. The Bradford technique at 595 nm was used to 
determine the protein content of the samples [66–68]. SDS-
PAGE technique was employed to ensure enzyme purity 
[69–71]. AR activity was assessed spectrophotometrically 
using dl-glyceraldehyde and NADPH reduction at 340 nm 
[72–74]. Activity (%) novel acyl hydrazones generated from 
vanillin compounds and standard inhibitor epalrestat plots 
were used to calculate the IC50 values, inhibitory concentra-
tions that reduce enzyme activity by 50%. Three different 
inhibitory doses were applied to determine KI values and 
inhibition types [75, 76].

In silico studies

The Maestro ver. 13.1 [77], Protein Preparation Wizard [78], 
SiteMap [79], Receptor Grid Generation [80], LigPrep [81], 
QikProp [82], Prime MM-GBSA [83], and Jaguar [84] tools 
are implemented in Small-Molecule Drug Discovery Suite 
2022-1 for Mac (Schrödinger, LLC, NY, USA) and were 

used to perform molecular docking, ADME, and DFT calcu-
lations. All compounds, including novel acyl hydrazones and 
the reference ligand EPR, were sketched in the 2D-sdf for-
mat using ChemDraw ver. 19.1 for Mac [85] (PerkinElmer, 
Inc., Waltham, MA, USA), and ligand production was per-
formed using the LigPrep tool [86–88]. The QikProp module 
was used to estimate ADME-related parameters for these 
substances as described in previous studies [89–91]. The 
Protein Data Bank provided the X-ray structure of the tem-
plate 4JIR [92] (Resolution: 2.00 Å; R-Values free and work: 
0.210 and 0.160, respectively; Species: Homo sapiens) and 
wass prepared using the Protein Preparation Wizard [93–95]. 
The Receptor Grid Generation tool [96–98] was used to cre-
ate the docking grid box. The extra-precision (XP) approach 
[99–101] was used to perform molecular-docking simula-
tions. Also, the VSGB energy model [102–104] and OPLS4 
force field [105, 106] were used to calculate MM-GBSA 
binding energies [107, 108], which predict relative binding 
affinities for these novel acyl hydrazones. The novel acyl 
hydrazones were also analyzed via Becke’s three-parameter 
exchange potential and Lee–Yang–Parr correlation func-
tional (B3LYP) using a 6-31G∗∗ basic set level. With single-
point calculations, the implicit solvation model of Poisson 
Boltzmann Finite was used. The electrostatic potentials were 
computed using the molecule’s van der Waals contact sur-
face area [109, 110].

Statistical studies

Analysis of the data and drawing of graphs were real-
ized using GraphPad Prism ver. 8 for Mac (GraphPad 
Software, La Jolla California USA). The inhibition con-
stants were calculated by SigmaPlot ver. 12 for Windows 
(Systat Software, San Jose California USA). The fit of 
enzyme inhibition models was compared using the extra 
sum-of-squares F test and the AICc approach. The results 
were exhibited as mean ± standard error of the mean (95% 
confidence intervals). Differences between datasets were 
considered statistically significant when the p value was 
less than 0.05.

Results and discussion

Chemistry

The synthesis pathway of designed molecules was carried 
out using reagents and conditions as presented in Schemes 
1 and 2. Briefly, compounds 2a and 2b were synthesized 
according to the Schotten Baumann reaction, and com-
pounds 3a-e were synthesized according to the Mannich 
Reaction, with good yields.
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In Scheme 2, hydrazides (6a–c) were synthesized from 
esters formed by the reaction of the related cyclic second-
ary amine with ethyl chloroacetate. In the final step, the 
synthesized aldehydes (2a–b, 3a–e) were treated with the 
synthesized hydrazides (6a–c), producing target compounds 
(7a–c to 13a–c) with yields ranging from 75 to 90%. The 
melting points of the known intermediates were compared 
with the values in the literature. The structures of the newly 
synthesized compounds were characterized by IR, 1H NMR, 
and 13C NMR spectroscopic methods.

In the IR spectra of the compounds 7a–c to 13a–c, NH 
stretching bands are observed at 3210–3145   cm−1. Aro-
matic C–H stretching bands are seen at 3108–3034  cm−1 
and the aliphatic C–H stretching bands are observed at 
2960–2905  cm−1. C=O of hydrazone moiety and CH=N 
stretching bands are observed at 1668–1654   cm−1 and 
1597–1556  cm−1, respectively. C–O and N–H bending bands 
are seen at 1270–1225  cm−1 and 1089–1067  cm−1, respec-
tively. For compounds 7a–c, 8a–c, and 13a–c, stretching 
bands of ester carbonyl are observed at 1743–1698  cm−1.

In the 1H NMR spectra of the compounds 7a–c to 
13a–c, peaks of NH protons are seen as singlet at δ 
10.34–9.97 ppm. Peaks of N=CH protons are observed as 
singlet at δ 8.25–7.97 ppm. The resonance signals of aro-
matic protons are observed at δ 7.99–6.60 ppm as singlet, 
doublet, triplet, and multiplet relative to their chemical 
environment. Peaks of  OCH3 and Ph–CH2–N protons are 
seen as singlet at δ 3.94–3.84 and δ 3.81–3.71 ppm, respec-
tively. Peaks of N–CH2–C=O protons are seen as singlet at δ 
3.39–3.15 ppm. Aliphatic protons of morpholine, piperazine, 
tetrahydroisoquinoline, and piperidine moieties are observed 
at δ 3.75–0.82 ppm as singlet, doublet, triplet, and multi-
plet relative to their chemical environment. For compounds 
13a–c, peaks of OCH2CH3 protons are seen as quartet at δ 
4.14–4.11 ppm and peaks of  OCH2CH3 protons are seen as 
triplet at δ 1.26–1.23 ppm. Chemical shifts, integrations, and 
splits are fully compatible with the structures.

In the 13C NMR spectra of target molecules, 
peaks of HN–C=O and CH=N carbons are seen at δ 
166.5–165.6 ppm and δ 147.8–148.4 ppm, respectively. 
For compounds 7a–c and 8a–c, peaks of Ar–C=O carbons 
are observed at δ 160.0–156.2 ppm. Peaks of aromatic 
carbons are observed at δ 151.9–109.1 ppm. Peaks of 
 OCH3 carbons are seen at δ 56.3–56.0 ppm, and peaks 
of N–CH2–C=O carbons are seen at δ 61.5–61.0 ppm. 
For compounds 13a–c, peaks of  CH3CH2–O–C=O car-
bons are observed at δ 155.2 ppm. Also, for compounds 
13a–c, peaks of  CH3CH2–O–C=O and CH3CH2–O–C=O 
carbons are observed at δ 43.5–43.4 ppm and δ 14.6 ppm, 
respectively. Finally, aliphatic carbons of morpholine, 
piperazine, tetrahydroisoquinoline, and piperidine moie-
ties are observed at δ 66.9–19.3 ppm. Chemical shifts 

and the number of the peaks are fully compatible with 
the structures.

Biological studies and structure–activity relation‑
ship

As shown in Table 1, 21 compounds exhibited relative 
more potent inhibitory activity against AR with KI val-
ues ranged from 49.22 ± 3.64 to 1114.00 ± 49.64 nM, 
and among them, compound 11c, named N'-(4-hy-
droxy-3-methoxy-5-((3-methylpiperidin-1-yl)methyl)
benzylidene)-2-morpholinoaceto hydrazide, displayed 
the strongest inhibitory effect with an KI value of 
49.22 ± 3.64 nM (Fig. 1). The inhibitor effects of novel 
acyl hydrazones derived from vanillin compounds against 
AR were decreased in the following order: 11c > (KI: 
49.22 ± 3.64 nM) 10b > (KI: 79.36 ± 5.77 nM) 7a > (KI: 
101.00 ± 8.21 nM) 10a > (KI: 145.80 ± 22.30 nM) 8a > (KI: 
182.40 ± 14.35 nM) 7c > (KI: 304.00 ± 13.36 nM) 9b > (KI: 
312.80 ± 53.48  nM) 12b > (KI: 338.40 ± 17.18  nM) 
9 c  >  ( K I :  3 7 2 . 1 0  ±  6 2 . 4 5   n M )  1 1 b  >  ( K I : 
394.00 ± 22.65  nM) 11a > (KI: 398.20 ± 15.20  nM) 
1 2 a  >  ( K I :  4 3 7 . 4 0  ±  1 4 . 0 8   n M )  1 3 b  >  ( K I : 
444.50 ± 24.74  nM) 7b > (K I: 523.00 ± 22.54  nM) 
1 2 c  >   ( K i :  5 3 3 . 5 0  ±  2 6 . 6 7   n M )  1 0 c  >  ( K I : 
598.70 ± 19.27  nM) 8c > (KI: 746.20 ± 34.41  nM) 
1 3 a  >  ( K I :  7 8 7 . 1 0  ±  3 9 . 3 2   n M )  1 3 c  >  ( K I : 
854.00 ± 33.96  nM) 8b > (K I: 897.20 ± 43.63  nM) 
9a > (KI: 1114.00 ± 49.64 nM).

There are different types of inhibition, including mixed, 
non-competitive, competitive, and un-competitive. It 
would be appropriate to state that the inhibitory poten-
tial of the molecules is due to the structural, 3D chemical 
structure, and conformation features that vary according 
to the different groups on which the backbone structure 
depends. When compounds 7a and 7c are compared, sub-
stitution of 4-phenylpiperazin-1-yl structure with 2-mor-
pholino caused a threefold change in the inhibition value. 
The 4-phenylpiperazin-1-yl group showed a better inhibi-
tion effect in the replacement of the phenylfuran-2-car-
boxylate structure in the structure of compounds 7a and 
7c with thiophene-2-carboxylate (8a and 8c).

When acetohydrazide compounds were compared 
(9c, 10c, and 11c), the inhibition effect was observed 
as follows, respectively: 3-methylpiperidin-1-yl (11c, 
KI: 49.22 ± 3.64  nM) > 5-morpholinomethyl (9c, KI: 
372.10 ± 62.45 nM) > 4-phenylpiperazin-1-yl (10c, KI: 
598.70 ± 19.27  nM). On the contrary, when we look 
at the inhibition order of 2-(4-phenylpiperazin-1-yl)
acetohydrazide compounds, the inhibition effect was 
observed as follows, respectively: 4-phenylpiperazin-
1-yl (10a) > 3-methylpiperidin-1-yl (11a) > 5-mor-
pholinomethyl (9a). Considering the inhibition order 
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of piperazine-1-carboxylate compounds (13a, 13b and 
13c), compound 13b showed better inhibition effect (KI: 
444.50 ± 24.74 nM).

Potential inhibitory effect of synthesized compounds 
against AR has been reported in the literature. Yapar et al. 
[111] synthesized the novel bis-hydrazone compounds 
bearing isovanillin moiety and studied inhibition effect 
of these compounds on AR enzyme activity. They found 

that the novel bis-hydrazones demonstrated in nanomo-
lar levels as AR inhibitors with KI values in the range of 
13.38–88.21 nM. Maccari et al. [112] performed inhibition 
effect of 5-arylidene-2,4-thiazolidinediones on AR enzyme. 
The authors found that a hydroxyl group on the 5-arylidene 
moiety led to significant inhibitory effect. Alexiou et al. 
[113] synthesized a series of N-(3,5-difluoro-4-hydrozy-
phenyl)benzenesulfonamide derivatives and studied the 

Scheme 1  The synthetic pathway for preparations of aldehydes 2a–b, 3a–e containing acyl group and Mannich base derived from vanillin

Scheme 2  The synthetic pathway for the preparation of novel acyl hydrazones (7a–c and 13a–c)
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inhibition effect of novel compounds on AR. They enhanced 
these compounds compared to N-benzenesulfonylglycine 
lead derivative. The most potent inhibitor was found to be 
compound 66 with the IC50 value of 14.1 μM.

In silico studies

Table 2 summarizes the results of the determination of 
ADME-related parameters for novel acyl hydrazones. New 
acyl hydrazones were identified as hit-agents with drug-like 
effects based on ADME properties calculations. Accord-
ing to this information, the molecular weights (MWs, 
392.45–542.68) and dipole moments (Dipole, in the 2.65 
to 9.64) of the novel acyl hydrazones derived from vanillin 
compounds (7a–c and 13a–c) have reported being in the 
permissible values. Volume (in range 1227.48 to 1752.91), 
which is the total solvent-accessible volume descriptor, was 
determined to be in the permissible ranges for these hydra-
zones (7a–c and 13a–c), compared with reference values. 
The logP values, such as QPlogPoct, QPlogPw, QPlogPo/w, 
QPlogS, QPlogBB, QPlogKp, and QPlogKhs, are in ranging 
from 20.27 to 29.35, 12.63 to 16.76, 0.69 to 4.61, − 6.46 
to − 1.26, − 1.14 to − 0.24, − 7.17 to − 3.28, and − 0.55 to 
0.93, respectively, and indicates of target derivatives (7a–c 
and 13a–c) have the high capacity. The values of human 
oral absorption (HOAs) were higher than 30%, and van 
der Waals surface area of polar nitrogen and oxygen atoms 
(PSA, in the range 86.82 to 134.05) indicate that all analogs 
(7a–c and 13a–c) had at the acceptable values. All the acyl 
hydrazones have displayed normal Caco-2 cell permeabil-
ity rates (except for compounds 13b and 13c; QPPCaco, 

in the 23.47 to 245.90), and MDCK cell permeability val-
ues (except for compound 13a, 13b, and 13c; QPPMDCK, 
in range 10.49 to 214.30). Indeed, all newly synthesized 
acyl hydrazones derived from vanillin compounds (7a–c 
and 13a–c) displayed good drug-like properties with zero 
violation of Lipinski’s rule (except for compounds 10a–b, 
12a, and 13a–c) and zero or one violation of the Jorgens-
en’s rule (except for compounds 12a) (Table 2). Moreover, 
the ADME-Tox values calculated for N′-(4-hydroxy-3-
methoxy-5-((3-methylpiperidin-1-yl)methyl)benzylidene)-
2-morpholinoaceto hydrazide 11c might explain why, being 
a potent AR inhibitor, this ligand has the most AR inhibitory 
activity in biological experiments.

Table 1  Inhibition data of AR with the novel acyl hydrazones derived from vanillin compounds and standard inhibitor epalrestat

a The test results were expressed as means of triplicate assays ± SEM
b Epalrestat was used as a control for the AR enzyme

Molecule KI (nM)a R2 Inhibition type Molecule KI (nM)a R2 Inhibition type

7a 101.00 ± 8.21 0.9924 Competitive 10c 598.70 ± 19.27 0.9937 Noncompetitive
7b 523.00 ± 22.54 0.9911 Noncompetitive 11a 398.20 ± 15.20 0.9917 Noncompetitive
7c 304.00 ± 13.36 0.9975 Competitive 11b 394.00 ± 22.65 0.9835 Noncompetitive
8a 182.40 ± 14.35 0.9924 Competitive 11c 49.22 ± 3.64 0.9938 Competitive
8b 897.20 ± 43.63 0.9890 Noncompetitive 12a 437.40 ± 14.08 0.9963 Noncompetitive
8c 746.20 ± 34.41 0.9872 Noncompetitive 12b 338.40 ± 17.18 0.9883 Noncompetitive
9a 1114.00 ± 49.64 0.9887 Noncompetitive 12c 533.50 ± 26.67 0.9877 Noncompetitive
9b 312.80 ± 53.48 0.9915 Mixed 13a 787.10 ± 39.32 0.9900 Noncompetitive
9c 372.10 ± 62.45 0.9921 Mixed 13b 444.50 ± 24.74 0.9849 Uncompetitive
10a 145.80 ± 22.30 0.9935 Mixed 13c 854.00 ± 33.96 0.9922 Noncompetitive
10b 79.36 ± 5.77 0.9940 Competitive Epalrestat b 855.50 ± 61.46 0.9853 Noncompetitive

Fig. 1  The Lineweaver–Burk plots of novel acyl hydrazone derivative 
11c 
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Fig. 2  Molecular docking of aldode reductase (AR; PDB code: 
4JIR) with native ligand EPR ((5-((2E)-2-methyl-3-phenylprop-2-
en-1-ylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acid). A 3D 

ligand interaction diagram of 4JIR with native ligand EPR. B 2D 
docking pose of native ligand EPR with the key amino acids within 
the binding pocket of 4JIR
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Fig. 3  Molecular docking of aldode reductase (AR; PDB code: 4JIR) 
with compound 11c (N'-(4-hydroxy-3-methoxy-5-((3-methylpiperi-
din-1-yl)methyl)benzylidene)-2-morpholinoaceto hydrazide). A 3D 

ligand interaction diagram of 4JIR with compound 11c. B 2D dock-
ing pose of compound 11c with the key amino acids within the bind-
ing pocket of 4JIR
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Molecular docking experiments were used to obtain sub-
stantial insight into the origins of the structure–activity con-
nections examined for the new acyl hydrazones. Initially, 
the native ligand EPR ((5-[(2E)-2-methyl-3-phenylprop-
2-en-1-ylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic 
acid) in the AR receptor's binding site (PDB code 4JIR) 
[92] was employed in the redocking computation. At a root-
mean-square deviation (RMSD) of 0.10 (docking score 
of − 7.04 kcal/mol and MM-GBSA value of − 41.07 kcal/
mol), the docked pose of EPR overlapped with the pose in 
the X-ray crystal structure of the AR (Fig. 2). This redock-
ing experiment was crucial in determining which model 
structure would best accommodate all of the newly synthe-
sized AR ligands. Then, using the Glide Ligand Docking 
tool in this series, the generated binding model was used 
to perform docking calculations of the most potent AR 
inhibitor 11c. A docking score of − 8.07 kcal/mol and MM-
GBSA value of − 69.69 kcal/mol indicated compound 11c 
are a tight binder for AR compared to EPR. The carboxy 
moiety formed an H-bond with residue Trp111 (distance 
2.16 Å), while the –NH group displayed π-cation interac-
tion with Phe122. Furthermore, compound 11c monitored 

hydrophobic interactions with residues Trp20, Val47, Tyr48, 
Trp79, Phe121, Tyr209, Trp219, Ile260, Cys298, Leu300, 
Leu301, and Cys303 played significant roles in the binding 
of the ligand with 4JIR (Fig. 3).

To explain the structural parameters, the DFT calcula-
tion was performed for compound 11c, which has the most 
potent AR inhibitory activity and was optimized at the level 
of B3LYP/6-31G∗∗. In chemical reactivity, derivative 11c 
is sparkling, and the HOMO (highest occupied molecular 
orbitals)-LUMO (lowest unoccupied molecular orbitals) 
gap increases the charge transfer of the compounds. The 
electron density is indicated by the intensity of the color 
that reflects the distinctive feature of the molecule. Because 
electrons can move quickly between energy levels in the 
HOMO and LUMO, energy gap levels reveal the delicate 
nature of reactivity. The energy gap of the compound 11c 
in the HOMO–LUMO analysis is 0,160,511 eV, and the 
HOMO–LUMO plot of 11c is shown in Fig. 4. From this 
plot, it is seen that the value of ΔE decreases in the case of 
complex, which further supports the binding framework and 
that compound 11c has significant chemical reactivity and 
polarizability.

Fig. 4  The HOMO–LUMO plot 
of the most potent AR inhibi-
tory 11c. The red color-coding 
area specifies the most negative 
potential region, while the blue 
color-coding area defines the 
most positive potential region of 
the compound
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Conclusion

A series of acyl hydrazones derived from vanillin were syn-
thesized and their effects on the AR were investigated. KI 
values in the range of 49.22 ± 3.64 to 897.20 ± 43.63 nM. 
Compounds 11c and 10b against AR enzyme activity were 
identified as the highly potent inhibitors than epalrestat. 
AR is novel molecular target involved in different pathways 
related to the development of type II diabetes mellitus and 
related comorbidities. The design of effective bioavailable 
inhibitors for AR enzyme is still an urgent need. We expect 
that our findings will lead to the development of novel AR 
inhibitors based on inhibition and molecular docking inves-
tigations. We also hope that our compounds will be good 
therapeutic candidates with further investigation.
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