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Abstract

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some
dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the
hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been rec-
ognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In
the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and
phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahy-
droisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All
the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with ICs, and
K; values in the range of 94.21 +2.33 to 430.00 +2.33 nM and 49.22 +3.64 to 897.20+43.63 nM, respectively. Compounds
11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more
effectiveness than standard drug epalrestat. The synthesized molecules’ absorption, distribution, metabolism, and excretion
(ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated
using molecular-docking simulations.
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Introduction

The acyl hydrazone skeleton is an important intermediate
used in the synthesis of interesting biologically active heter-
ocyclic compounds and is also used as a ligand in the forma-
tion of metal complexes [1, 2]. Hydrazone-type compounds
containing azomethine protons constitute a significant class
of compounds for novel drug research [3], such as anti-anti-
microbial [4], inflammatory [5], antioxidants [6], antitu-
bercular [7], analgesic [8], anti-candida [9], a-glucosidase

@ Springer

[10], anticancer [11], and antiproliferative [12] activities in
medicinal fields [13-15]. Acyl hydrazone fragments bound
to heterocyclic systems were displayed to provide enhanced
activity. This bioactivity of acyl hydrazones is explained by
their tendency to form a hydrogen bond with the molecular
target [16—18]. In addition, it has been reported by studies
in the literature that acyl hydrazones have lower toxicity
than hydrazides due to the blockage effects of NH, groups.
These research findings further increased the importance of
synthesizing acyl hydrazone-derived compounds [19].
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A three-component Mannich condensation builds a class
of compounds known as Mannich bases on one pot reac-
tion of primary or secondary amine, an aldehyde reagent,
and structurally diverse substrates containing at least one
active hydrogen atom [20]. Mannich base also acts as essen-
tial pharmacophores for synthesizing novel compounds in
medicinal chemistry [21]. Examples of clinically useful
Mannich bases containing aminoalkyl scaffold in their
structure are drugs such as trihexyphenidyl, procyclidine,
ranitidine, and biperiden [22, 23]. Phenolic compounds are
one of the most critical carbons Mannich bases because they
contain active hydrogen. In the last decades, there have been
many studies on the biological activities of phenolic Man-
nich bases, such as cytotoxic [24, 25], anticancer [26, 27],
anticonvulsant [28], anti-inflammatory [29], antifungal [30],
and carbonic anhydrase inhibitory activities [31, 32].

Morpholine and piperazines are privileged backbones
that are widely used as a core structural element or sub-
stituent in effective drugs such as Noroxin (antibiotic), Clo-
zaril (an atypical antipsychotic medication), Iressa (breast,
lung, and other cancers), and Moclobemide (depression and
social anxiety) [33, 34]. They can also improve the phar-
macokinetic features of molecules, such as metabolic sta-
bility and solubility in water [35]. Another core structure,
tetrahydroisoquinoline (THQ), forms the main backbone of
many natural products (saframycin, naphthyridinomycin/
bioxalomycin, and quinocarcin/tetrazomine) and bioactive
compounds [36]. From this perspective, with the potential of
the drugs, it would be helpful to design and synthesize some
novel acyl hydrazone derivatives incorporating piperazine,
morpholine, and tetrahydroquinoline and screen them for
potential biological activities.

Aldose reductase (AKR1B1, AR with EC number
1.1.1.2)1 is the first rate-limiting enzyme in the polyol path-
way, belongs to the Aldo—keto reductase superfamily, and
is a monomer comprising 315 amino acid residues [37-41].
This overproduction of the AR and sorbitol dehydrogenase
on the polyol pathway and depletion in reduced NADP* and
the oxidized NAD™, which are cofactors of this process,
causes various metabolic processes disturbances such as the
nephropathy, retinopathy, cataracts, and neuropathy [42—46].
The aforementioned metabolic abnormalities are the primary
targets of diabetic complications in those tissues involved in
insulin-independent glucose uptake and are responsible for
early tissue damage in the organs [47-53].

We investigated the synthesis, characterization, and
biological activity of a series of novel acyl hydrazones to
uncover novel AR inhibitors in the current work. In addition,
we conducted in silico experiments, including absorption,
distribution, metabolism, and excretion (ADME), density
functional theory (DFT), and molecular docking, to evaluate

the inhibitory mechanisms of those compounds against the
target mentioned above, AR.

Experimental
Chemistry

The chemicals used in this study were supplied from Sigma
Aldrich (Germany). Melting points were determined on
WRS-2A Microprocessor Melting-point Apparatus and are
uncorrected. IR spectra of compounds were recorded using
ALPHA-P BRUKER FT-IR Spectrophotometer."H NMR
spectra were recorded on Bruker (400 MHz) spectrometer.
13C NMR spectra were recorded on Bruker (100 MHz)
spectrometer. Chemical shifts are reported as 8 in ppm
relative to tetramethylsilane (TMS) (6 0.00 singlets) in
deuterated chloroform (CDCl;). High-resolution mass
spectrometry measurements were recorded on Agilent
6530 Accurate-Mass Q-TOF LC/MS.

General procedure for synthesis
of compounds 2a-b

Synthesis of 2a—b was performed according to the previ-
ously reported method [54].

4-Formyl-2-methoxyphenyl furan-2-carboxylate (2a)

White solid, yield 83%, mp: 101-103 °C (lit. 101-103 °C)
[54].

4-Formyl-2-methoxyphenyl thiophene-2-carboxy-
late (2b)

White solid, yield: 81%, mp: 89-91 °C. IR (ATR, cm_l):
Vmax 3108, 3070, 2843, 1744, 1682, 1456, 1262, 1054,
854, 724. '"H NMR (400 MHz, CDCl;, 8/ppm): 8 10.0 (s,
1H), 8.0 (d, /=3.8 Hz, 1H), 7.7 (d, J=5.0 Hz, 1H), 7.5
(dt, J=7.9, 1.6 Hz, 2H), 7.4 (d, J=7.9 Hz, 1H), 7.2 (d,
J=4.9 Hz, 1H), 3.9 (s, 3H). >*C NMR (100 MHz, CDCl,,
d/ppm): 8 191.0 159.5, 152.2, 144.7, 135.7, 135.2, 133.9,
132.0, 128.2, 124.7, 123.6, 111.0, 56.2. HRMS (Q-TOF)
m/z caled for C;sH,,05S [M +H]*: 262.0323, Found:
262.0341.

General procedure for synthesis of compounds 3a-e

Synthesis of 3a—e was carried out according to the previ-
ously reported method [55].

@ Springer
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4-Hydroxy-3-methoxy-5-(morpholinomethyl)benza-
Idehyde (3a)

White solid; yield: 85%, mp: 99-100 °C; IR (ATR, cm_l)
Unax 2945, 2866, 2829, 2733, 1647, 1592, 1270, 1120, 868,
705; '"H NMR (400 MHz, CDCl,) § 9.79 (s, 1H), 7.36 (m,
1H), 7.19 (m, 1H) 3.95 (s, 3H), 3.82 (s, 2H), 3.78 (m, 4H),
2.63 (m, 4H); *C NMR (100 MHz, CDCl;)5 190.6, 153.5,
148.6, 128.5, 125.5, 120.3, 109.8, 66.6, 61.1, 56.0, 52.7.

4-Hydroxy-3-methoxy-5-((4-phenylpiperazin-1-yl)
methyl)benzaldehyde (3b)

White solid; yield: 90%, mp: 156 °C (lit: 156-157 °C)
[56]; IR (ATR, cm™) v, 2959, 2938, 2827, 2737, 1677,
1586, 1315, 1235, 1141, 760, 691; '"H NMR (400 MHz,
CDCl5) §10.90 (brs, 1H), 9.81 (s, 1H), 7.39-7.38 (m, 1H),
7.32-7.27 (m, 2H), 7.22-7.17 (m, 1H) 6.95-6.86 (m, 3H),
3.96 (s, 3H), 3.89 (s, 2H), 3.28 (m, 4H), 2.80 (m,4H); °C
NMR (100 MHz, CDCl,)8 190.6, 153.7, 150.7, 148.7, 129.2,
128.4, 125.5, 120.6, 120.4, 116.5, 109.9, 60.8, 56.0, 52.5,
49.2.

4-Hydroxy-3-methoxy-5-((3-methylpiperidin-1-yl)
methyl)benzaldehyde (3¢)

Light brown solid; yield: 88%, mp: 142-144 °C; IR (ATR,
cm™h) Vpax 2946, 2922, 2853, 2748, 1651, 1592, 1271, 1147,
864, 707; '"H NMR (400 MHz, CDCl;) 611.55 (s, 1H), 9.76
(s, 1H), 7.33 (m, 1H), 7.15 (m, 1H) 3.94 (s, 3H), 3.78 (m,
2H), 2.96-2.90 (m, 2H), 2.11 (t, J=10.5 Hz, 1H), 1.83-1.58
(m, 5H), 0.98-0.95 (m, 1H), 0.89 (d, J=6.3 Hz, 3H),"*C
NMR (100 MHz, CDCl5)d 190.6, 154.8, 148.6, 127.8, 125.4,
120.8, 109.5, 61.2, 60.7, 55.9, 53.2, 32.2, 31.0, 25.0, 19.2.

3-((3,4-Dihydroisoquinolin-2(1H)-yl)methyl)-4-hy-
droxy-5-methoxybenzaldehyde (3d)

Light yellow solid; yield: 88%, mp: 181-183 °C; IR (ATR,
em v, 3053,2956, 2817, 2750, 1649, 1590, 1274, 749;
'"H NMR (400 MHz, DMSO) & 9.79 (s, 1H), 7.45 (s, 1H),
7.37 (s, 1H), 7.24-6.89 (m, 4H), 3.89 (s, 2H), 3.86 (s, 3H),
3.69 (s, 2H), 2.86 (t, J=5.4 Hz, 2H), 2.80 (t, J=5.4 Hz, 2H);
13C NMR (101 MHz, DMSO) 6 191.0, 152.7, 148.0, 133.8,
133.5, 128.5, 127.8, 126.5, 126.3, 125.7 (2C), 122.9, 109.8,
57.5,55.7,54.7,49.7, 28.2.

N-ethyl-4-(5-formyl-2-hydroxy-3-methoxybenzyl)
piperazine-1-carboxamide (3e)

White solid, yield 80%, mp: 86-87 °C; IR (ATR, cm_l) Vnax

2978, 2948, 2823, 2735, 1735, 1681, 1589, 1237, 1138, 863,
694; '"H NMR (400 MHz, CDCl5) § 9.79 (s, 1H), 7.36 (m,

@ Springer

1H), 7.18 (m, 1H), 4.15 (q, J=7.1 Hz, 2H), 3.95 (s, 3H),
3.83 (m, 1H), 3.56 (m, 4H), 2.58 (m, 4H), 1.27 (t, J=7.1 Hz,
3H); 1*C NMR (100 MHz, CDCl5) § 190.6, 155.2, 153.4,
148.6, 128.5, 125.4, 120.4, 109.9, 61.6, 60.8, 56.0, 52.2,
43.4,43.3, 14.6.

General procedure for synthesis of compounds 6a-c

In a 50 mL round-bottom flask, the related secondary amine
(10 mmol) and triethylamine (11 mmol, 1.11 g, 1.53 mL)
were dissolved in 20 mL of THF and the solution was then
put into an ice bath. Ethylchloroacetate (10 mmol, 1.23 g)
in 20 mL of THF was added to this solution dropwise and
stirred for three hours at room temperature. After comple-
tion, the solvent was removed under reduced pressure. It was
washed with cold water to remove the triethylammonium
chloride salt from the oily mixture obtained. Then the crude
product was dissolved in 20 mL of ethanol and hydrazinium
hydroxide (80%, 25 mmol) was added to the solution. The
reaction mixture was refluxed for two hours. The solvent was
removed under reduced pressure and the product was washed
with cold water. The crude product was used for next step
without any purification.

2-(4-Phenylpiperazin-1-yl)acetohydrazide (6a)
White solid, yield 88%, mp: 7678 °C (lit. 75 °C) [57].

2-(3,4-Dihydroisoquinolin-2(1H)-yl)acetohydrazide
(6b)

White solid, yield 92%, mp: 85-87 °C [58]. 'H NMR
(400 MHz, DMSO) 6 8.95 (s, 1H), 7.22-6.87 (m, 4H), 4.25
(brs, 2H), 3.61 (s, 2H), 3.10 (s, 2H), 2.82 (t, J=5.8 Hz, 2H),
2.71 (t, J=5.9 Hz, 2H). 3 C NMR (101 MHz, DMSO) & 168.3,
134.6, 133.9, 128.4, 126.2, 125.9, 125.4, 59.7, 55.2, 50.6, 28.6.

2-Morpholinoacetohydrazide (6¢)
White solid, yield 75%, mp: 95-98 °C (lit. 99-101 °C) [59].

General procedure for synthesis of compounds 7a-c,
11a-¢, 12a-¢, and 13a—c

The corresponding aldehyde 2a—b, 3a—e (10 mmol) and aceto-
hydrazide derivative 6a—c (10 mmol) were dissolved in abso-
lute ethanol (20 mL), and 45 drops of acetic acid was added.
Reaction mixture was refluxed for 1-2 h. Reaction was moni-
tored by TLC. After completion, half of the solvent volume
was removed under reduced pressure. The mixture was left in
the freezer overnight, and the formed solid was filtered off. The
crude product was recrystallized from ethanol.
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2-Methoxy-4-((2-(2-(4-phenylpiperazin-1-yl)acetyl)
hydrazono)methyl)phenylfuran-2-carboxylate (7a)

\ o /N—N;_\
fﬁj@ N
O

Beige solid, yield 77%, mp: 178-180 °C, IR (ATR, cm™) Vinax
3205, 3065, 2936, 1729, 1657, 1597, 1232, 1070, 745; '"H NMR
(400 MHz, CDCl,) 6 10.21 (s, 1H), 8.25 (s, 1H), 7.69 (s, 1H), 7.57
(s, 1H), 7.42 (d, J=3.4 Hz, 1H), 7.33-7.28 (m, 3H), 7.25-7.14
(m, 2H), 7.01-6.84 (m, 2H), 6.61 (dd, J/=3.4, 1.6 Hz, 1H), 3.89
(s, 3H), 3.35-3.33 (m, J=10.8 Hz, 6H), 2.82 (brs, 4H). 1°C
NMR (101 MHz, CDCl,) 6 166.0, 156.2, 151.8, 150.9, 148.0,
147.3, 143.6, 141.2, 132.7, 129.2, 123.1, 121.8, 120.2, 119.8,
116.3,112.3,109.9, 61.0, 56.2, 53.6, 49.3. HRMS (Q-TOF) m/z:

[M+H]* caled for C,5H,6N,Os, 463.1981; found 463.1977.

4-((2-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)acetyl)
hydrazono)methyl)-2-methoxyphenyl furan-2-car-
boxylate (7b)

Beige solid, yield 81%, mp: 105-107 °C, IR (ATR, cm™)
Unax 3145, 3028, 2922, 1742, 1668, 1546, 1270, 1077, 746;
"H NMR (400 MHz, CDCl5) & 10.30 (s, 1H), 8.13 (s, 1H),
7.68 (s, 1H), 7.56 (s, 1H), 7.40 (d, J=3.4 Hz, 1H), 7.25-7.10
(m, 5H), 7.05 (d, J=6.0 Hz, 1H), 6.60 (dd, J=3.5, 1.7 Hz,
1H), 3.86 (s, 3H), 3.79 (s, 2H), 3.38 (s, 2H), 3.00 (t, J=5.6 Hz,
2H), 2.91 (t, J=5.7 Hz, 2H). '3C NMR (100 MHz, CDCl,) §
166.5, 156.2, 151.7, 147.8, 147.3, 143.6, 141.1, 133.5, 128.8,
126.7, 126.6, 126.0, 123.0, 121.8, 119.8, 112.3, 109.9, 61.0,
56.2, 51.6, 29.2. HRMS (Q-TOF) m/z: [M+H]* calcd for
C,,H,3N;0s, 434.1716; found 434.1710.

2-Methoxy-4-((2-(2-morpholinoacetyl)hydrazono)
methyl)phenyl furan-2-carboxylate (7c)

Beige solid, yield 75%, mp: 114-116 °C, IR (ATR, cm‘l)
Vmax 3153, 3108, 2955, 1743, 1658, 1572, 1267, 1067,
745; "H NMR (400 MHz, CDCl;) § 10.15 (s, 1H), 8.22
(s, 1H), 7.68 (s, 1H), 7.53 (s, 1H), 7.40 (d, J=3.3 Hz,
1H), 7.18 (m, 2H), 6.60 (d, /=4.9 Hz, 1H), 3.86 (s, 3H),
3.77 (t, J=4.4 Hz, 4H), 3.21 (s, 2H), 2.62 (t, /=4.4 Hz,
4H). '*C NMR (100 MHz, CDCl;) § 166.0, 156.2, 151.7,
148.0, 147.3, 143.5, 141.1, 132.7, 123.0, 121.7, 119.9,
112.3, 109.9, 66.8, 61.4, 56.2, 53.9. HRMS (Q-TOF)
m/z: [M+H]* caled for C yH,;N;Oq, 388.1509; found
388.1503.

2-Methoxy-4-((2-(2-(4-phenylpiperazin-1-yl)acetyl)
hydrazono)methyl)phenyl thiophene-2-carboxylate
(8a)

White solid, yield 79%, mp: 175-177 °C, IR (ATR, cm™)
Vnax 3193, 3050, 2929, 1734, 1654, 1587, 1253, 1071, 755;
"H NMR (400 MHz, CDCl,) § 10.21 (s, 1H), 8.24 (s, 1H),
8.00 (d, J=3.8 Hz, 1H), 7.69 (d, J=5.0 Hz, 1H), 7.57 (s,
1H), 7.38-7.25 (m, 3H), 7.26-7.13 (m, 3H), 7.03-6.90 (m,
3H), 3.89 (s, 3H), 3.30-3.28 (m, 6H), 2.81 (t, J=4.0 Hz,
4H). '*C NMR (100 MHz, CDCl5) § 166.0, 159.9, 151.9,
150.9, 148.0, 141.6, 134.9, 133.7, 132.2, 129.2, 128.1,
123.1, 121.8, 120.2, 116.3, 110.0, 61.0, 56.3, 53.6, 49.3.
HRMS (Q-TOF) m/z: [M + H]* caled for C,5sH,(N,O,S,
479.1753; found 479.1747.

4-((2-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)acetyl)
hydrazono)methyl)-2-methoxyphenyl thio-
phene-2-carboxylate (8b)

White solid, yield 82%, mp: 110-112 °C, IR (ATR, cm™)
Vmax 3172, 3073, 2915, 1734, 1661, 1561, 1251, 1089,
734; '"H NMR (400 MHz, CDCl;) 8 10.34 (s, 1H), 8.13
(s, 1H), 7.99 (d, J=4.7 Hz, 1H), 7.67 (d, J=5.0 Hz, 1H),
7.55 (s, 1H), 7.25-7.12 (m, 6H), 7.05 (d, J=6.2 Hz, 1H),

3.86 (s, 3H), 3.81 (s, 2H), 3.39 (s, 2H), 3.00 (t, J=5.5 Hz,
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2H), 2.92 (t, J=5.7 Hz, 2H). 3C NMR (100 MHz, CDCl,)
5 166.4, 159.9, 151.8, 147.9, 141.6, 134.9, 133.7, 132.3,
128.8, 128.1, 126.7, 126.6, 126.1, 123.1, 121.8, 109.9,
61.0, 56.2, 51.6, 29.1. HRMS (Q-TOF) m/z: [M + H]*
calcd for C,,H,;N;0,S, 450.1488; found 450.1483.

2-Methoxy-4-((2-(2-morpholinoacetyl)hydrazono)
methyl)phenyl thiophene-2-carboxylate (8c)

(o}
N—-NH

/2
mo d N
S o

White solid, yield 77%, mp: 140-142 °C, IR (ATR, cm™")
Unax 3177, 3053, 2956, 1735, 1655, 1572, 1247, 1082, 740; 'H
NMR (400 MHz, CDCl,) § 10.18 (s, 1H), 8.20 (s, 1H), 7.99
(d, J=4.0 Hz, 1H), 7.68 (d, J=4.0 Hz, 1H), 7.21-7.16 (m,
3H), 3.85 (s, 3H), 3.77 (t, J=4.4 Hz, 4H), 3.22 (s, 2H), 2.62 (t,
J=4.4Hz, 4H). >*C NMR (100 MHz, CDCl5) § 166.0, 160.0,
151.8, 148.1, 141.6, 135.0, 133.7, 132.6, 132.5, 128.1, 123.1,
121.7, 110.0, 66.8, 61.4, 56.2, 53.9. HRMS (Q-TOF) m/z:
[M+H]* caled for C;gH,,N;05S, 404.1280; found 404.1274.

N'-(4-hydroxy-3-methoxy-5-(morpholinomethyl)
benzylidene)-2-(4-phenylpiperazin-1-yl) acetohy-

drazide (9a)
N—NH
Hop_// Pamt
/\ o N
o N Q__,\}

O

White solid, yield 88%, mp: 187—189 °C, IR (ATR, crn‘l) Vpax 3187,
3060, 2942, 1660, 1594, 1258, 1077, 761; '"H NMR (400 MHz,
CDCl;) 6 10.06 (s, 1H), 8.08 (s, 1H), 7.30-7.26 (m, 3H), 7.00 (s, 1H),
6.94-6.87 (m, 3H), 3.90 (s, 3H), 3.75-3.72 (m, 6H) 3.25 (brs, 4H),
2.76 (t, J=4.0 Hz, 4H), 2.58 (brs, 4H). '>*C NMR (100 MHz, CDCly)
5165.8,150.9,149.7,148.8,148.3,129.2,124.6,121.8, 120.6, 116,2,
1094, 66.7, 61.0, 56.1, 53.6, 52.8, 49.3. HRMS (Q-TOF) m/z:
[M+H]" caled for C,sH4;N5O,, 468.2611; found 468.2605.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-N'-(4-hy-

droxy-3-methoxy-5-(morpholinomethyl)ben-
zylidene) acetohydrazide (9b)

@ Springer

White solid, yield 91%, mp: 209-211 °C, IR (ATR, cm™)
Vo 3186, 3056, 2960, 1656, 1592, 1268, 1080, 742; 'H NMR
(400 MHz, CDCl5) § 10.13 (s, 1H), 7.99 (s, 1H), 7.26 (s, 1H),
7.21-7.16 (m, 3H), 7.05 (s, 1H), 6.97 (s, 1H), 3.90 (s, 3H),
3.78 (s, 2H), 3.75 (t, J=4.0 Hz, 4H) 3.72 (s, 2H), 3.36 (s, 2H),
2.99 (t, J=5.5 Hz, 2H), 2.90 (t, J=5.5 Hz, 2H), 2.58 (brs, 4H).
13C NMR (100 MHz, CDCl,) 8 166.0, 149.7, 148.7, 148.3,
133.8, 133.4, 128.8, 126.7, 126.6, 126.0, 124.7, 121.8, 120.6,
109.4, 66.7, 61.0, 56.2, 52.8, 51.6, 29.2. HRMS (Q-TOF) m/z:

[M +H]* caled for C,,HyN,0,, 439.2345; found 439.2339.

N'-(4-hydroxy-3-methoxy-5-(morpholinomethyl)
benzylidene)-2-morpholinoacetohydrazide (9¢)

White solid, yield 85%, mp: 183-185 °C, IR (ATR, cm‘l)
Upmax 3206, 3045, 2956, 1664, 1591, 1267, 1078; 'H NMR
(400 MHz, CDCl;) 6 9.98 (s, 1H), 8.05 (s, 1H), 7.22 (s,
1H), 6.95 (s, 1H), 3.86 (s, 3H), 3.72 (t, J=4.4 Hz, 8H),
3.15 (s, 2H), 2.56 (t, J=4.4 Hz, 8H). '>*C NMR (100 MHz,
CDCl;) 6 165.7, 149.7, 148.8, 148.2, 124.6, 121.8, 120.6,
109.3, 66.9, 66.6, 61.4, 61.1, 56.0, 53.8, 52.8. HRMS
(Q-TOF) m/z: [M + H]" caled for C,gH,4N,O5, 393.21338;
found 393.2132.

N'-(4-hydroxy-3-methoxy-5-((4-phenylpiperazin-1
-yl)methyl)benzylidene)-2-(4-phenylpiperazin-1-yl)
acetohydrazide (10a)

—Q

HO
O
N N
N

N
-

O

White solid, yield 91%, mp: 208-210 °C, IR (ATR, cm'l)
Vpax 3192, 2997, 2935, 1659, 1594, 1225, 1081, 762; 'H
NMR (400 MHz, CDCls;) § 10.06 (s, 1H), 8.11 (s, 1H),
7.33-7.27 (m, 5H), 7.05 (s, 1H), 6.97-6.90 (m, 6H),
3.94 (s, 3H), 3.81 (s, 2H), 3.28-3.26 (m, 10H), 2.79 (t,
J=4.4 Hz, 8H). >*C NMR (100 MHz, CDCl;) & 165.8,
150.9, 150.8, 149.9, 148.9, 148.3, 129.2, 124,6, 121.8,
120.9, 120.4, 120.2, 116.5, 116.2, 109.4, 61.1, 60.8, 56.1,
53.6, 52.5, 49.3, 49.2. HRMS (Q-TOF) m/z: [M +H]*
calcd for C;;H34N(O;, 543.3084; found 543.3080.

/
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2-(3,4-Dihydroisoquinolin-2(1H)-yl)-N'-(4-hydrox
y-3-methoxy-5-((4-phenylpiperazin-1-yl)methyl)
benzylidene)acetohydrazide (10b)

—0
N-NH

it 6>_\N
ave el e

White solid, yield 93%, mp: 214-216 °C, IR (ATR, cm™)
Ve 3203, 3067, 2916, 1666, 1595, 1226, 1078, 739; 'H
NMR (400 MHz, CDCl;) & 10.14 (s, 1H), 8.01 (s, 1H),
7.31-7.26 (m, 3H), 7.22-7.17 (m, 3H), 7.05 (s, 1H), 7.01
(s, 1H), 6.94-6.90 (m, 3H), 3.93 (s, 3H), 3.80 (s, 4H), 3.38
(s, 2H), 3.26 (brs, 4H), 3.00 (t, J=5.5 Hz, 2H), 2.91 (t,
J=5.5Hz, 2H), 2.76 (brs, 4H). '*C NMR (100 MHz, CDCls)
§ 166.0, 150.8, 149.8, 148.7, 148.3, 133.8, 133.5, 129.2,
128.8, 126.7, 126.6, 126.0, 124.6, 120.9, 120.3, 116.4,
109.4, 61.0, 60.8, 56.2, 56.1, 52.5, 51.6, 49.2, 29.3. HRMS
(Q-TOF) m/z: [M +H]* calcd for C40H;sN5O;, 514.2818;
found 514.2810.

N'-(4-hydroxy-3-methoxy-5-((4-phenylpiperazi
n-1-yl)methyl)benzylidene)-2-morpholinoaceto
hydrazide (10c)

N-NH
Y,

(o) N
NN -

White solid, yield 93%, mp: 188-190 °C, IR (ATR, cm_l)
Viax 3210, 3068, 2946, 1662, 1596, 1226, 1076, 758; 'H
NMR (400 MHz, CDCl;) 6 10.00 (s, 1H), 8.10 (s, 1H),
7.28-7.24 (m, 3H), 7.01 (s, 1H), 6.92-6.86 (m, 3H), 3.91
(s, 3H), 3.81-3.75 (m, 6H), 3.24 (brs, 4H), 3.19 (s, 2H),
2.73 (brs, 4H), 2.60 (t, J=4.4 Hz, 4H). '>*C NMR (100 MHz,
CDCl;) 6 165.7, 150.8, 149.9, 148.9, 148.3, 129.2, 124.5,
121.8, 120.9, 120.3, 116.4, 109.3, 66.9, 61.5, 60.8, 56.1,
53.9,52.4, 49.2. HRMS (Q-TOF) m/z: [M +H]" calcd for

C,sH,;N,0,, 468.2611; found 468.2603.

N’-(4-hydroxy-3-methoxy-5-((3-methylpiperidin-1
-yl)methyl)benzylidene)-2-(4-phenylpiperazin-1-yl)
acetohydrazide (11a)

Beige solid, yield 82%, mp: 134-136 °C, IR (ATR, cm™) v,
3208, 3064, 2926, 1657, 1593, 1232, 1076, 760; '"H NMR
(400 MHz, CDCl,) 8 10.04 (s, 1H), 8.06 (s, 1H), 7.30-7.24 (m, 3H),
6.99 (s, 1H), 6.95-6.87 (m, 3H), 3.90 (s, 3H), 3.69 (d, /=7.2 Hz,
2H), 3.25-3.23 (m, 7H), 2.89-2.85 (m, 2H), 2.76 (t, J=4.4 Hz,
4H), 2.05 (t, J=10.0 Hz, 1H), 1.75-1.69 (m, 4H), 0.95-0.86 (m,
4H). '*C NMR (100 MHz, CDCl;) § 165.8, 150.9, 150.6, 149.1,
148.2,129.2, 124.0, 121.6, 121.2, 120.1, 116.2, 109.1, 61.2, 61.0,
60.8,56.1,53.6,53.2,49.3,32.3,31.0, 19.4. HRMS (Q-TOF) m/z:
[M-+H]* calced for C,;H;;,N<O5, 480.2975; found 480.2967.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-N'-(4-hydrox
y-3-methoxy-5-((3-methylpiperidin-1-yl)methyl)
benzylidene)acetohydrazide (11b)

—0

Beige solid, yield 85%, mp: 170-172 °C, IR (ATR, cm™) v,
3201, 3070, 2923, 1661, 1591, 1227, 1081, 738; '"H NMR
(400 MHz, CDCl5) § 10.10 (s, 1H), 7.97 (s, 1H), 7.22 (s, 1H),
7.19-7.14 (m, 3H), 7.03 (d, J=4.4 Hz, 1H), 6.95 (s, 1H),
3.88 (s, 3H), 3.76 (s, 2H), 3.67 (d, J=7.2 Hz, 2H), 3.33 (s,
2H), 2.98-2.85 (m, 7H), 2.03 (t, J=10.0 Hz, 1H), 1.74-1.72
(m, 4H), 0.97-0.86 (m, 4H). 3C NMR (100 MHz, CDCl;) &
166.1, 150.5, 148.9, 148.2, 133.9, 133.5, 128.8, 126.6, 126.0,
124.0, 121.5, 121.2, 109.1, 61.3, 61.0, 60.8, 56.2, 56.0, 53.2,
51.6,32.3,31.0,29.3, 25.1, 24.2, 19.4. HRMS (Q-TOF) m/z:
[M+HJ* calcd for C,gH3,N,05, 451.2709; found 451.2704.

N'-(4-hydroxy-3-methoxy-5-((3-methylpiperi-
din-1-yl)methyl)benzylidene)-2-morpholinoaceto
hydrazide (717¢)

—0

Sesatae

o

Beige solid, yield 81%, mp: 130-132 °C, IR (ATR, cm'l)
Vpax 3208, 3074, 2928, 1663, 1592, 1246, 1078; '"H NMR
(400 MHz, CDCl;) 6 9.97 (s, 1H), 8.03 (s, 1H), 7.18 (s, 1H),
6.91 (s, 1H), 3.84 (s, 3H), 3.74 (t, J=4.4 Hz, 4H), 3.63 (d,
J=7.2 Hz, 2H), 3.13 (s, 2H), 2.94-2.54 (m, 7H), 2.00 (t,
J=10.0 Hz, 1H), 1.70-1.65 (m, 4H), 0.91-0.82 (m, 4H).
13C NMR (100 MHz, CDCl;) 6 165.6, 150.6, 149.1, 148.2,
123.9,121.5, 121.3, 66.8, 61.5, 61.4, 61.3, 60.8, 56.0, 53.8,
53.2,32.3,31.0,25.1, 19.3. HRMS (Q-TOF) m/z: [M +H]*
calcd for C,;H;,N,0,4, 405.2502; found 405.2492.
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N'-(3-((3,4-dihydroisoquinolin-2(1H)-yl)
methyl)-4-hydroxy-5-methoxybenzylidene)-2-(4
-phenyl piperazin-1-yl)acetohydrazide (12a)

White solid, yield 94%, mp: 232-234 °C, IR (ATR, cm‘l) Vpnax 3209,
3063, 2944, 1668, 1592, 1228, 1079, 750; '"H NMR (400 MHz,
CDCl) 8 10.05 (s, 1H), 8.12 (s, 1H), 7.33-7.28 (m, 2H), 7.18-7.12
(m,4H), 7.09 (s, 1H), 7.02-6.90 (m, 5H), 3.93-3.92 (m, 5H), 3.80 (s,
2H), 3.29-3.27 (m, 5H), 2.99 (t, J=5.5 Hz, 2H), 2.91 (t, J=5.5 Hz,
2H), 2.80 (t, J=4.4 Hz, 4H). '*C NMR (100 MHz, CDCI3) § 165.8,
1509, 1502, 149.0, 1484, 133.3, 132.8, 129.3, 128.7, 126.7, 126.6,
126.0, 121.8, 121.1, 1202, 116.2, 109.5, 61.1, 60.4, 56.1, 55.1,
53.6,49.9, 49.3, 28 4. HRMS (Q-TOF) m/z: [M+H]* calcd for
C3oH;5Ns0;, 514.2818; found 514.2811.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-N'-(3-((3,4-dihy
droisoquinolin-2(1H)-yl)methyl)-4-hydroxy-5-meth-
oxybenzylidene)acetohydrazide (12b)

White solid, yield 92%, mp: 215-217 °C, IR (ATR, cm‘l)
Voax 3188, 3063, 2905, 1658, 1589, 1226, 1077, 737, '"HNMR
(400 MHz, CDCl,) & 10.13 (s, 1H), 8.02 (s, 1H), 7.28 (s, 1H),
7.20-7.13 (m, 6H), 7.07-7.00 (m, 3H), 3.91 (s, 5SH), 3.80 (s,
2H), 3.78 (s, 2H), 3.38 (s, 2H), 3.02-2.96 (m, 4H), 2.92-2.87
(m, 4H). '*C NMR (100 MHz, CDCl,) 6 166.0, 150.2, 148.8,
148.4,133.9, 133.5, 133.3, 128.8, 128.7, 126.7, 126.6, 126.6,
126.0, 124.5, 121.7, 121.1, 109.5, 61.0, 60.5, 56.2, 56.1, 55.2,
51.6,49.9, 29.3, 28.5. HRMS (Q-TOF) m/z: [M+H]" calcd
for C,9H;,N,05, 485.2553; found 485.2548.

N’-(3-((3,4-dihydroisoquinolin-2(1H)-yl)

methyl)-4-hydroxy-5-methoxybenzylidene)-2-mor-
pholin oacetohydrazide (12c)

@ Springer

White solid, yield 90%, mp: 220-222 °C, IR (ATR, cm™)
Unmax 3199, 3069, 2936, 1660, 1565, 1229, 1081, 745; 'H
NMR (400 MHz, CDCl;) § 9.97 (s, 1H), 8.13 (s, 1H),
7.30 (s, 1H), 7.20-7.12 (m, 3H), 7.08 (s, 1H), 7.02-7.00
(m, 1H), 3.93 (s, 5H), 3.80-3.78 (m, 6H), 3.21 (s, 2H),
2.98-2.91 (m, 4H), 2.63 (bs, 4H). *C NMR (100 MHz,
CDCl5) § 165.6, 150.2, 149.0, 148.4, 133.2, 132.7, 128.7,
126.7, 126.6, 126.1, 124.5, 121.8, 121.0, 114.8, 109.5,
66.9, 61.5, 60.3, 56.1, 55.1, 53.9, 49.9, 28.4. HRMS
(Q-TOF) m/z: [M + H]* caled for C,,H;)N,O,, 439.2345;
found 439.2340.

Ethyl 4-(2-hydroxy-3-methoxy-5-((2-(2-(4-phenyl-
piperazin-1-yl)acetyl)hydrazono)methyl)benzyl)
piperazine-1-carboxylate (13a)

White solid, yield 91%, mp: 181-183 °C, IR (ATR, cm_l)
Vpax 3186, 3056, 2922, 1698, 1657, 1594, 1239, 1089, 760;
"H NMR (400 MHz, CDCl5) & 10.09 (s, 1H), 8.06 (s, 1H),
7.27-7.23 (m, 3H), 6.97 (s, 1H), 6.91-6.84 (m, 3H), 4.12 (q,
J=7.1Hz, 2H), 3.89 (s, 3H), 3.51 (brs, 4H), 3.22 (m, 8H), 2.73
(t, J=4.4,4H), 2.50 (brs, 4H), 1.23 (t, J=7.1, 3H). 3*C NMR
(100 MHz, CDCl;) 6 165.8, 155.2, 150.9, 149.6, 148.7, 148.3,
129.2, 124.7, 121.6, 120.7, 120.1, 116.1, 109.4, 61.6, 61.0,
60.8, 56.1, 53.6, 52.1, 49.2, 43.4, 14.6. HRMS (Q-TOF) m/z:
[M+H]" caled for C,gH;5NOs, 539.2982; found 539.2975.

Ethyl 4-(5-((2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)
acetyl)hydrazono)methyl)-2-hydroxy-3-methoxy
benzyl)piperazine-1-carboxylate (13b)

White solid, yield 93%, mp: 188-191 °C, IR (ATR, cm‘l)
Vpax 3183, 3034, 2936, 1703, 1655, 1596, 1267, 1082, 750; 'H
NMR (400 MHz, CDCl;) 6 10.15 (s, 1H), 7.99 (s, 1H), 7.25
(s, 1H), 7.20-7.14 (m, 3H), 7.04 (d, /J=5.6 Hz, 1H), 6.97 (s,
1H), 4.14 (q, J=7.1 Hz, 2H), 3.90 (s, 3H), 3.78 (s, 2H), 3.72
(s, 2H), 3.54 (brs, 4H), 3.36 (s, 2H), 2.98 (t, J=5.5 Hz,, 2H),
291 (t, J=5.5, 2H), 2.54 (brs, 4H), 1.26 (t, J=7.1, 3H). 1*C
NMR (100 MHz, CDCl,) § 166.0, 155.2, 149.5, 148.6, 148.3,
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1337, 133.4,128.8, 126.7, 126.6, 126.0, 124.7, 121.6, 120.7,
109.5, 61.6, 61.0, 60.8, 56.2, 56.1, 52.2, 51.6, 43.4, 29.2,
14.6. HRMS (Q-TOF) m/z: [M+H]* calcd for C,,H;sNOs,
510.2716; found 510.2712.

Ethyl 4-(2-hydroxy-3-methoxy-5-((2-(2-mor-
pholinoacetyl)hydrazono)methyl)benzyl)pipera-
zine-1-carboxylate (13c)

—0
o] O N
/—O>_NCN &‘;

White solid, yield 88%, mp: 163-165 °C, IR (ATR, cm_l)
Vpax 3187, 3055, 2924, 1699, 1656, 1590, 1236, 1087, 764;
'"H NMR (400 MHz, CDCl3) 6 9.99 (s, 1H), 8.06 (s, 1H),
7.23 (s, 1H), 6.96 (s, 1H), 4.11 (q, J=7.1 Hz, 2H), 3.89
(s, 3H), 3.73-3.71 (m, 5H), 3.51 (brs, 4H), 3.16 (s, 2H),
2.57 (t, J=4.4 Hz, 4H), 2.52 (brs, 4H), 1.23 (t, J=7.1, 3H).
3C NMR (100 MHz, CDCl;) § 165.6, 155.2, 149.6, 148.8,
148.3, 124.7, 121.7, 120.7, 109.4, 66.9, 61.6, 61.4, 60.8,
56.1,53.8,52.15, 43.5, 14.6. HRMS (Q-TOF) m/z: [M+H]*
calcd for C,,H33N504, 464.2509; found 464.2503.

Biological studies

According to prior research, the AR purification procedure
was carried out utilizing the (NH,),SO, precipitation DE-52
cellulose ion-exchange column, Sephadex G-100 gel filtra-
tion column, and 2'5’-ADP Sepharose-4B affinity column
[60-65]. The Bradford technique at 595 nm was used to
determine the protein content of the samples [66—-68]. SDS-
PAGE technique was employed to ensure enzyme purity
[69-71]. AR activity was assessed spectrophotometrically
using pL-glyceraldehyde and NADPH reduction at 340 nm
[72-74]. Activity (%) novel acyl hydrazones generated from
vanillin compounds and standard inhibitor epalrestat plots
were used to calculate the /Cs, values, inhibitory concentra-
tions that reduce enzyme activity by 50%. Three different
inhibitory doses were applied to determine K; values and
inhibition types [75, 76].

In silico studies

The Maestro ver. 13.1 [77], Protein Preparation Wizard [78],
SiteMap [79], Receptor Grid Generation [80], LigPrep [81],
QikProp [82], Prime MM-GBSA [83], and Jaguar [84] tools
are implemented in Small-Molecule Drug Discovery Suite
2022-1 for Mac (Schrodinger, LLC, NY, USA) and were

used to perform molecular docking, ADME, and DFT calcu-
lations. All compounds, including novel acyl hydrazones and
the reference ligand EPR, were sketched in the 2D-sdf for-
mat using ChemDraw ver. 19.1 for Mac [85] (PerkinElmer,
Inc., Waltham, MA, USA), and ligand production was per-
formed using the LigPrep tool [§6-88]. The QikProp module
was used to estimate ADME-related parameters for these
substances as described in previous studies [89-91]. The
Protein Data Bank provided the X-ray structure of the tem-
plate 4JIR [92] (Resolution: 2.00 A; R-Values free and work:
0.210 and 0.160, respectively; Species: Homo sapiens) and
wass prepared using the Protein Preparation Wizard [93-95].
The Receptor Grid Generation tool [96-98] was used to cre-
ate the docking grid box. The extra-precision (XP) approach
[99-101] was used to perform molecular-docking simula-
tions. Also, the VSGB energy model [102—-104] and OPLS4
force field [105, 106] were used to calculate MM-GBSA
binding energies [107, 108], which predict relative binding
affinities for these novel acyl hydrazones. The novel acyl
hydrazones were also analyzed via Becke’s three-parameter
exchange potential and Lee—Yang—Parr correlation func-
tional (B3LYP) using a 6-31G™ basic set level. With single-
point calculations, the implicit solvation model of Poisson
Boltzmann Finite was used. The electrostatic potentials were
computed using the molecule’s van der Waals contact sur-
face area [109, 110].

Statistical studies

Analysis of the data and drawing of graphs were real-
ized using GraphPad Prism ver. 8 for Mac (GraphPad
Software, La Jolla California USA). The inhibition con-
stants were calculated by SigmaPlot ver. 12 for Windows
(Systat Software, San Jose California USA). The fit of
enzyme inhibition models was compared using the extra
sum-of-squares F test and the AICc approach. The results
were exhibited as mean + standard error of the mean (95%
confidence intervals). Differences between datasets were
considered statistically significant when the p value was
less than 0.05.

Results and discussion
Chemistry

The synthesis pathway of designed molecules was carried
out using reagents and conditions as presented in Schemes
1 and 2. Briefly, compounds 2a and 2b were synthesized
according to the Schotten Baumann reaction, and com-
pounds 3a-e were synthesized according to the Mannich
Reaction, with good yields.
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In Scheme 2, hydrazides (6a—c) were synthesized from
esters formed by the reaction of the related cyclic second-
ary amine with ethyl chloroacetate. In the final step, the
synthesized aldehydes (2a-b, 3a—e) were treated with the
synthesized hydrazides (6a—c), producing target compounds
(7a—c to 13a—c) with yields ranging from 75 to 90%. The
melting points of the known intermediates were compared
with the values in the literature. The structures of the newly
synthesized compounds were characterized by IR, 1H NMR,
and 13C NMR spectroscopic methods.

In the IR spectra of the compounds 7a—c to 13a—c, NH
stretching bands are observed at 3210-3145 cm™!. Aro-
matic C-H stretching bands are seen at 3108-3034 cm™!
and the aliphatic C—H stretching bands are observed at
2960-2905 cm™!. C=0 of hydrazone moiety and CH=N
stretching bands are observed at 1668-1654 cm™! and
15971556 cm™!, respectively. C—O and N-H bending bands
are seen at 1270-1225 cm™~! and 1089-1067 cm™!, respec-
tively. For compounds 7a—c, 8a—c, and 13a-c, stretching
bands of ester carbonyl are observed at 1743-1698 cm™!.

In the 'H NMR spectra of the compounds 7a—c to
13a—c, peaks of NH protons are seen as singlet at d
10.34-9.97 ppm. Peaks of N=CH protons are observed as
singlet at & 8.25-7.97 ppm. The resonance signals of aro-
matic protons are observed at & 7.99-6.60 ppm as singlet,
doublet, triplet, and multiplet relative to their chemical
environment. Peaks of OCH; and Ph—CH,—-N protons are
seen as singlet at 8 3.94-3.84 and & 3.81-3.71 ppm, respec-
tively. Peaks of N-CH,—C=O0 protons are seen as singlet at &
3.39-3.15 ppm. Aliphatic protons of morpholine, piperazine,
tetrahydroisoquinoline, and piperidine moieties are observed
at 8 3.75-0.82 ppm as singlet, doublet, triplet, and multi-
plet relative to their chemical environment. For compounds
13a-c, peaks of OCH,CHj; protons are seen as quartet at &
4.14-4.11 ppm and peaks of OCH,CH, protons are seen as
triplet at & 1.26—1.23 ppm. Chemical shifts, integrations, and
splits are fully compatible with the structures.

In the '3C NMR spectra of target molecules,
peaks of HN-C=0 and CH=N carbons are seen at &
166.5-165.6 ppm and & 147.8—-148.4 ppm, respectively.
For compounds 7a—c and 8a—c, peaks of Ar—C=0 carbons
are observed at & 160.0-156.2 ppm. Peaks of aromatic
carbons are observed at 8 151.9-109.1 ppm. Peaks of
OCH; carbons are seen at § 56.3-56.0 ppm, and peaks
of N-CH,—C=0 carbons are seen at & 61.5-61.0 ppm.
For compounds 13a-c, peaks of CH;CH,-O-C=0 car-
bons are observed at & 155.2 ppm. Also, for compounds
13a-c, peaks of CH;CH,-O-C=0 and CH;CH,-O-C=0
carbons are observed at § 43.5-43.4 ppm and d 14.6 ppm,
respectively. Finally, aliphatic carbons of morpholine,
piperazine, tetrahydroisoquinoline, and piperidine moie-
ties are observed at 8 66.9—19.3 ppm. Chemical shifts
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and the number of the peaks are fully compatible with
the structures.

Biological studies and structure-activity relation-
ship

As shown in Table 1, 21 compounds exhibited relative
more potent inhibitory activity against AR with K val-
ues ranged from 49.22 +3.64 to 1114.00 +49.64 nM,
and among them, compound 1lc¢, named N'-(4-hy-
droxy-3-methoxy-5-((3-methylpiperidin-1-yl)methyl)
benzylidene)-2-morpholinoaceto hydrazide, displayed
the strongest inhibitory effect with an K; value of
49.22 +3.64 nM (Fig. 1). The inhibitor effects of novel
acyl hydrazones derived from vanillin compounds against
AR were decreased in the following order: 11c > (K|:
49.22 +3.64 nM) 10b > (Ky: 79.36 +£5.77 nM) 7a> (K;:
101.00+8.21 nM) 10a > (K;: 145.80+22.30 nM) 8a> (K}:
182.40 +14.35 nM) 7¢ > (K;: 304.00+ 13.36 nM) 9b > (K;:
312.80 +£53.48 nM) 12b > (K;: 338.40+17.18 nM)
9¢ > (K;: 372.10 £ 62.45 nM) 11b > (K;:
394.00 +£22.65 nM) 11a> (K;: 398.20+ 15.20 nM)
12a > (Ky: 437.40 +14.08 nM) 13b > (K;:
44450 +24.74 nM) 7b > (K2 523.00 +22.54 nM)
12¢ > (K;: 533.50 +£26.67 nM) 10c > (K;:
598.70 £ 19.27 nM) 8c > (K;: 746.20 +34.41 nM)
13a > (K;: 787.10 +£39.32 nM) 13c > (K;:
854.00+33.96 nM) 8b > (K;: 897.20 +43.63 nM)
9a> (K;: 1114.00 +49.64 nM).

There are different types of inhibition, including mixed,
non-competitive, competitive, and un-competitive. It
would be appropriate to state that the inhibitory poten-
tial of the molecules is due to the structural, 3D chemical
structure, and conformation features that vary according
to the different groups on which the backbone structure
depends. When compounds 7a and 7¢ are compared, sub-
stitution of 4-phenylpiperazin-1-yl structure with 2-mor-
pholino caused a threefold change in the inhibition value.
The 4-phenylpiperazin-1-yl group showed a better inhibi-
tion effect in the replacement of the phenylfuran-2-car-
boxylate structure in the structure of compounds 7a and
7c¢ with thiophene-2-carboxylate (8a and 8c).

When acetohydrazide compounds were compared
(9¢, 10c, and 11c¢), the inhibition effect was observed
as follows, respectively: 3-methylpiperidin-1-yl (11c,
Ky 49.22 +3.64 nM) > 5-morpholinomethyl (9¢, K;:
372.10 + 62.45 nM) > 4-phenylpiperazin-1-yl (10c, K:
598.70 +£19.27 nM). On the contrary, when we look
at the inhibition order of 2-(4-phenylpiperazin-1-yl)
acetohydrazide compounds, the inhibition effect was
observed as follows, respectively: 4-phenylpiperazin-
1-yl (10a) > 3-methylpiperidin-1-yl (11a) > 5-mor-
pholinomethyl (9a). Considering the inhibition order
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Scheme 2 The synthetic pathway for the preparation of novel acyl hydrazones (7a—c and 13a—c)

of piperazine-1-carboxylate compounds (13a, 13b and
13c), compound 13b showed better inhibition effect (K:
444.50+24.74 nM).

Potential inhibitory effect of synthesized compounds
against AR has been reported in the literature. Yapar et al.
[111] synthesized the novel bis-hydrazone compounds
bearing isovanillin moiety and studied inhibition effect
of these compounds on AR enzyme activity. They found

that the novel bis-hydrazones demonstrated in nanomo-
lar levels as AR inhibitors with Kj values in the range of
13.38-88.21 nM. Maccari et al. [112] performed inhibition
effect of 5-arylidene-2,4-thiazolidinediones on AR enzyme.
The authors found that a hydroxyl group on the 5-arylidene
moiety led to significant inhibitory effect. Alexiou et al.
[113] synthesized a series of N-(3,5-difluoro-4-hydrozy-
phenyl)benzenesulfonamide derivatives and studied the
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inhibition effect of novel compounds on AR. They enhanced
these compounds compared to N-benzenesulfonylglycine
lead derivative. The most potent inhibitor was found to be
compound 66 with the /Cs, value of 14.1 pM.

In silico studies

Table 2 summarizes the results of the determination of
ADME-related parameters for novel acyl hydrazones. New
acyl hydrazones were identified as hit-agents with drug-like
effects based on ADME properties calculations. Accord-
ing to this information, the molecular weights (MWs,
392.45-542.68) and dipole moments (Dipole, in the 2.65
to 9.64) of the novel acyl hydrazones derived from vanillin
compounds (7a—c and 13a—c) have reported being in the
permissible values. Volume (in range 1227.48 to 1752.91),
which is the total solvent-accessible volume descriptor, was
determined to be in the permissible ranges for these hydra-
zones (7a—c and 13a—c), compared with reference values.
The logP values, such as QPlogPoct, QPlogPw, QPlogPo/w,
QPlogS, QPlogBB, QPlogKp, and QPlogKhs, are in ranging
from 20.27 to 29.35, 12.63 to 16.76, 0.69 to 4.61, — 6.46
to —1.26, —1.14 to —0.24, —7.17 to —3.28, and —0.55 to
0.93, respectively, and indicates of target derivatives (7a—c
and 13a-c) have the high capacity. The values of human
oral absorption (HOAs) were higher than 30%, and van
der Waals surface area of polar nitrogen and oxygen atoms
(PSA, in the range 86.82 to 134.05) indicate that all analogs
(7a—c and 13a—c) had at the acceptable values. All the acyl
hydrazones have displayed normal Caco-2 cell permeabil-
ity rates (except for compounds 13b and 13c¢; QPPCaco,

75 A
[ Control ]
—— 156.42 nM
2=
S E 451 —— 22346 M
=)
cw
o .
< = 30
15
| — T 1/ T T 1
-15 -10 -5 0 5 10 15

1/[ Substrate ] mM™!

Compound 11c

Fig. 1 The Lineweaver—Burk plots of novel acyl hydrazone derivative
11c

in the 23.47 to 245.90), and MDCK cell permeability val-
ues (except for compound 13a, 13b, and 13c; QPPMDCK,
in range 10.49 to 214.30). Indeed, all newly synthesized
acyl hydrazones derived from vanillin compounds (7a—c
and 13a-c) displayed good drug-like properties with zero
violation of Lipinski’s rule (except for compounds 10a-b,
12a, and 13a—c) and zero or one violation of the Jorgens-
en’s rule (except for compounds 12a) (Table 2). Moreover,
the ADME-Tox values calculated for N'-(4-hydroxy-3-
methoxy-5-((3-methylpiperidin-1-yl)methyl)benzylidene)-
2-morpholinoaceto hydrazide 11¢ might explain why, being
a potent AR inhibitor, this ligand has the most AR inhibitory
activity in biological experiments.

Table 1 Inhibition data of AR with the novel acyl hydrazones derived from vanillin compounds and standard inhibitor epalrestat

Molecule K; (aM)? R? Inhibition type Molecule K; (aM)? R? Inhibition type
Ta 101.00+8.21 0.9924 Competitive 10c 598.70+19.27 0.9937 Noncompetitive
7b 523.00+22.54 0.9911 Noncompetitive 11a 398.20+15.20 0.9917 Noncompetitive
Tc 304.00+13.36 0.9975 Competitive 11b 394.00 +22.65 0.9835 Noncompetitive
8a 182.40+14.35 0.9924 Competitive 11c 49.22+3.64 0.9938 Competitive

8b 897.20+43.63 0.9890 Noncompetitive 12a 437.40+14.08 0.9963 Noncompetitive
8c 746.20+34.41 0.9872 Noncompetitive 12b 338.40+17.18 0.9883 Noncompetitive
9a 1114.00+49.64 0.9887 Noncompetitive 12¢ 533.50+26.67 0.9877 Noncompetitive
9b 312.80+53.48 0.9915 Mixed 13a 787.10+39.32 0.9900 Noncompetitive
9¢ 372.10+62.45 0.9921 Mixed 13b 444.50+24.74 0.9849 Uncompetitive
10a 145.80+22.30 0.9935 Mixed 13c 854.00+33.96 0.9922 Noncompetitive
10b 79.36+5.77 0.9940 Competitive Epalrestat 855.50+61.46 0.9853 Noncompetitive

The test results were expressed as means of triplicate assays + SEM

Epalrestat was used as a control for the AR enzyme
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Fig.4 The HOMO-LUMO plot
of the most potent AR inhibi-
tory 11c. The red color-coding
area specifies the most negative
potential region, while the blue
color-coding area defines the
most positive potential region of
the compound

HOMO

Molecular docking experiments were used to obtain sub-
stantial insight into the origins of the structure—activity con-
nections examined for the new acyl hydrazones. Initially,
the native ligand EPR ((5-[(2E)-2-methyl-3-phenylprop-
2-en-1-ylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic
acid) in the AR receptor's binding site (PDB code 4JIR)
[92] was employed in the redocking computation. At a root-
mean-square deviation (RMSD) of 0.10 (docking score
of —7.04 kcal/mol and MM-GBSA value of —41.07 kcal/
mol), the docked pose of EPR overlapped with the pose in
the X-ray crystal structure of the AR (Fig. 2). This redock-
ing experiment was crucial in determining which model
structure would best accommodate all of the newly synthe-
sized AR ligands. Then, using the Glide Ligand Docking
tool in this series, the generated binding model was used
to perform docking calculations of the most potent AR
inhibitor 11c¢. A docking score of — 8.07 kcal/mol and MM-
GBSA value of — 69.69 kcal/mol indicated compound 11¢
are a tight binder for AR compared to EPR. The carboxy
moiety formed an H-bond with residue Trpl111 (distance
2.16 10\), while the —-NH group displayed mn-cation interac-
tion with Phe122. Furthermore, compound 11¢ monitored

@ Springer

LUMO+1

LUMO

hydrophobic interactions with residues Trp20, Val47, Tyr48,
Trp79, Phel21, Tyr209, Trp219, 11e260, Cys298, Leu300,
Leu301, and Cys303 played significant roles in the binding
of the ligand with 4JIR (Fig. 3).

To explain the structural parameters, the DFT calcula-
tion was performed for compound 11¢, which has the most
potent AR inhibitory activity and was optimized at the level
of B3LYP/6-31G=:. In chemical reactivity, derivative 11c
is sparkling, and the HOMO (highest occupied molecular
orbitals)-LUMO (lowest unoccupied molecular orbitals)
gap increases the charge transfer of the compounds. The
electron density is indicated by the intensity of the color
that reflects the distinctive feature of the molecule. Because
electrons can move quickly between energy levels in the
HOMO and LUMO, energy gap levels reveal the delicate
nature of reactivity. The energy gap of the compound 11c¢
in the HOMO-LUMO analysis is 0,160,511 eV, and the
HOMO-LUMO plot of 11c is shown in Fig. 4. From this
plot, it is seen that the value of AE decreases in the case of
complex, which further supports the binding framework and
that compound 11c has significant chemical reactivity and
polarizability.
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Conclusion

A series of acyl hydrazones derived from vanillin were syn-
thesized and their effects on the AR were investigated. K|
values in the range of 49.22 +3.64 to 897.20 +43.63 nM.
Compounds 11c and 10b against AR enzyme activity were
identified as the highly potent inhibitors than epalrestat.
AR is novel molecular target involved in different pathways
related to the development of type II diabetes mellitus and
related comorbidities. The design of effective bioavailable
inhibitors for AR enzyme is still an urgent need. We expect
that our findings will lead to the development of novel AR
inhibitors based on inhibition and molecular docking inves-
tigations. We also hope that our compounds will be good
therapeutic candidates with further investigation.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11030-022-10526-1.
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